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Particle Filtering: Principle

-

@ Animation: Kalman vs. Particle Filtering:
o
o
@ The idea is to form a weighted particle presentation
(x(), w(D) of the posterior distribution:

p(x) ~ > wt 5(x —x).
i

@ Approximates Bayesian optimal filtering equations with
importance sampling.

@ Particle filtering = Sequential importance sampling, with
additional resampling step.
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Monte Carlo Integration

@ In Bayesian inference we often want to compute posterior
expectations of the form

Elg(x)|y.7] = / 9(x) p(x|y1.7) dx

@ Monte Carlo: draw N independent random samples from
x() ~ p(x|y4.7) and estimate the expectation as

Elg(x) |y+.7] = Zg (x™).
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Importance Sampling: Basic Version [1/2]

Weighted sample
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H

ag|

aﬂ
Ol =3

@ In practice, we rarely can directly draw samples from the
distribution p(x|y1.7).

@ In importance sampling (IS), we draw samples from an
importance distribution x() ~ 7(x |y4.7) and compute
weights w() such that

N
Elg(x) [ys.7] = Y W g(x?)

i=1
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Importance Sampling: Basic Version [2/2]

@ Importance sampling is based on the identity
Elg(x)|y+.7] = [ 9(x)p(x|yr.r)dx

_ p(x|ys7)]
= [ a0 25D | wixye.ryox

@ Thus we can form a Monte Carlo approximation as follows:

(1) .
Elg() y1.7] ~ NZ O L g(x)

@ That is, the importance weights can be defined as

o _ 1 pxDys.r)

YT N 2 (@ [y.y)
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Importance Sampling: Weight Normalization

@ The problem is that we need to evaluate the normalization
constant of p(x() | yy.7) — often not possible.

@ However, it turns out that we get a valid algorithm if we
define unnormalized importance weights as

) P17 | X0) p(x)
71'()((1) |y1:T)

and then normalize them:
w(i) — L')U)
W
@ The (weight-normalized) importance sampling
approximation is then

N
Elg(x) |y.7] ~ Y w g(x?)

i=1
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Importance Sampling: Algorithm
Importance Sampling

@ Draw N samples from the importance distribution:

xD ~r(x|yrr), i=1,...,N.

@ Compute the unnormalized weights by

) _ P17 [X0) p(x)
7r(x(l) ’y1:T)

il

and the normalized weights by
w()

-7 °
w( = _.
Zj,\i1 w*0)
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Importance Sampling: Properties

@ The approximation to the posterior expectation of g(x) is
then given as

N
Elg(x) |y+.7]~ Y w g(x?).
i=1

@ The posterior probability density approximation can then
be formally written as

(x|y1.7) ~ ZW(' s(x — x),

where 4(-) is the Dirac delta function.

@ The efficiency depends on the choice of the importance
distribution.
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Sequential Importance Sampling: Idea

@ Sequential Importance Sampling (SIS) is concerned with
models

Xi ~ P(Xk | Xk—1)
Vi ~ P(Yk | Xk)
@ The SIS algorithm uses a weighted set of particles
(W xy . i=1,... N} such that

N
Elg(xi) [yl =~ > wlg(x}).
i=1

@ Or equivalently

N
POk Y1) =~ ) wo(xk — xY)),
i=1

where §(-) is the Dirac delta function.
@ Uses importance sampling sequentially.
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Sequential Importance Sampling: Derivation [1/2]

@ Let’s consider the full posterior distribution of states xg.
given the measurements y1.x.

@ We get the following recursion for the posterior distribution:

P(Xo:k | Y1:k) o< P(Yk | X0:k, Y1:k—1) P(Xo:k | Y1:k—1)
= P(Yk | Xk) P(Xk | X0:k—1, Y1:k—1) P(X0:k—1 | Y1:k—1)
= P(Yk | Xk) P(Xk | Xk—1) P(X0:k—1 | Y1:k-1)-

@ We could now construct an importance distribution
xg’)k ~ m(Xo.k | Y1:k) and compute the corresponding
(normalized) importance weights as

W) o P(Yk \Xf('))p(xf(') |XE<’)_1)P(XE)’;);<_1 | Y1:k—1)
3 .

() [ y1:4)
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Sequential Importance Sampling: Derivation [2/2]

@ Let’s form the importance distribution recursively as
follows:
7(Xo:k | Y1:k) = T(Xk | X0:k—1, Y1:6) T(X0:k—1 | Y1:k-1)
@ Expression for the importance weights can be written as

W) o Pk X)) x|, 1) POXG Yy | Yik-1)

W(XE(’) ‘X((Jl:)k—17y1:k) 7T(X((Jl;)k—1 \V1:k—1)

ow

@ Thus the weights satisfy the recursion

W) o p(yi | x) px | x{ ) 0

N k1
W(xg) |Xg;)k_1 Y1:k)
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Sequential Importance Sampling: Algorithm
Sequential Importance Sampling

@ Initialization: Draw N samples xg) from the prior
Xy ~ p(Xo)

and set wé’) =1/N.

