SDEs in Bayesian Dynamic Models and Machine Learning 2013

Exercise Round 2 (November 25, 2013).

Exercise 1. (Fokker-Planck—-Kolmogorov (FKP) equation)
A) Write down the FKP for

dz = tanh(z) dt + dg, z(0) =0, (1)

where /3(t) is a standard Brownian motion, and check that the following solves it:

1 1 1
p(z,t) = NoIT cosh(x) exp (—5 t) exp <—% x2> :

B) Plot the evolution of the probability density at times ¢ € [0, 5].

C) Simulate 1000 trajectories from the SDE using Euler-Maruyama method and
check that the histogram matches the correct density at time ¢ = 5.

Exercise 2. (Numerical solution of FPK)

Use finite-differences method to solve the FPK for the Equation (4). For sim-
plicity, you can select a finite range © € [—L, L] and use the Diriclet boundary
conditions p(—L,t) = p(L,t) = 0.

A) Divide the range to n grid points and let » = 1/(n + 1). On the grid, approxi-
mate the partial derivatives of p(x,t) via

Op(r,t) _ plx+h,t)—plx —h,t)

~

ox2 h? '

B) Let p(t) = (p(h,t) p(2h,t) --- p(nh,t))T and from the above, form an equa-
tion of the form

dp
— =Fp. 3
iy P 3)
C) Solve the above equation using (1) backward Euler (2) by numerical compu-
tation of exp(F t) and by (3) forward Euler. Check that the results match the
solution in the previous exercise.
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Exercise 3. (1.5 order Ito—Taylor)

Simulate trajectories from the following SDE with 1.5 order strong Ito—Taylor
series based method

dz = tanh(x) dt + dg, z(0) = 0, “4)

where (t) is a standard Brownian motion, and compare the resulting histogram
to the exact solution

1 1 1
p(z,t) = Nors, cosh(x) exp (—5 t) exp <_2_t xQ) :

Exercise 4. (Milstein’s method)

Consider the following scalar SDE:

dr = —cx dt+ gz df

z(0) = xg ©)

where a, g and z are positive constants and (3(¢) is a standard Brownian motion.

A) Check using the It6 formula that the solution to this equation is
z(t) = o exp [(—e— g°/2) t + g B(1)] (6)

Hint: (B(t),t) = wo exp[(—c — ¢?/2)t + g B(t)].

B) Simulate the equation using Milstein’s method with parameters xp = 1, ¢ =
1/10, g = 1/10, and check that the histogram at ¢ = 1 looks the same as obtained
by simulating the above exact solution.

Exercise 5. (Gaussian approximation of SDE)

A) Form a Gaussian assumed density approximation to the SDE in Equation (4)
on times ¢ € [0,5] and compare it to the exact solution. Compute the Gaussian
integrals numerically on a uniform grid.

B) Form Gaussian assumed density approximation to the Equation (5) and numer-
ically compare it to the histogram obtained in 4 B).



