Lecture 5: Bayesian Inference in SDE Models

Bayesian Filtering and Smoothing Point of View

Simo Sarkka

Aalto University, Finland (visiting at Oxford University, UK)

November 27, 2013

Simo Sarkka (Aalto) Lecture 5: Bayesian Inference in SDEs November 27, 2013



° Problem Formulation

9 Discrete-Time Bayesian Filtering

e Discrete-Time Bayesian Smoothing

e Continuous/Discrete-Time Bayesian Filtering and Smoothing
e Continuous-Time Bayesian Filtering and Smoothing

@ Related Topics and Summary

Simo Sarkka (Aalto) Lecture 5: Bayesian Inference in SDEs November 27, 2013



The Basic Ideas

@ Use SDEs as prior models for the
system dynamics.

@ We measure the state of the SDE
though a measurement model.

@ We aim to determine the conditional R
distribution of the trajectory taken by

the SDE given the measurements. /e
@ Because the trajectory is an ' \\

infinite-dimensional random
variable, we do not want to form the
full posterior distribution.

@ Instead, we target to time-marginals

of the posterior — this is the idea of
stochastic filtering theory.
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Types of state-estimation problems

@ Continuous-time:

@ The dynamics are modeled as
continuous-time processes (SDEs).

e The measurements are modeled as
continuous-time processes (SDEs).

@ Continuous/discrete-time:

e The dynamics are modeled as
continuous-time processes (SDEs).

e The measurements are modeled as
discrete-time processes.

@ Discrete-time: "

o The dynamics are modeled as AT
discrete-time processes. ETIR

e The measurements are modeled as a
discrete-time processes.
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Example: State Space Model for a Car [1/2]

@ The dynamics of the car in 2d
(x1, X2) are given by Newton’s law:

/E F(t) = ma()

o \ where a(t) is the acceleration, mis
the mass of the car, and F(t) is a
vector of (unknown) forces.

@ Let’s model F(t)/m as a 2-dimensional white noise process:
d?x1/dt? = wy(t)
d?xp/dt? = wa(t).
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Example: State Space Model for a Car [2/2]

o If we define x3(t) = dxq/dt, x4(t) = dxo/dt, then the model can be
written as a first order system of differential equations:

X4 0 010 X4 0 0
g Xo | 0 0 0 1 Xo i 00 W+
at | xs {00 0O X3 1 0 wo |-
X4 0 00O X4 0 1
F L
@ In shorter matrix form:
ax
E_FerLw.

@ More rigorously:
dx=Fxdt+Ldg.
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Continuous-Time Measurement Model for a Car

@ Assume that the position of the car
(x1, X2) is measured and the
G (1, ¥2) measurements are corrupted by
white noise e (t), ex(t):

y1(t) = x1(t) + e(t)
Yo(t) = xo(t) + ex(t).

@ The measurement model can be now written as

1000)

y(t) = Hx(t) + e(t), with H = (0 S o o

@ Or more rigorously as an SDE

dy = Hx dt + dn.
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General Continuous-Time State-Space Models [1/2]

@ The resulting model is of the form

dx=Fxdt+Ldgs
dy = Hxdt + dn.

@ This is a special case of a continuous-time model:

dx =f(x,t)dt + L(x,t) dB
dy = h(x, t) dt + dn.

@ The first equation defines dynamics of the system state and the
second relates measurements to the state.

@ Given that we have observed y(t), what can we say (in statistical
sense) about the hidden process x(t)?
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General Continuous-Time State-Space Models [2/2]

@ Bayesian way: what is the posterior distribution of x(t) given the
noisy measurements y(7) on 7 € [0, T]?

@ This Bayesian solution is surpricingly old, as it dates back to work
of Stratonovich around 1950s.

@ The aim is usually to compute the filtering (posterior) distribution
p(x(t) [{y(r) : 0 <7 <t}).
@ We are also often interested in the smoothing distributions
px(t) [{y(r) : 0<7<T}) t€[0,T]
@ Note that we could also attempt to compute the “full” posterior
p({x(t*) - 0<t" < T}[{y(r) : 0<7<T}).