@ Prediction: Draw N new samples xg) from importance
distributions

X ~ 7wk [ X1 Y1)

@ Update: Calculate new weights according to

a0 ) p(yk |x{) p(x? [x{,)
Wi X Wm0 40
(X" | X k1, Y1:k)
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Sequential Importance Sampling: Degeneracy

@ The problem in SIS is that the algorithm is degenerate

@ It can be shown that the variance of the weights increases
at every step

@ It means that we will always converge to single non-zero
weight w() = 1 and the rest being zero — not very useful
algorithm.

@ Solution: resampling!
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Sequential Importance Resampling: Resampling Step

@ Sequential Importance Resampling (SIR) algorithm adds
the following resampling step to SIS algorithm:

Resampling

@ Interpret each weight w, ) as the probability of obtaining the
sample index i in the set {x(’) |i=1,...,N}.

o Draw N samples from that discrete distribution and replace the
old sample set with this new one.

o Set all weights to the constant value Wk =1/N.

@ There are many algorithms for implementing this —
stratified resampling is optimal in terms of variance.
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Sequential Importance Resampling: Effective Number

of Particles

@ A simple way to do resampling is at every step — but every
resampling operation increases variance.

@ We can also resample at, say, every Kth step.
@ In adaptive resampling, we resample when the effective
number of samples is too low (say, N/10):

1
SACOR

@ In theory, biased, but in practice works very well and is
often used.

Nt ~
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Sequential Importance Resampling: Algorithm
Sequential Importance Resampling

@ Draw point xf(") from the importance distribution:

xf(") ~ (X | xg:)k_1,y1;k), i=1,...,N.

o Calculate new weights

w? o wl) p(yk | ) (X(I) %)
k 21
(Xk) | x0k 1> Y1 k)

and normalize them to sum to unity.

o If the effective number of particles is too low, perform
resampling.
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Sequential Importance Resampling: Bootstrap filter

@ In bootstrap filter we use the dynamic model as the
importance distribution

o) | xQ) 1. y1x) = P [ x|

and resample at every step:

Bootstrap Filter

o Draw point xff) from the dynamic model:

xﬁ(’)wp(xk|x5f)_1), i=1,...,N.
o Calculate new weights
w,Ei)ocp(yk|fo)), i=1,....N,

and normalize them to sum to unity.

@ Perform resampling.
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Sequential Importance Resampling: Optimal

Importace Distribution

@ The optimal importance distribution is
w4 1 X1y = PO X 1,y
@ Then the weight update reduces to
W,((")o<w,£"31p(yk\xf(")_1, i=1,...,N.

@ The optimal importance distribution can be used, for
example, when the state space is finite.
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Sequential Importance Resampling: Importace

Distribution via Kalman Filtering

@ We can also form a Gaussian approximation to the optimal
importance distribution:

P | X ye) ~ N | i), B,

by using a single prediction and update steps of a
Gaussian filter starting from a singular distribution at x(’)
@ We can also replace above with the result of a Gau33|an
filter N(mf(’) 1,P() ) started from a random initial mean.
@ A very common way seems to be to use the previous
sample as the mean: N(xf(")_1 , Pg)_1
@ A particle filter with UKF proposal has been given name

unscented particle filter (UPF) — you can invent new PFs
easily this way.

Simo Sarkkéa Lecture 6: Particle Filtering — SIR and RBPF



Rao-Blackwellized Particle Filter: Idea

@ Rao-Blackwellized particle filtering (RBPF) is concerned
with conditionally Gaussian models:

P(Xk [ Xk—1,0k—1) = N(Xx | Ak—1(Ok—1) Xx—1, Qk—1(Ok—1))
P(Yk | Xk, 0k) = N(yx | Hk(0) Xk, Rk (6k))
P(Ok | 6k—1) = (any given form),

where

@ X is the state
@ y is the measurement
@ 6Oy is an arbitrary latent variable

@ Given the latent variables 8.7 the model is Gaussian.

@ The RBPF uses SIR for the latent variables and computes
the conditionally Gaussian part in closed form with Kalman
filter.
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Rao-Blackwellized Particle Filter: Derivation [1/3]

@ The full posterior at step k can be factored as

P(Oo.k, Xo:k | Y1:x) = P(Xo:k | €0:k> Y1:k) P(O0:k | Y1:k)
@ The first term is Gaussian and computable with Kalman

filter and RTS smoother
@ For the second term we get the following recursion:

P(Oo.k | Y1:k)

o P(Yk | Oo:k, Y1:k—1) P(B0:k | Y1:k—1)

= P(Yk | 00:k; Y1:k-1) P(Ok | O0:k—1,Y1:k—1) P(O0:k—1 | Y1:k-1)
= P(Yk | O0:k; Y1:k—1) P(Ok | Ok—1) P(O0:k—1 | Y1:k—1)
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Rao-Blackwellized Particle Filter: Derivation [2/3]

@ Let’s take a look at the terms in

P(Yk | €0:k,Y1:k—1) P(Ok | Ok—1) P(O0:k—1 | Y1:k—1)

@ The first term can be computed by running Kalman filter
with fixed 8., over the measurement sequence.

