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Recursive Estimation of Dynamic Processes

Dynamic, that is, time varying
phenomenon - e.g., the motion state
of a car or smart phone.
The phenomenon is measured - for
example by a radar or by
acceleration and angular velocity
sensors.
The purpose is to compute the state
of the phenomenon when only the
measurements are observed.
The solution should be recursive,
where the information in new
measurements is used for updating
the old information.
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Probabilistic State Space Models: General Model

General probabilistic state space model:

dynamic model: xk ∼ p(xk |xk−1)

measurement model: yk ∼ p(yk |xk )

xk = (xk1, . . . , xkn) is the state and yk = (yk1, . . . , ykm) is
the measurement.
Has the form of hidden Markov model (HMM):

observed: y1 y2 y3 y4

hidden: x1 //

OO

x2 //

OO

x3 //

OO

x4 //

OO

. . .
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Probabilistic State Space Models: Example

Example (Gaussian random walk)
Gaussian random walk model can be written as

xk = xk−1 + wk−1, wk−1 ∼ N(0,q)

yk = xk + ek , ek ∼ N(0, r),

where xk is the hidden state and yk is the measurement. In
terms of probability densities the model can be written as

p(xk | xk−1) =
1√
2πq

exp
(
− 1

2q
(xk − xk−1)2

)
p(yk | xk ) =

1√
2πr

exp
(
− 1

2r
(yk − xk )2

)
which is a discrete-time state space model.
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Probabilistic State Space Models: Example (cont.)

Example (Gaussian random walk (cont.))
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Linear Gaussian State Space Models

General form of linear Gaussian state space models:

xk = A xk−1 + qk−1, qk−1 ∼ N(0,Q)

yk = H xk + rk , rk ∼ N(0,R)

x0 ∼ N(m0,P0).

In probabilistic notation the model is:

p(yk |xk ) = N(yk |H xk ,R)

p(xk |xk−1) = N(xk |A xk−1,Q).

Surprisingly general class of models – linearity is from
measurements to estimates, not from time to outputs.
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Non-Linear State Space Models

General form of non-linear Gaussian state space models:

xk = f(xk−1,qk−1)

yk = h(xk , rk ).

qk and rk are typically assumed Gaussian.
Functions f(·) and h(·) are non-linear functions modeling
the dynamics and measurements of the system.
Equivalent to the generic probabilistic models of the form

xk ∼ p(xk |xk−1)

yk ∼ p(yk |xk ).
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Navigation of Lunar Module

The navigation system of Eagle lunar
module AGC was based on an optimal
filter - this was in the year 1969.
The dynamic model was Newton’s
gravitation law.
The measurements at lunar landing
were the radar readings.
On rendezvous with the command ship
the orientation was computed with
gyroscopes and their biases were also
compensated with the radar.
The optimal filter was an extended
Kalman filter.
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Smartphone Sensor Fusion

Acceleration and angular velocity can,
in principle, be integrated to give
position and orientation.
The known gravitation direction used
for orientation tracking.
Accelerometer can also be used to
detect steps – gives a measurement of
speed/distance.
Barometer can be used to for local
height tracking.
Kalman/particle filters used for the
sensor fusion.
Bayesian filters also used for
radio/magnetic map matching.

Simo Särkkä Lecture 9: Recap of the Course Topics



Satellite Navigation (GPS)

The dynamic model in GPS receivers is
often the Newton’s second law where
the force is completely random, that is,
the Wiener velocity model.
The measurements are time delays of
satellite signals.
The optimal filter computes the position
and the accurate time.
Also the errors caused by multi path
can be modeled and compensated.
Acceleration and angular velocity
measurements are sometimes used as
extra measurements.
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Spread of Disease
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Spreading of a disease in population
can be modeled by differential
equations.
Modeling the unknown parameters and
phenomena as random processes
leads to stochastic dynamic model.
The measurements in this case are the
number of dead or recovered
individuals.
Optimal filter is used for computing the
unknown parameters and the number
of susceptible and infected individuals.
It is also possible to predict when the
maximum of the epidemic and how
many casualties there will be.
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Other Applications
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Target tracking, where one or many
targets are tracked with many passive
sensors - air surveillance.
Time series prediction, where the
model parameters are estimated from
the measured time series and the
unknown part is predicted using these
parameters.
Analysis and restoration of audio
signals.
Telecommunication systems - optimal
receivers, signal detectors.
State estimation of control systems -
chemical processes, auto pilots, control
systems of cars.
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Bayesian Filtering, Prediction and Smoothing

Recursively computable marginal distributions:

Filtering distributions:

p(xk |y1, . . . ,yk ), k = 1, . . . ,T .