@ The full posterior is not usually feasible nor sensible — we will
return to this later.
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Discrete-Time Measurement Model for a Car

@ Assume that the position of the car
(x1, X2) is measured at discrete time
@ (1, y2) instants ty, b, .. ., ty:

Yik = X1 () + €1k
Yok = Xo(tk) + €2k,

(e1.k, €2.k) ~ N(0, R) are Gaussian.
@ The measurement model can be now written as

1 0 0O
yk:Hx(tk)+ek, H—(O 1 0 0)

@ Or in probabilistic notation as

P(Yk | X()) = N(y« | HX(t), R).
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General Continuous/Discrete-Time State-Space

Models

@ The dynamic and measurement models now have the form:
dx=Fxdt+Lds
Yk = HX(t) +
@ Special case of continuous/discrete-time models of the form
dx =f(x,t)dt + L(x,t) dB
Vi ~ P(Yi | X(t))-
@ We are typically interested in the filtering and smoothing
(posterior) distributions
P(X(tc) [ Y1,---,Yk),
p(x(t) |y1,.--,¥7),  t* €0, tr].

@ In principle, the full posterior can also be considered — but we will
concetrate on the above.
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General Discrete-Time State-Space Models [1/2]

@ Recall that the solution to the SDE dx = f(x, t) df + L(x,t) d3 is

t
x(t):exp(F(t—to))x(to)+/ exp(F (t — 7))L dB(r).

b

o Ifwesett+«+ fxand fy + t_1 we get

t
X(te) = exp(F (t — te_1)) X(ter1) + / exp(F (t — 7)) LdB(r).

@ Thus this is of the form

X(t) = Ak—1X(t—1) + Qk—1

where
o Ai_1 =exp(F(t& — &—1)) is a given (deterministic) matrix and
@ («_1 is zero-mean Gaussian random variable with covariance
Qc1 = [, exp(F(t—))LQLT exp(F (t — 7)) dr.
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General Discrete-Time State-Space Models [2/2]

@ Thus we can write the linear state-space model (e.g. the car)
equivalently in form such as
X(t) = Ak—1X(t—1) + Qk—1
Vi = Hx(t) + ri
@ This is a special case of discrete-time models of the form
X(tc) ~ p(X(tk) [ X(tc—1))
Yk ~ P(Yk | X(t))-

@ Generally p(x(t) | X(fk—1)) is the transition density of the SDE
(The Green’s function of Fokker—Planck—Kolmogorov)
@ We are typically interested in the filtering/smoothing distributions

p(X(tk) | Yi,.-. ayk)7
p(x(t) | y1,...,y7), i=12,....T.
@ Sometimes we can also do the full posterior. ..
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Why Not The Full Posterior?

@ Consider a discrete-time state-space model:
Xk ~ P(Xk | Xk—1)
Vi ~ P(Yk | Xk)-

@ Due to Markovianity, the joint prior is now given as

-
p(Xo.7) = p(Xo) [ P(Xk | Xk—1).
e

@ Due to conditional independence of measurements, the joint
likelihood is given as

.
p(y+:7 | X0.7) = [ p(Yk | X4)-
k=1
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Why Not The Full Posterior? (cont.)

@ We can now use Bayes’ rule to compute the full posterior
p(Y1.7 | Xo.7) P(Xo.7)
p(y1:T)
_ Tkt POYK | X0) POXK | Xk—1) P(Xo0)
J Tzt POV | %K) P(Xk | Xk—1) P(Xo) OXo.7
@ This is very high dimensional (with SDEs infinite) and hence
inefficient to work with — this is why filtering theory was invented.
@ We aim to fully utilize the Markovian structure of the model to
efficiently compute the following partial posteriors:
o Filtering distributions
p(Xk|y1;k), k=17...,T.
e Smoothing distributions

p(Xk [ Y1),  k=1,....T.

p(Xo.7 | Y1.7) =
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Bayesian Optimal Filter: Principle

@ Assume that we have been given:
@ Prior distribution p(xo).
@ State space model:

Xk ~ P(Xk | Xk—1)
Yk ~ P(Yk | Xk),

© Measurement sequence Yi.x = Y1, - ., Yk
@ We usually have xx £ x(tx) for some times t, by, . . ..
@ Bayesian optimal filter computes the distribution

P(Xk | Y1:k)

@ Computation is based on recursion rule for incorporation of the
new measurement yy into the posterior:

P(Xk—1|Y1:k—1) — P(Xk | Y1:k)
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Bayesian Optimal Filter: Derivation of Prediction Step

@ Assume that we know the posterior distribution of previous time
step:
P(Xk—1|Y1:k—1)-

@ The joint distribution of x,, Xx_1 given y1.,_¢ can be computed as
(recall the Markov property):

P(Xk, Xk—1 | Y1:k—1) = P(Xk | Xk—1,Y1:k—1) P(Xk—1 | Y1:k-1)
= p(Xk [ Xk—1) P(Xk—1 | Y1:k-1),

@ Integrating over x,_1 gives the Chapman-Kolmogorov equation

P(Xk [ Y1:k—1) = /P(Xk|xk—1)P(Xk—1 | Y1:k—1) OXk_1.