@ The second term is just the dynamic model.
@ The third term is the posterior from the previous step.
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Rao-Blackwellized Particle Filter: Derivation [3/3]

@ We can form the importance distribution recursively:

m(00:k | Y1:k) = T(Ok | Oo:k—1,Y1:k) T(Oo:k—1 | Y1:k-1)
@ We then get the following recursion for the weights:
iy P(Yk| 05 1. V1. k 1) P66y, ()
W, o 0 W,
( |9 0:k— 17y1 k)

@ Given the marginal posterior for 6., we can recover the
Gaussian part xg.,x with Kalman filter and RTS smoother.

@ The optimal importance distribution takes the form

P(ek\V1:k79((){)/<—1)0<P(Vk|9ka Oo.k— 1)P(9k|90k 1> Y1:k—1)
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Rao-Blackwellized Particle Filter: Algorithm [1/3]

Rao-Blackwellized Particle Filter

@ Perform Kalman filter predictions for each of the Kalman
filter means and covariances in the particles i =1,..., N
conditional on the previously drawn latent variable values
o),

m = A 1(0)) ym
P;(i) = Ay (92)—1) PE(')_1 Al (02)—1) + Q-1 (02)—1 )-

o Draw new latent variables 95(’) for each particle in

i=1,..., N from the corresponding importance

distributions ' '
0 ~ (0 | 05 1, V1.).
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Rao-Blackwellized Particle Filter: Algorithm [2/3]

Rao-Blackwellized Particle Filter (cont.)
@ Calculate new weights as follows:

G (i) P(Ykl 63 y1k—1) p(6Y |6 )
Wi O Wi M1 g0 !
7T(0k ’ 90;/(_1 ) y1:k)

where the likelihood term is the marginal measurement
likelihood of the Kalman filter:

(Vx| 05 Y1k—1)
=N (v | H(0)m, 0 He(6) PO HT(6]7) + Re(6])).

@ Then normalize the weights to sum to unity.
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Rao-Blackwellized Particle Filter: Algorithm [3/3]

Rao-Blackwellized Particle Filter (cont.)

o Perform Kalman filter updates for each of the particles
conditional on the drawn latent variables 05(’)

v = yi — H(0))) my;

S = He(0)) P,V HI(6})) + Ru(6)
K =P, O H{(6}) s,

ml) = m ) 4 KO y()

PY =P — K s KT

o If the effective number of particles is too low, perform
resampling.
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Rao-Blackwellized Particle Filter: Properties

@ The Rao-Blackwellized particle filter produces a set of
weighted samples {W,E’),of(’),mg(’), Pf(’) ci=1,...,N}
@ The expectation of a function g(-) can be approximated as

N
Elg(xk, k) [y14] = 3 wl) / 9%k, 69) N(xe | m?, PO) dx
i=1

@ Approximation of the filtering distribution is

N
Pxk, Ok |y1.6) = > wi 5(6x — 6) N(x,c|m{, PL).
i=1

@ It is possible to do approximate Rao-Blackwellization by
replacing the Kalman filter with a Gaussian filter.
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Rao-Blackwellization of Static Parameters

@ Rao-Blackwellization can sometimes be used in models of
the form

Xk ~ P(Xk | Xk—1,0)
Yk ~ P(Yk | Xk, 0)

where vector 8 contains the unknown static parameters.
@ Possible if the posterior distribution of parameters 6

depends only on some sufficient statistics Tk:
Tx = Tk(X1:k,Y1:4)

@ We also need to have a recursion rule for the sufficient
statistics.

@ Can be extended to time-varying parameters.
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Particle Filter: Advantages

@ No restrictions in model — can be applied to non-Gaussian
models, hierarchical models etc.

@ Global approximation.

@ Approaches the exact solution, when the number of
samples goes to infinity.

@ In its basic form, very easy to implement.

@ Superset of other filtering methods — Kalman filter is a
Rao-Blackwellized particle filter with one particle.
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Particle Filter: Disadvantages

@ Computational requirements much higher than of the
Kalman filters.

@ Problems with nearly noise-free models, especially with
accurate dynamic models.

@ Good importance distributions and efficient
Rao-Blackwellized filters quite tricky to implement.

@ Very hard to find programming errors (i.e., to debug).
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@ Particle filters use weighted set of samples (particles) for
approximating the filtering distributions.

@ Sequential importance resampling (SIR) is the general
framework and bootstrap filter is a simple special case of it.

@ EKF, UKF and other Gaussian filters can be used for
forming good importance distributions.

@ In Rao-Blackwellized particle filters a part of the state is
sampled and part is integrated in closed form with Kalman
filter.
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Particle Filter: Demo

@ The discretized pendulum model:

X\ X+ x2_ At 0
x2) =2 —gsin(xt )at) T
k X1 — g sin(xy_4) Tk —1

f(xk—1)
Yk = sin(x}) +rk,
——
h(xk)

@ = Matlab demonstration

Simo Sarkkéa Lecture 6: Particle Filtering — SIR and RBPF



	Principle of Particle Filter
	Monte Carlo Integration and Importance Sampling
	Sequential Importance Sampling and Resampling
	Rao-Blackwellized Particle Filter
	Particle Filter Properties
	Summary and Demonstration