Prediction distributions:

p(xk+n |y1, . . . ,yk ), k = 1, . . . ,T , n = 1,2, . . . ,

Smoothing distributions:

p(xk |y1, . . . ,yT ), k = 1, . . . ,T .
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Bayesian Filtering, Prediction and Smoothing (cont.)

Measurements Estimate

0 Tk

Prediction:

Filtering:

Smoothing:
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Algorithms for Computing the Solutions

Closed form solutions:
Kalman filter is the exact filter for linear-Gaussian models.
The Rauch–Tung–Striebel smoother (RTSS) is the exact
smoother for linear-Gaussian models.
Grid filters and smoothers are solutions to Markov models
with finite state spaces.

Approximations:

Extended Kalman filter (EKF) uses linearization.
The extended Rauch–Tung–Striebel smoother (ERTSS).
Unscented Kalman filter (UKF) is unscented (sigma-point)
transform based extension of Kalman filter.
The unscented Rauch–Tung–Striebel smoother (URTSS).
Gauss-Hermite and Cubature Kalman filters (GHKF/CKF)
and smoothers use numerical integration.
Particle filters and smoothers use Monte Carlo.
Mixture Gaussian approximations are used, for example, in
Rao-Blackwellized Particle filters.
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Bayesian Filter: Principle

Bayesian filter computes the distribution

p(xk |y1:k )

Given the following:
1 Prior distribution p(x0).
2 State space model:

xk ∼ p(xk |xk−1)

yk ∼ p(yk |xk ),

3 Measurement sequence y1:k = y1, . . . ,yk .

Computation is based on recursion rule for incorporation of
the new measurement yk into the posterior:

p(xk−1 |y1:k−1) −→ p(xk |y1:k )
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Bayesian Filter: Formal Equations

Bayesian filter
Initialization: The recursion starts from the prior distribution
p(x0).
Prediction: by the Chapman-Kolmogorov equation

p(xk |y1:k−1) =

∫
p(xk |xk−1) p(xk−1 |y1:k−1) dxk−1.

Update: by the Bayes’ rule

p(xk |y1:k ) =
1
Zk

p(yk |xk ) p(xk |y1:k−1).

The normalization constant Zk = p(yk |y1:k−1) is given as

Zk =

∫
p(yk |xk ) p(xk |y1:k−1) dxk .
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Bayesian Filter: Graphical Explanation

On prediction step the
distribution of previous
step is propagated
through the dynamics.

Prior distribution from
prediction and the
likelihood of
measurement.

The posterior
distribution after
combining the prior
and likelihood by
Bayes’ rule.
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Kalman Filter: Model

Gaussian driven linear model, i.e., Gauss-Markov model:

xk = Ak−1 xk−1 + qk−1

yk = Hk xk + rk ,

qk−1 ∼ N(0,Qk−1) white process noise.
rk ∼ N(0,Rk ) white measurement noise.
Ak−1 is the transition matrix of the dynamic model.
Hk is the measurement model matrix.
In probabilistic terms the model is

p(xk |xk−1) = N(xk |Ak−1 xk−1,Qk−1)

p(yk |xk ) = N(yk |Hk xk ,Rk ).

Kalman filter computes

p(xk |y1:k ) = N(xk |mk ,Pk )
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Kalman Filter: Equations

Kalman Filter
Initialization: x0 ∼ N(m0,P0)

Prediction step:

m−k = Ak−1 mk−1

P−k = Ak−1 Pk−1 AT
k−1 + Qk−1.