@ This is the prediction step of the optimal filter.
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Bayesian Optimal Filter: Derivation of Update Step

@ Now we have:
@ Prior distribution from the Chapman-Kolmogorov equation

P(Xk [ Y1:k-1)
@ Measurement likelihood from the state space model:

P(Yk | Xk)

@ The posterior distribution can be computed by the Bayes’ rule
(recall the conditional independence of measurements):

’
P(Xk [Y1:k) = ZP(Vk | Xk, V1:k—1) P(Xk | V1:k—1)

1
= > P(Yk | Xk) P(Xk | Y1:k-1)
i

@ This is the update step of the optimal filter.
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Bayesian Optimal Filter: Formal Equations

Optimal filter
@ Initialization: The recursion starts from the prior distribution p(xp).
@ Prediction: by the Chapman-Kolmogorov equation

P(Xk | Y1:k—1) = /P(Xklxk—1)P(Xk—1 | Y1:k—1) dXk_1.
@ Update: by the Bayes’ rule
’
P(Xk |Y1:k) = ZP(VK | Xk) P(Xk | Y1:k—1)-

@ The normalization constant Zx = p(Yx | Y1.k—1) is given as

Zy = /P(Vklxk)P(Xk|V1:k1)ka-
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Bayesian Optimal Filter: Graphical Explanation

prior A
likelihood posterior
dynamics
next
" .

On prediction step the Prior distribution from The posterior distribution
distribution of previous prediction and the after combining the prior
step is propagated likelihood of and likelihood by Bayes’
through the dynamics. measurement. rule.
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Filtering Algorithms

Kalman filter is the classical optimal filter for linear-Gaussian
models.

Extended Kalman filter (EKF) is linearization based extension of
Kalman filter to non-linear models.

Unscented Kalman filter (UKF) is sigma-point transformation
based extension of Kalman filter.

Gauss-Hermite and Cubature Kalman filters (GHKF/CKF) are
numerical integration based extensions of Kalman filter.

Particle filter forms a Monte Carlo representation (particle set) to
the distribution of the state estimate.

Grid based filters approximate the probability distributions on a
finite grid.

Mixture Gaussian approximations are used, for example, in
multiple model Kalman filters and Rao-Blackwellized Particle
filters.
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Kalman Filter: Model

@ Gaussian driven linear model, i.e., Gauss-Markov model:

Xk = Ak_1 Xk—1 + Ok_1
Yk = Hg Xp + 1,

@ gx_1 ~ N(0,Qk_1) white process noise.

@ rix ~ N(0, Rx) white measurement noise.

@ A,_; is the transition matrix of the dynamic model.
@ Hy is the measurement model matrix.

@ In probabilistic terms the model is

P(Xk | Xk—1) = N(Xx | Ax—1 Xk—1, Qk_1)
P(Yk | Xk) = N(Yk | Hk Xk, R).
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Kalman Filter: Equations

Kalman Filter

@ Initialization: xg ~ N(mg, Pg)
@ Prediction step:
m, = Ax_1my_4
P, = Ak_1 Piot AL ¢ + Quy.

@ Update step:
Vk =Yk —Hemy
Sk = Hc P, Hf + Ry
Kk =P, HL S
my = m, + Ky vy
Py =P, — K« Sk K.

November 27, 2013
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Problem Formulation

@ Probabilistic state space model:

measurement model: yx ~ p(Yx | Xk)
dynamic model: X, ~ p(Xx | Xk_1)

@ Assume that the filtering distributions p(xx | y1.x) have already
been computed forall k =0,..., T.

@ We want recursive equations of computing the smoothing
distribution for all k < T:

P(Xk | Y1.7).

