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EKF Filtering Model

Basic EKF filtering model is of the form:

Xk = f(Xk—1) + Qk_1
Yk = h(Xg) +rg

9 x4 € R"is the state

@ Yy, € R™is the measurement

® gx_1 ~ N(0,Qk_1) is the Gaussian process noise
@ rx ~ N(0, Rg) is the Gaussian measurement noise
@ f(-) is the dynamic model function

@ h(-) is the measurement model function
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Bayesian Optimal Filtering Equations

@ The EKF model is clearly a special case of probabilistic
state space models with

P(Xk | Xk—1) = N(Xk | f(Xk_1), Qk_1)
P(Yk | Xk) = N(Yk [ h(Xk), Rk)

@ Recall the formal optimal filtering solution:

P(Xk | Y1:k—1) = /P(Xklxk—1)P(Xk—1 | V1:k—1) dXk_1
1
P(Xk |Y1:k) = ZP(Vk | Xk) P(Xk | Y1:k—1)

@ No closed form solution for non-linear f and h.
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The Idea of Extended Kalman Filter

@ In EKF, the non-linear functions are linearized as follows:

f(x) ~ f(m) + Fx(m) (x — m)

h(x) =~ h(m) + Hy(m) (x — m)
where x ~ N(m,P), and Fy, Hy are the Jacobian matrices
of f, h, respectively.

@ Only the first terms in linearization contribute to the
approximate means of the functions f and h.

@ The second term has zero mean and defines the
approximate covariances of the functions.

@ Let’s take a closer look at transformations of this kind.
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Linear Approximations of Non-Linear Transforms [1/4]

@ Consider the transformation of x into y:
X ~ N(m,P)
y =4g(x)
@ The probability density of y is now non-Gaussian:
p(y) = J(y)I N(g~'(y) [ m,P)
@ Taylor series expansion of g on mean m:
g(x) = g(m + 6x) = g(m) + Gx(m) éx
1 ]
+ XI: §5XT G{)(m)oxe; + ...

where ix = X — m.

Simo Sarkka Lecture 4: EKF, SLF and FHKF



Linear Approximations of Non-Linear Transforms [2/4]

@ First order, that is, linear approximation:
g(x) ~ g(m) + Gx(m) 6x

@ Taking expectations on both sides gives approximation of
the mean:

Elg(x)] ~ g(m)
@ For covariance we get the approximation:
Covlg(x)] = E [ (g(x) — Elg(x)]) (9(x) - Elg(x)])’ |

~E [(g(x) —g(m)) (9(x) — g(m))r]
~ Gx(m)P G (m)
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Linear Approximations of Non-Linear Transforms [3/4]

@ In EKF we will need the joint covariance of x and g(x) + q,
where g ~ N(0, Q).
@ Consider the pair of transformations
X ~ N(m,P)
q ~ N(0,Q)
yi =X
y2 = 9(X) +q.

@ Applying the linear approximation gives

- Kg( +q>] N (Q(T“)>

X
)
Cov Kg(x;(Jr q>] ~ (GX(Z) P Gx(m;’fé?(“n)]) + Q>

x

Simo Sarkka Lecture 4: EKF, SLF and FHKF



Linear Approximations of Non-Linear Transforms [4/4]

Linear Approximation of Non-Linear Transform

The linear Gaussian approximation to the joint distribution of x
andy = g(x) + q, where x ~ N(m,P) and q ~ N(0, Q) is

()~ (GR) (et 1))

where
pp = g(m)
S, = Gx(m)PGI(m) +Q
C.=PG/(m).
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Derivation of EKF [1/4]

@ Assume that the filtering distribution of previous step is
Gaussian

P(Xk—1|Y1:k-1) = N(Xk_1 [ my_1,Px_1)

@ The joint distribution of x,x_1 and x, = f(Xx_1) + qQx_1 is
non-Gaussian, but can be approximated linearly as

Xk—
P13 [yace) = N ([ [P

p_ < P Pi_1 Fr(mi_1) ) ‘
Fr(Mk_1)Pr—1 Fx(my_1)Px_1 FT(Mk_1) + Qx_
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Derivation of EKF [2/4]

@ Recall that if x and y have the joint Gaussian probability

()& )

y ~ N(b,B)

then

@ Thus, the approximate predicted distribution of x, given
Yi.k—1 is Gaussian with moments

m, = f(my_+)
P, = Fx(my_1)Px_1 FI(my_1) + Qx4

Simo Sarkka Lecture 4: EKF, SLF and FHKF



Derivation of EKF [3/4]

@ The joint distribution of x, and yx = h(xy) + r is also
non-Gaussian, but by linear approximation we get

~ Xk " p
P(Xk, Yk [Y1:k-1) = N <[yk] ‘m ,P );

where
-
h(m,)
P’ — ( P; P; HI(m;) >
Hx(m; ) Py Hx(my) P HY(m) + R
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@ Recall that if
()M (E) (e 8)):

x|y~N@+CB'(y-—b),A-CB~'C’).

then

@ Thus we get

P(Xk | Yk, Y1:k—1) = N(Xx | My, Py),
where

my = m; + P, Hy (Hx P, Hy + Ry)~'[yx — h(m})]
Py = P, — P, Hy (Hx P, Hy + R)™" He P
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EKF Equations
Extended Kalman filter

@ Prediction:

m, = f(my_+)
Py = Fx(my_1) Px_1 F{(my_1) + Qy_1.

o Update:
Vi =Yk —h(m,)
Sk = Hx(mj ) P, Hi(m;) + Ry
Kk = P Hy(m}) S}’
m, =m, + Ky vy
Py =P, — K SkK].
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EKF Example [1/2]

@ Pendulum with mass m = 1, pole length
L =1 and random force w(t):

il
dt?