Update step:

vk = yk − Hk m−k
Sk = Hk P−k HT

k + Rk

Kk = P−k HT
k S−1

k

mk = m−k + Kk vk

Pk = P−k − Kk Sk KT
k .
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Non-Linear Gaussian State Space Model

Basic Non-Linear Gaussian State Space Model is of the form:

xk = f(xk−1) + qk−1

yk = h(xk ) + rk

xk ∈ Rn is the state
yk ∈ Rm is the measurement
qk−1 ∼ N(0,Qk−1) is the Gaussian process noise
rk ∼ N(0,Rk ) is the Gaussian measurement noise
f(·) is the dynamic model function
h(·) is the measurement model function
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The Idea of Extended Kalman Filter

In EKF, the non-linear functions are linearized as follows:

f(x) ≈ f(m) + Fx(m) (x−m)

h(x) ≈ h(m) + Hx(m) (x−m)

where x ∼ N(m,P), and Fx, Hx are the Jacobian matrices
of f, h, respectively.
Only the first terms in linearization contribute to the
approximate means of the functions f and h.
The second term has zero mean and defines the
approximate covariances of the functions.
Can be generalized into approximation of a non-linear
transform.
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Linear Approximation of Non-Linear Transforms

Linear Approximation of Non-Linear Transform
The linear Gaussian approximation to the joint distribution of x
and y = g(x) + q, where x ∼ N(m,P) and q ∼ N(0,Q) is(

x
y

)
∼ N

((
m
µL

)
,

(
P CL

CT
L SL

))
,

where

µL = g(m)

SL = Gx(m) P GT
x (m) + Q

CL = P GT
x (m).
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EKF Equations

Extended Kalman filter
Prediction:

m−k = f(mk−1)

P−k = Fx(mk−1) Pk−1 FT
x (mk−1) + Qk−1.

Update:

vk = yk − h(m−k )

Sk = Hx(m−k ) P−k HT
x (m−k ) + Rk

Kk = P−k HT
x (m−k ) S−1

k

mk = m−k + Kk vk

Pk = P−k − Kk Sk KT
k .
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The Idea of Statistically Linearized Filter

In SLF, the non-linear functions are statistically linearized
as follows:

f(x) ≈ bf + Af (x−m)

h(x) ≈ bh + Ah (x−m)

where x ∼ N(m,P).
The parameters bf , Af and bh, Ah are chosen to minimize
the mean squared errors of the form

MSEf (bf ,Af ) = E[||f(x)− bf − Af δx||2]

MSEh(bh,Ah) = E[||h(x)− bh − Ah δx||2]

where δx = x−m.
Describing functions of the non-linearities with Gaussian
input.
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Statistically Linearized Filter

Statistically linearized filter

Prediction (expectations w.r.t. xk−1 ∼ N(mk−1,Pk−1)):

m−k = E[f(xk−1)]

P−k = E[f(xk−1) δxT
k−1] P−1

k−1 E[f(xk−1) δxT
k−1]T + Qk−1,

Update (expectations w.r.t. xk ∼ N(m−k ,P
−
k )):

vk = yk − E[h(xk )]

Sk = E[h(xk ) δxT
k ] (P−k )−1 E[h(xk ) δxT

k ]T + Rk

Kk = E[h(xk ) δxT
k ]T S−1

k

mk = m−k + Kk vk

Pk = P−k − Kk Sk KT
k .
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Statistically Linearized Filter (cont.)

If the function g(x) is differentiable, we have

E[g(x) (x−m)T ] = E[Gx (x)] P,

where Gx (x) is the Jacobian of g(x), and x ∼ N( m,P).
In practice, we can use the following property for
computation of the expectation of the Jacobian:

µ(m) = E[g(x)]

∂µ(m)

∂m
= E[Gx (x)].

The resulting filter resembles EKF very closely.
Related to replacing Taylor series with Fourier-Hermite
series in the approximation.
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Linearization Based Gaussian Approximation

Problem: Determine the mean and covariance of y :

x ∼ N(µ, σ2)

y = sin(x)

Linearization based approximation:

y = sin(µ) +
∂ sin(µ)

∂µ
(x − µ) + . . .

which gives

E[y ] ≈ E[sin(µ) + cos(µ)(x − µ)] = sin(µ)

Cov[y ] ≈ E[(sin(µ) + cos(µ)(x − µ)− sin(µ))2] = cos2(µ)σ2.
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Principle of Unscented Transform [1/3]

Form 3 sigma points as follows:

X (0) = µ

X (1) = µ+ σ

X (2) = µ− σ.