@ The recursion will go backwards in time, because on the last step,
the filtering and smoothing distributions coincide:

P(XT|Y1.7)-
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Derivation of Formal Smoothing Equations [1/2]

@ The key: due to the Markov properties of state we have:

P(Xk | Xk+1,Y1:7) = P(Xk | Xk41, Y1:k)

@ Thus we get:

P(Xk | Xk11,¥1:7) = P(Xk | Xkct-1, Y1:k)
_ P(Xk, Xkg1 | V1:k)
P(Xk41|Y1:k)
PRkt [ Xk, Y1:k) P(Xk | Y1:4)
P(Xk+1 | Y1:k)
P(Xk+1 | Xk) P(Xk | Y1:k)
P(Xk+1 | Y1:k) '
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Derivation of Formal Smoothing Equations [2/2]

@ Assuming that the smoothing distribution of the next step
p(Xx+1|y1.7) is available, we get

P(Xk, X1 |Y1:7) = P(Xkc | Xk1, Y1:7) P(Xk1 | Y1:7)
= P(Xk | Xk41,Y1:k) P(Xk+1 | Y1:7)
_ P(Xk1 | Xk) P(Xk | Y1:6) P(Xt1[Y1:7)
P(Xk11 | Y1:4)

@ Integrating over x, ¢ gives

P(Xki1 | Xk) P(Xk1 | Y1:7)
X . = p(X : o
P(Xk [Y1:7) = p( k|y1.k)/[ P(Xk+1]Y1:k) -
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Bayesian Optimal Smoothing Equations

Bayesian Optimal Smoothing Equations

The Bayesian optimal smoothing equations consist of prediction step
and backward update step:

P(Xk11|Y1:k) = /P(Xk+1 | Xk) P(Xk | Y1:4) OXk

p(xk+1 ’Xk)p(Xk_H |y1:T):|
. ) — p(x _ ax
P(Xk [Y1:7) = p( k|y1.k)/[ P(Xk+1|Y1:k) o

The recursion is started from the filtering (and smoothing) distribution
of the last time step p(Xr1 | y1.7).
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Smoothing Algorithms

@ Rauch-Tung-Striebel (RTS) smoother is the closed form smoother
for linear Gaussian models.

@ Extended, statistically linearized and unscented RTS smoothers
are the approximate nonlinear smoothers corresponding to EKF,
SLF and UKF.

@ Gaussian RTS smoothers: cubature RTS smoother,
Gauss-Hermite RTS smoothers and various others

@ Particle smoothing is based on approximating the smoothing
solutions via Monte Carlo.

@ Rao-Blackwellized particle smoother is a combination of particle
smoothing and RTS smoothing.
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Linear-Gaussian Smoothing Problem

@ Gaussian driven linear model, i.e., Gauss-Markov model:
Xk = Ak_1 Xk—1 + Qk—1
Yk = He Xk + 1,
@ In probabilistic terms the model is
P(Xk | Xk—1) = N(Xk [ Ax—1 X1, Qx_1)
P(Yk | Xk) = N(Yk [ Hi X, Rg).
@ Kalman filter can be used for computing all the Gaussian filtering
distributions:
P(Xk [ Y1:k) = N(Xx | Mg, Py).
@ Rauch-Tung—Striebel smoother then computes the corresponding
smoothing distributions

p(xk ‘ y1:T) = N(xk ’ mia Pi)
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Rauch-Tung-Striebel Smoother

Rauch-Tung-Striebel Smoother
Backward recursion equations for the smoothed means mj and

covariances Py:
M1 = Ax My
Pi. i =AcPc AL +Q
Gy = Px AL [P, 4]
mi = my + Gx [mi, —m, ]
5 =Pi+Gk[P§, . — P, 4GP,

@ my and P, are the mean and covariance from Kalman filter.

@ The recursion is started from the last time step T, with m$ = my
and P$ = Pr.
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Continuous/Discrete-Time Bayesian Filtering and

Smoothing: Method A

@ Consider a continuous-discrete state-space model

dx =f(x,t)dt + L(x,t)dg
Yk ~ P(Yk | X(t))-

@ We can always convert this into an equivalent discrete-time model

X(t) ~ p(x(tc) [ X(t—1))
Vi ~ P(Yk | X(t))-

by solving the transition density p(x(t) | X(f_1)).

@ Then we can simply use the discrete-time filtering and smoothing
algorithms.