@ In state space form:

% <d00/dt> - (-3%?{9)) + (W(()t)>

@ Assume that we measure the x-position:

= —g sin(0) + w(t).

Yk = sin(0()) + r,
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EKF Example [2/2]

o If we define state as x = (6, df/dt), by Euler integration
with time step At we get

5 X+ x2_ At 0
2] =2 " osinx! VAt) T
Xc X1 — g sin(xy_4) qk—1

f(xk—1)
Yk = sin(x}) +r,
——

h(x«)

@ The required Jacobian matrices are:

1 At
—gcos(x')At 1

Fx(x) = ( > . Hx(x) = (cos(x") 0)
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Advantages of EKF

@ Almost same as basic Kalman filter, easy to use.

@ Intuitive, engineering way of constructing the
approximations.

@ Works very well in practical estimation problems.
@ Computationally efficient.
@ Theoretical stability results well available.
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Limitations of EKF

@ Does not work in considerable non-linearities.
@ Only Gaussian noise processes are allowed.

@ Measurement model and dynamic model functions need to
be differentiable.

@ Computation and programming of Jacobian matrices can
be quite error prone.
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The Idea of Statistically Linearized Filter

@ In SLF, the non-linear functions are statistically linearized
as follows:

f(x) ~ bs + Af (x —m)
h(x) = by + Ay (x —m)
where x ~ N(m, P).
@ The parameters by, Af and by, A, are chosen to minimize
the mean squared errors of the form
MSE¢(bs, Ar) = E[|[f(x) — by — A7 6x|[*]
MSEx(bp, Ap) = E[||h(x) — by, — Ap x| [?]

where ix = X — m.

@ Describing functions of the non-linearities with Gaussian
input.
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Statistical Linearization of Non-Linear Transforms [1/4]

@ Again, consider the transformations
X ~ N(m,P)
y =g(x).
@ Form linear approximation to the transformation:
g(x) =~ b + Adx,

where /X = X — m.

@ Instead of using the Taylor series approximation, we
minimize the mean squared error:

MSE(b, A) = E[(g(x) — b — Adx)7(g(x) — b — Adx)]
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Statistical Linearization of Non-Linear Transforms [2/4]

@ Expanding the MSE expression gives:

MSE(b,A) = E[g" (x)g(x) —2g"(x)b —2g7(x) Adx
+b"b—2b" Aox+ox” AT Aox]
—_——— N———

=0 tr{APAT}
@ Derivatives are:
OMSE(b, A
% = —2E[g(x)] +2b
OMSE(b,A)

_ T
A = —2E[g(x)ox'] +2AP
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Statistical Linearization of Non-Linear Transforms [3/4]

@ Setting derivatives with respect to b and A zero gives

b = E[g(x)]
A =E[g(x)ox"]P~",

@ Thus we get the approximations

E[g(x)] ~ E[g(x)]
Cov[g(x)] ~ E[g(x)éx"]P~" E[g(x) ox"]".

@ The mean is exact, but the covariance is approximation.
@ The expectations have to be calculated in closed form!
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Statistical Linearization of Non-Linear Transforms [4/4]

Statistical linearization

The statistically linearized Gaussian approximation to the joint
distribution of x and y = g(x) + q where x ~ N(m, P) and
q ~ N(0,Q) is given as

()~ () (¢ <))

ps = E[g(x)]
Ss=E[g(x)éx"]P~! E[g(x)ox"]" + Q
Cs = E[g(x)ox"]".

where
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Statistically Linearized Filter [1/3]

o The statistically linearized filter (SLF) can be derived in the
same manner as EKF.

@ Statistical linearization is used instead of Taylor series
based linearization.

@ Requires closed form computation of the following
expectations for arbitrary x ~ N(m, P):

E[f(x)]
E[f(x) ox"]
E[h(x)]
E[h(x) 6x '],

where ix = x — m.
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Statistically Linearized Filter [2/3]

Statistically linearized filter

o Prediction (expectations w.r.t. X1 ~ N(mx_1,Px_1)):

m; = E[f(Xk_1)]
Py = E[f(x¢_1) 0x]_{ 1P, E[f(xk_1)0x]_{]" + Qx_1,

@ Update (expectations w.r.t. X, ~ N(m,, P, )):

Vi = Yk — E[h(x4)]

Sk = E[h(xx) ox] (P )~ E[h(xx) 5x{]” + R
Kk = E[h(xx) ox/]" S,

my = m, + Kg Vg

Py = P, — Kk SkK].