Let’s select some weights W (0),W (1),W (2) such that the
original mean and variance can be recovered by

µ =
∑

i

W (i)X (i)

σ2 =
∑

i

W (i) (X (i) − µ)2.
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Principle of Unscented Transform [2/3]

We use the same formula for approximating the moments
of y = sin(x) as follows:

µ =
∑

i

W (i) sin(X (i))

σ2 =
∑

i

W (i) (sin(X (i))− µ)2.

For vectors x ∼ N(m,P) the generalization of standard
deviation σ is the Cholesky factor L =

√
P:

P = L LT .

The sigma points can be formed using columns of L (here
c is a suitable positive constant):

X (0) = m

X (i) = m + c Li

X (n+i) = m− c Li
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Principle of Unscented Transform [3/3]

For transformation y = g(x) the approximation is:

µy =
∑

i

W (i) g(X (i))

Σy =
∑

i

W (i) (g(X (i))− µy ) (g(X (i))− µy )T .

It is convenient to define transformed sigma points:

Y(i) = g(X (i))

Joint moments of x and y = g(x) + q are then
approximated as

E
[(

x
g(x) + q

)]
≈
∑

i

W (i)
(
X (i)

Y(i)

)
=

(
m
µy

)
Cov

[(
x

g(x) + q

)]
≈
∑

i

W (i)
(
(X (i) −m) (X (i) −m)T (X (i) −m) (Y (i) − µy )

T

(Y (i) − µy ) (X (i) −m)T (Y (i) − µy ) (Y (i) − µy )
T + Q

)

Simo Särkkä Lecture 9: Recap of the Course Topics



Unscented Transform [1/3]

Unscented transform
The unscented transform approximation to the joint distribution
of x and y = g(x) + q where x ∼ N(m,P) and q ∼ N(0,Q) is(

x
y

)
∼ N

((
m
µU

)
,

(
P CU

CT
U SU

))
,

where the sub-matrices are formed as follows:
1 Form the sigma points as

X (0) = m

X (i) = m +
√

n + λ
[√

P
]

i

X (i+n) = m−
√

n + λ
[√

P
]

i
, i = 1, . . . ,n
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Unscented Transform [2/3]

Unscented transform (cont.)
2 Propagate the sigma points through g(·):

Y(i) = g(X (i)), i = 0, . . . ,2n.

3 The sub-matrices are then given as:

µU =
2n∑

i=0

W (m)
i Y(i)

SU =
2n∑

i=0

W (c)
i (Y(i) − µU) (Y(i) − µU)T + Q

CU =
2n∑

i=0

W (c)
i (X (i) −m) (Y(i) − µU)T .
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Unscented Transform [3/3]

Unscented transform (cont.)

λ is a scaling parameter defined as λ = α2 (n + κ)− n.
α and κ determine the spread of the sigma points.

Weights W (m)
i and W (c)

i are given as follows:

W (m)
0 = λ/(n + λ)

W (c)
0 = λ/(n + λ) + (1− α2 + β)

W (m)
i = 1/{2(n + λ)}, i = 1, . . . ,2n

W (c)
i = 1/{2(n + λ)}, i = 1, . . . ,2n,

β can be used for incorporating prior information on the
(non-Gaussian) distribution of x.
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Unscented Kalman Filter (UKF): Algorithm [1/4]

Unscented Kalman filter: Prediction step
1 Form the sigma points:

X (0)
k−1 = mk−1,

X (i)
k−1 = mk−1 +

√
n + λ

[√
Pk−1

]
i

X (i+n)
k−1 = mk−1 −

√
n + λ

[√
Pk−1

]
i
, i = 1, . . . ,n.