@ With linear SDEs we can discretize exactly; with non-linear SDEs
we can use e.g. It6-Taylor expansions.
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Continuous/Discrete-Time Bayesian Filtering and

Smoothing: Method B

@ Another way is to replace the discrete-time prediction step

P(Xk | Y1:k—1) = /P(Xk|xk_1)P(Xk_1 | Y1:k—1) OXk_1.

with its continuous-time counterpart.
@ Generally, we get the Fokker-Planck equation

8'0)”__23 p(x, 1]

P (L QLT (x, )]y p(x.

with the initial condition p(X, t_1) = p(Xk—_1 | Y1:k—1)-
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Continuous/Discrete-Time Bayesian Filtering and

Smoothing: Method B (cont.)

Continuous-Discrete Bayesian Optimal filter

@ Prediction step: Solve the Fokker-Planck-Kolmogorov PDE

op J . 1 H? .
3t __Za_)q(f’pHE;ax/a)q ([LQL ]up)

@ Update step: Apply the Bayes’ rule.

P(Yk | X(t)) P(X() | Y1:k-1)
J (YK | X(t)) P(X(t) | Y1:k—1) dX()

P(X(t) | Y1:k) =

@ In linear models we can use the mean and covariance equations.
@ Approximate mean/covariance equations are used in EKF/UKF/. ..
@ The smoother consists of partial/ordinary differential equations.
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Continuous-Time Stochastic Filtering Theory [3/3]

@ Continuous-time state-space model

dx =f(x,t)dt + L(x,t) dB
dy = h(x, t) dt + dn.

@ To ease notation, let’s define a linear operator .7*:
0
- Z W[ff(x, £) ()]

+3 Z 5 1L D QLT 0 O ()}

@ The Fokker—Planck—Kolmogorov equation can then be written
compactly as
b _

ot p-
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Kushner—Stratonovich equation

By taking the continuous-time limit of the discrete-time Bayesian
filtering equations we get the following:

Kushner—Stratonovich equation

The stochastic partial differential equation for the filtering density
p(x.t| %) £ p(x(t) | %) is

dp(x7t| @t) = "Q{*p(xa” %)dt
+ (h(x,t) — Efh(x, 1) | #4])" R~"(dy — E[h(x, t) | Z]dt) p(x, t | %),

where dp(x, t | ) = p(X, t + dt | Z4sar) — p(X, £ | %) and

Efh(x, 1) | 2] = / h(x, £) p(x, ¢ | %) dx
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Zakai equation

We can get rid of the non-linearity by using an unnormalized equation:

Zakai equation

Let g(x,t| %) = q(x(t) | %;) be the solution to Zakai’s stochastic
partial differential equation

dq(x.t| ) = " q(x,t | %) dt + h'(x, )R dy q(x,t | %),
where dq(x,t | %) = q(X,t + dt | Z+qt) — Q(X, t | ). Then we have

p(x(t) | %) = Tq(x q(X(T)%%a)!x(t)
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Kalman—Bucy filter

The Kalman—Bucy filter is the exact solution to the linear Gaussian
filtering problem

dx = F(t)x dt + L(t) d
dy = H(t)x dt + dn.

Kalman—Bucy filter

The Bayesian filter, which computes the posterior distribution
p(x(t) ] %) = N(x(t) | m(t), P(t)) for the above system is

K(t) =P()H' ()R

dm(t) = F(t)m(t) ot + K(t) [dy(t) — H(t) m(t) di]
d';gt) = F(t)P(t) + P(t)FT(t) + L(t) QLT(t) — K(t) RK'(t).
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Related Topics

@ We can also estimate parameters 6 in SDEs/state-spate models:
dx =f(x,t;0)dt + L(x,t;,0)ds

@ The filtering theory provides the means to compute the required
marginal likelihoods and parameter posteriors.

@ ltis also possible estimate f(x, t) non-parametrically, that is, using
Gaussian process (GP) regression.

@ Model selection, Bayesian model averaging, and other advanced
concepts can also be combined with state-space inference.

@ GP-regression can also be sometimes converted to inference on
SDE models (I'll talk about that tomorrow).
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@ We can use SDEs to model dynamics in Bayesian models.

@ Dynamic (state-) estimation problems can be divided into
continuous-time, continuous/discrete-time, and discrete-time
problems — the continuous models are SDEs.

@ The full posterior of state trajectory is usually intractable —
therefore we compute filtering and smoothing distributions:

p(X(tk) | ViPEEE 7yk)a
p(X(t*) | y1,..., Y1), t* € [0, tr].
@ The Bayesian filtering and smoothing equations also often need to
be approximated.

@ Methods: Kalman filters, extended Kalman filters (EKF/UKF/...),
particle filters — and the related smoothers.
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