Exercise Round 2 (November 25, 2013).

Exercise 1. (Fokker-Planck-Kolmogorov (FKP) equation)

A) Write down the FKP for

$$
\begin{equation*}
\mathrm{d} x=\tanh (x) \mathrm{d} t+\mathrm{d} \beta, \quad x(0)=0 \tag{1}
\end{equation*}
$$

where $\beta(t)$ is a standard Brownian motion, and check that the following solves it:

$$
p(x, t)=\frac{1}{\sqrt{2 \pi t}} \cosh (x) \exp \left(-\frac{1}{2} t\right) \exp \left(-\frac{1}{2 t} x^{2}\right)
$$

B) Plot the evolution of the probability density at times $t \in[0,5]$.
C) Simulate 1000 trajectories from the SDE using Euler-Maruyama method and check that the histogram matches the correct density at time $t=5$.

Exercise 2. (Numerical solution of FPK)

Use finite-differences method to solve the FPK for the Equation (4). For simplicity, you can select a finite range $x \in[-L, L]$ and use the Diriclet boundary conditions $p(-L, t)=p(L, t)=0$.
A) Divide the range to n grid points and let $h=1 /(n+1)$. On the grid, approximate the partial derivatives of $p(x, t)$ via

$$
\begin{gather*}
\frac{\partial p(x, t)}{\partial x} \approx \frac{p(x+h, t)-p(x-h, t)}{2 h} \\
\frac{\partial^{2} p(x, t)}{\partial x^{2}} \approx \frac{p(x+h, t)-2 p(x, t)+p(x-h, t)}{h^{2}} \tag{2}
\end{gather*}
$$

B) Let $\mathbf{p}(t)=(p(h, t) p(2 h, t) \cdots p(n h, t))^{\top}$ and from the above, form an equation of the form

$$
\begin{equation*}
\frac{\mathrm{d} \mathbf{p}}{\mathrm{~d} t}=\mathbf{F} \mathbf{p} \tag{3}
\end{equation*}
$$

C) Solve the above equation using (1) backward Euler (2) by numerical computation of $\exp (\mathbf{F} t)$ and by (3) forward Euler. Check that the results match the solution in the previous exercise.

Exercise 3. (1.5 order Itô-Taylor)

Simulate trajectories from the following SDE with 1.5 order strong Itô-Taylor series based method

$$
\begin{equation*}
\mathrm{d} x=\tanh (x) \mathrm{d} t+\mathrm{d} \beta, \quad x(0)=0 \tag{4}
\end{equation*}
$$

where $\beta(t)$ is a standard Brownian motion, and compare the resulting histogram to the exact solution

$$
p(x, t)=\frac{1}{\sqrt{2 \pi t}} \cosh (x) \exp \left(-\frac{1}{2} t\right) \exp \left(-\frac{1}{2 t} x^{2}\right) .
$$

Exercise 4. (Milstein's method)

Consider the following scalar SDE:

$$
\begin{align*}
\mathrm{d} x & =-c x \mathrm{~d} t+g x \mathrm{~d} \beta \tag{5}\\
x(0) & =x_{0}
\end{align*}
$$

where a, g and x_{0} are positive constants and $\beta(t)$ is a standard Brownian motion.
A) Check using the Itô formula that the solution to this equation is

$$
\begin{equation*}
x(t)=x_{0} \exp \left[\left(-c-g^{2} / 2\right) t+g \beta(t)\right] \tag{6}
\end{equation*}
$$

Hint: $\phi(\beta(t), t)=x_{0} \exp \left[\left(-c-g^{2} / 2\right) t+g \beta(t)\right]$.
B) Simulate the equation using Milstein's method with parameters $x_{0}=1, c=$ $1 / 10, g=1 / 10$, and check that the histogram at $t=1$ looks the same as obtained by simulating the above exact solution.

Exercise 5. (Gaussian approximation of SDE)

A) Form a Gaussian assumed density approximation to the SDE in Equation (4) on times $t \in[0,5]$ and compare it to the exact solution. Compute the Gaussian integrals numerically on a uniform grid.
B) Form Gaussian assumed density approximation to the Equation (5) and numerically compare it to the histogram obtained in 4 B).