2 Propagate the sigma points through the dynamic model:

X̂ (i)
k = f(X (i)

k−1). i = 0, . . . ,2n.
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Unscented Kalman Filter (UKF): Algorithm [2/4]

Unscented Kalman filter: Prediction step (cont.)
3 Compute the predicted mean and covariance:

m−k =
2n∑

i=0

W (m)
i X̂ (i)

k

P−k =
2n∑

i=0

W (c)
i (X̂ (i)

k −m−k ) (X̂ (i)
k −m−k )T + Qk−1.
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Unscented Kalman Filter (UKF): Algorithm [3/4]

Unscented Kalman filter: Update step
1 Form the sigma points:

X−(0)k = m−k ,

X−(i)k = m−k +
√

n + λ

[√
P−k

]
i

X−(i+n)
k = m−k −

√
n + λ

[√
P−k

]
i
, i = 1, . . . ,n.

2 Propagate sigma points through the measurement model:

Ŷ(i)
k = h(X−(i)k ), i = 0, . . . ,2n.
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Unscented Kalman Filter (UKF): Algorithm [4/4]

Unscented Kalman filter: Update step (cont.)
3 Compute the following:

µk =
2n∑

i=0

W (m)
i Ŷ(i)

k

Sk =
2n∑

i=0

W (c)
i (Ŷ(i)

k − µk ) (Ŷ(i)
k − µk )T + Rk

Ck =
2n∑

i=0

W (c)
i (X−(i)k −m−k ) (Ŷ(i)

k − µk )T

Kk = Ck S−1
k

mk = m−k + Kk [yk − µk ]

Pk = P−k − Kk Sk KT
k .
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Gaussian Moment Matching [1/2]

Consider the transformation of x into y:

x ∼ N(m,P)

y = g(x).

Form Gaussian approximation to (x,y) by directly
approximating the integrals:

µM =

∫
g(x) N(x |m,P) dx

SM =

∫
(g(x)− µM) (g(x)− µM)T N(x |m,P) dx

CM =

∫
(x−m) (g(x)− µM)T N(x |m,P) dx.
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Gaussian Moment Matching [2/2]

Gaussian moment matching

The moment matching based Gaussian approximation to the
joint distribution of x and the transformed random variable
y = g(x) + q where x ∼ N(m,P) and q ∼ N(0,Q) is given as(

x
y

)
∼ N

((
m
µM

)
,

(
P CM

CT
M SM

))
,

where

µM =

∫
g(x) N(x |m,P) dx

SM =

∫
(g(x)− µM) (g(x)− µM)T N(x |m,P) dx + Q

CM =

∫
(x−m) (g(x)− µM)T N(x |m,P) dx.
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Gaussian Filter [1/3]

Gaussian filter prediction
Compute the following Gaussian integrals:

m−k =

∫
f(xk−1) N(xk−1 |mk−1,Pk−1) dxk−1

P−k =

∫
(f(xk−1)−m−k ) (f(xk−1)−m−k )T

× N(xk−1 |mk−1,Pk−1) dxk−1 + Qk−1.
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Gaussian Filter [2/3]

Gaussian filter update
1 Compute the following Gaussian integrals:

µk =

∫
h(xk ) N(xk |m−k ,P

−
k ) dxk

Sk =

∫
(h(xk )− µk ) (h(xk )− µk )T N(xk |m−k ,P

−
k ) dxk + Rk

Ck =

∫
(xk −m−k ) (h(xk )− µk )T N(xk |m−k ,P

−
k ) dxk .

2 Then compute the following:

Kk = Ck S−1
k

mk = m−k + Kk (yk − µk )

Pk = P−k − Kk Sk KT
k .
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Gaussian Filter [3/3]

Special case of assumed density filtering (ADF).
Multidimensional Gauss-Hermite quadrature⇒ Gauss
Hermite Kalman filter (GHKF).
Cubature integration⇒ Cubature Kalman filter (CKF).
Monte Carlo integration⇒ Monte Carlo Kalman filter
(MCKF).
Gaussian process / Bayes-Hermite Kalman filter: Form
Gaussian process regression model from set of sample
points and integrate the approximation.
Linearization (EKF), unscented transform (UKF), central
differences, divided differences can be considered as
special cases.
Note that all of these lead to Gaussian approximations

p(xk |y1:k ) ≈ N(xk |mk ,Pk )
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Spherical Cubature Rules