4
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Statistically Linearized Filter [3/3]

o If the function g(x) is differentiable, we have
E[g(x) (x — m)"] = E[Gx(x)] P,

where Gy (x) is the Jacobian of g(x), and x ~ N(m,P).

@ In practice, we can use the following property for
computation of the expectation of the Jacobian:

p(m) = E[g(x)]

op(m) _
5m — ELGx(X)]

@ The resulting filter resembles EKF very closely.

@ Related to replacing Taylor series with Fourier-Hermite
series in the approximation.
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Statistically Linearized Filter: Example [1/2]

@ Recall the discretized pendulum model

<x,1> < X} + X2, At > < 0 >
2] = 1,2 " ainfvl +
Xic Xi_q — g sin(x,_q) At o

v~

f(xk—1)
Vi = sin(xg) +1k,
S——
h(xk)

o If x ~ N(m, P), by brute-force calculation we get

my + mo At
Elf0] = <m2 ~ g sin(m) exp(Pr1/2) At)

E[h(x)] = sin(m) exp(—P11/2)
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Statistically Linearized Filter: Example [2/2]

@ The required cross-correlation for prediction step is

Effix) (x - m)"] = (1 92).

where

Ci1 = P11 + At Py
Ci2 = P12+ At Pop
Co1 = P12 — g At cos(my) P11 exp(—P11/2)
Co2 = Pay — g At cos(my) Pr2 exp(—Pi1/2)

@ The required term for update step is
Pi1 exp(—P11/2)
Elh(x) (X — m T — COS(m1) 11
(G0 )] <cos(m1)P12 exp(—P11/2)
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Advantages of SLF

@ Global approximation, linearization is based on a range of
function values.

@ Often more accurate and more robust than EKF.

@ No differentiability or continuity requirements for
measurement and dynamic models.

@ Jacobian matrices do not need to be computed.
@ Often computationally efficient.
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Limitations of SLF

@ Works only with Gaussian noise terms.

@ Expected values of the non-linear functions have to be
computed in closed form.

@ Computation of expected values is hard and error prone.

o If the expected values cannot be computed in closed form,
there is not much we can do.
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Fourier-Hermite Series [1/3]

@ We can generalize statistical linearization to higher order
polynomial approximations:

g(x) ~ b+ Asx+0x Cox+...

where X ~ N(m,P) and 6x = x — m.
@ We could then find the coefficients by minimizing

MSE4(b,A,C,...) = E[||g(x) —b — Adx — 6x"Cox — ... [|?]

@ Possible, but calculations will be quite tedious.
@ A better idea is to use Hilbert space theory.
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Fourier-Hermite Series [2/3]

@ Let’s define an inner product for scalar functions g and f as

follows:
(t.) = [ (x)g() N(x | m. P) ax
= E[f(x) g(x)],
@ Form the Hilbert space of functions by defining the norm
gl = (9.9).

@ There exists a polynomial basis of the Hilbert space — the
polynomials are multivariate Hermite polynomials

.....

.....
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Fourier-Hermite Series [3/3]

@ We can expand a function g(x) into a Fourier-Hermite
series as follows:

0= Y G Ha g (m.P)

k= 0ay,..., ax=1
2 H[a17“'7ak](X; m7 P)

@ The error criterion can be expressed also as follows:
MSEgq = E[llg(x) — §o()IP] = > _ [lgi(X) — &7 (X)Iln
i

where
g°(x) =b — Aéx —x"Cox —... (upto order p)

@ But the Hilbert space theory tells us that the optimal
gP(x) is given by truncating the Fourier—Hermite series to
order p.
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Idea of Fourier-Hermite Kalman Filter

@ Fourier-Hermite Kalman filter (FHKF) is like the statistically
linearized filter, but uses a higher order series expansion

@ In practice, we can express the series in terms of
expectations of derivatives by using:

E[g(X) Hia,.....a) (X; m, P)]
n k
okg(x) ]
— E|l—2V7 L
> e[| 1 tonar

@ The expectations of derivatives can be computed
analytically by differentiating the following w.r.t. to mean m:

§(m, P) = E[g(x)] = / g(x) N(x | m, P) dx
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Properties of Fourier-Hermite Kalman Filter

Global approximation, based on a range of function values.
No differentiability or continuity requirements.

Exact up to an arbitrary polynomials of order p.

The expected values of the non-linearities needed in
closed form.

Analytical derivatives are needed in computing the series
coefficients.

©

©

Works only in Gaussian noise case.
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@ EKF, SLF and FHKF can be applied to filtering models of
the form

Xk = f(Xk—1) + Ak—1
Yk = h(xk) + rg,

@ EKEF is based on Taylor series expansions of f and h.

o Advantages: Simple, intuitive, computationally efficient
o Disadvantages: Local approximation, differentiability
requirements, only for Gaussian noises.
@ SLF is based on statistical linearization:
o Advantages: Global approximation, no differentiability
requirements, computationally efficient
@ Disadvantages: Closed form computation of expectations,
only for Gaussian noises.
@ FHKEF is a generalization of SLF into higher order
polynomials approximations.
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