The spherical cubature rule is exact up to third degree:∫
g(x) N(x |m,P) dx

=

∫
g(m +

√
P ξ) N(ξ |0, I) dξ

≈ 1
2n

2n∑
i=1

g(m +
√

P ξ(i)),

where

ξ(i) =

{ √
n ei , i = 1, . . . ,n
−
√

n ei−n , i = n + 1, . . . ,2n,

where ei denotes a unit vector to the direction of
coordinate axis i .
A special case of unscented transform!
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Multidimensional Gauss–Hermite Rules

Cartesian product of classical Gauss–Hermite quadratures
gives∫

g(x) N(x |m,P) dx

=

∫
g(m +

√
P ξ) N(ξ |0, I) dξ

=

∫
· · ·
∫

g(m +
√

P ξ) N(ξ1 |0,1) dξ1 × · · · × N(ξn |0,1) dξn

≈
∑

i1,...,in

W (i1) × · · · ×W (in)g(m +
√

P ξ(i1,...,in)).

ξ(i1,...,in) are formed from the roots of Hermite polynomials.
W (ij ) are the weights of one-dimensional Gauss–Hermite
rules.
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Particle Filtering: Principle
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Animation: Kalman vs. Particle Filtering:
Kalman filter animation

Particle filter animation
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Sequential Importance Resampling: Idea

Sequential Importance Resampling (SIR) (= particle
filtering) is concerned with models

xk ∼ p(xk | xk−1)

yk ∼ p(yk | xk )

The SIS algorithm uses a weighted set of particles
{(w (i)

k ,x(i)
k ) : i = 1, . . . ,N} such that

E[g(xk ) |y1:k ] ≈
N∑

i=1

w (i)
k g(x(i)

k ).

Or equivalently

p(xk |y1:k ) ≈
N∑

i=1

w (i)
k δ(xk − x(i)

k ),

where δ(·) is the Dirac delta function.
Uses importance sampling sequentially.
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Sequential Importance Resampling: Algorithm

Sequential Importance Resampling

Draw point x(i)
k from the importance distribution:

x(i)
k ∼ π(xk | x

(i)
0:k−1,y1:k ), i = 1, . . . ,N.

Calculate new weights

w (i)
k ∝ w (i)

k−1

p(yk | x
(i)
k ) p(x(i)

k | x
(i)
k−1)

π(x(i)
k | x

(i)
0:k−1,y1:k )

, i = 1, . . . ,N,

and normalize them to sum to unity.
If the effective number of particles is too low, perform
resampling.
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Sequential Importance Resampling: Bootstrap filter

In bootstrap filter we use the dynamic model as the
importance distribution

π(x(i)
k | x

(i)
0:k−1,y1:k ) = p(x(i)

k | x
(i)
k−1)

and resample at every step:

Bootstrap Filter

Draw point x(i)
k from the dynamic model:

x(i)
k ∼ p(xk | x(i)

k−1), i = 1, . . . ,N.

Calculate new weights

w (i)
k ∝ p(yk | x(i)

k ), i = 1, . . . ,N,

and normalize them to sum to unity.

Perform resampling.
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Sequential Importance Resampling: Optimal
Importance Distribution

The optimal importance distribution is

π(x(i)
k | x

(i)
0:k−1,y1:k ) = p(x(i)

k | x
(i)
k−1,yk )

Then the weight update reduces to

w (i)
k ∝ w (i)

k−1 p(yk | x
(i)
k−1), i = 1, . . . ,N.

The optimal importance distribution can be used, for
example, when the state space is finite.
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Sequential Importance Resampling: Importance
Distribution via Kalman Filtering

We can also form a Gaussian approximation to the optimal
importance distribution:

p(x(i)
k | x

(i)
k−1,yk ) ≈ N(x(i)

k | m̃
(i)
k , P̃(i)

k ).

by using a single prediction and update steps of a
Gaussian filter starting from a singular distribution at x(i)

k−1.
We can also replace above with the result of a Gaussian
filter N(m(i)

k−1,P
(i)
k−1) started from a random initial mean.

A very common way seems to be to use the previous
sample as the mean: N(x(i)

k−1,P
(i)
k−1).

A particle filter with UKF proposal has been given name
unscented particle filter (UPF) – you can invent new PFs
easily this way.
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Rao-Blackwellized Particle Filter: Idea

Rao-Blackwellized particle filtering (RBPF) is concerned
with conditionally Gaussian models:

p(xk |xk−1,uk−1) = N(xk |Ak−1(uk−1) xk−1,Qk−1(uk−1))

p(yk |xk ,uk ) = N(yk |Hk (uk ) xk ,Rk (uk ))

p(uk | uk−1) = (any given form),

where
xk is the state
yk is the measurement
uk is an arbitrary latent variable

Given the latent variables u1:T the model is Gaussian.
The RBPF uses SIR for the latent variables and computes
the conditionally Gaussian part in closed form with Kalman
filter.
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Bayesian Smoothing Problem

Probabilistic state space model:

dynamic model: xk ∼ p(xk |xk−1)

measurement model: yk ∼ p(yk |xk )

Assume that the filtering distributions p(xk |y1:k ) have
already been computed for all k = 0, . . . ,T .
We want recursive equations of computing the smoothing
distribution for all k < T :

p(xk |y1:T ).

The recursion will go backwards in time, because on the
last step, the filtering and smoothing distributions coincide:

p(xT |y1:T ).

Simo Särkkä Lecture 9: Recap of the Course Topics



Bayesian Smoothing Equations

Bayesian Smoothing Equations

The Bayesian smoothing equations consist of prediction step
and backward update step:

p(xk+1 |y1:k ) =

∫
p(xk+1 |xk ) p(xk |y1:k ) dxk

p(xk |y1:T ) = p(xk |y1:k )

∫ [
p(xk+1 |xk ) p(xk+1 |y1:T )

p(xk+1 |y1:k )

]
dxk+1

The recursion is started from the filtering (and smoothing)
distribution of the last time step p(xT |y1:T ).
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Rauch-Tung-Striebel Smoother

Rauch-Tung-Striebel Smoother

Backward recursion equations for the smoothed means ms
k and

covariances Ps
k :

m−k+1 = Ak mk

P−k+1 = Ak Pk AT
k + Qk

Gk = Pk AT
k [P−k+1]−1

ms
k = mk + Gk [ms

k+1 −m−k+1]

Ps
k = Pk + Gk [Ps

k+1 − P−k+1] GT
k ,

mk and Pk are the mean and covariance computed by the
Kalman filter.
The recursion is started from the last time step T , with
ms

T = mT and Ps
T = PT .
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Extended Rauch-Tung-Striebel Smoother

Extended Rauch-Tung-Striebel Smoother

The equations for the extended RTS smoother are

m−k+1 = f(mk )

P−k+1 = Fx(mk ) Pk FT
x (mk ) + Qk

Gk = Pk FT
x (mk ) [P−k+1]−1

ms
k = mk + Gk [ms

k+1 −m−k+1]

Ps
k = Pk + Gk [Ps

k+1 − P−k+1] GT
k ,

where the matrix Fx(mk ) is the Jacobian matrix of f(x)
evaluated at mk .
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Gaussian Rauch-Tung-Striebel Smoother

Gaussian Rauch-Tung-Striebel Smoother

The equations for the Gaussian RTS smoother are

m−k+1 =

∫
f(xk ) N(xk |mk ,Pk ) dxk

P−k+1 =

∫
[f(xk )−m−k+1] [f(xk )−m−k+1]T

× N(xk |mk ,Pk ) dxk + Qk

Dk+1 =

∫
[xk −mk ] [f(xk )−m−k+1]T N(xk |mk ,Pk ) dxk

Gk = Dk+1 [P−k+1]−1

ms
k = mk + Gk (ms

k+1 −m−k+1)

Ps
k = Pk + Gk (Ps

k+1 − P−k+1) GT
k .
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Particle Smoothing: Direct SIR

The smoothing solution can be obtained from SIR by
storing the whole state histories into the particles.
Special care is needed on the resampling step.
The smoothed distribution approximation is then of the
form

p(xk |y1:T ) ≈
N∑

i=1

w (i)
T δ(xk − x(i)

k ),

where x(i)
k is the k th component in x(i)

1:T .
Unfortunately, the approximation is often quite degenerate.
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Particle Smoothing: Backward Simulation

Backward simulation particle smoother

Given the weighted set of particles {w (i)
k ,x(i)

k } representing the
filtering distributions:

Choose x̃T = x(i)
T with probability w (i)

T .
For k = T − 1, . . . ,0:

1 Compute new weights by

w (i)
k|k+1 ∝ w (i)

k p(x̃k+1 |x(i)
k )

2 Choose x̃k = x(i)
k with probability w (i)

k|k+1

Given S iterations resulting in x̃(j)
1:T for j = 1, . . . ,S the

smoothing distribution approximation is

p(x1:T |y1:T ) ≈ 1
S

∑
j

δ(x1:T − x̃(j)
1:T ).
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Particle Smoothing: Reweighting

Reweighting Particle Smoother

Given the weighted set of particles {w (i)
k , x (i)

k } representing the
filtering distribution, we can form approximations to the
marginal smoothing distributions as follows:

Start by setting w (i)
T |T = w (i)

T for i = 1, . . . ,n.

For each k = T − 1, . . . ,0 do the following:
Compute new importance weights by

w (i)
k|T ∝

∑
j

w (j)
k+1|T

w (i)
k p(x(j)

k+1 |x
(i)
k )[∑

l w (l)
k p(x(j)

k+1 |x
(l)
k )
] .

At each step k the marginal smoothing distribution can be
approximated as

p(xk |y1:T ) ≈
∑

i

w (i)
k |T δ(xk − x(i)

k ).
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Bayesian estimation of parameters

State space model with unknown parameters θ ∈ Rd :

θ ∼ p(θ)

x0 ∼ p(x0 | θ)

xk ∼ p(xk | xk−1,θ)

yk ∼ p(yk | xk ,θ).

We approximate the marginal posterior distribution:

p(θ | y1:T ) ∝ p(y1:T | θ) p(θ)

The key is the prediction error decomposition:

p(y1:T | θ) =
T∏

k=1

p(yk | y1:k−1,θ)

Luckily, the Bayesian filtering equations allow us to
compute p(yk | y1:k−1,θ) efficiently.
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Bayesian estimation of parameters (cont.)

Recursion for marginal likelihood of parameters

The marginal likelihood of parameters is given by

p(y1:T | θ) =
T∏

k=1

p(yk | y1:k−1,θ)

where the terms can be solved via the recursion

p(xk | y1:k−1,θ) =

∫
p(xk | xk−1,θ) p(xk−1 | y1:k−1,θ) dxk−1

p(yk | y1:k−1,θ) =

∫
p(yk | xk ,θ) p(xk | y1:k−1,θ) dxk

p(xk | y1:k ,θ) =
p(yk | xk ,θ) p(xk | y1:k−1,θ)

p(yk | y1:k−1,θ)
.
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Energy function

The energy function:

ϕT (θ) = − log p(y1:T | θ)− log p(θ).

The posterior distribution can be recovered via

p(θ | y1:T ) ∝ exp(−ϕT (θ)).

The energy function can be evaluated recursively as
follows:

Start from ϕ0(θ) = − log p(θ).
At each step k = 1,2, . . . ,T compute the following:

ϕk (θ) = ϕk−1(θ)− log p(yk | y1:k−1,θ)

For linear models, we can evaluate the energy function
exactly with help of Kalman filter.
In non-linear models we can use Gaussian filters or
particle filters for approximating the energy function.
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Methods for parameter estimation

MAP and ML-estimates can be computed by direct
optimization of the energy function (or posterior).
Derivatives of the energy function can be computed via
sensitivity equations or Fisher’s identity.
Markov chain Monte Carlo (MCMC) methods can be used
to sample from the posterior once the energy function is
known.
When particle filter approximation and MCMC is combined
we get the exact particle Markov chain Monte Carlo
(PMCMC) method.
EM-algorithm can be used for computing MAP or
ML-estimates when energy function is not available.
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The End

What is beyond this (or is there?):
Even more approximate filters and smoothers.
Even more methods for parameter inference.
“Learning” of the dynamic and measurement functions.
Square root filters/smoothers.
Information filters/smoothers.
Convergence/consistency of filters/smoothers.
A lot of state-space models for real-world systems.
Continuous-time dynamic models.
Spatio-temporal systems.
Stochastic (optimal) control theory.
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