
Bayesian Estimation of Time-Varying Processes Spring 2012

Exercise Round 2.

• The deadline for exercise rounds 1–3 (there are 3 exercises on each round)
is February 8, 2012.

The answers should be sent as email to the teacher (simo.sarkka@aalto.fi) in PDF
form. When sending the email, please add "S-114.4610" or "1144610" to subject.
The answers can also be returned on paper to the teacher.

Exercise 1. (Linear Bayesian Estimation)

The priors for parametersa1 anda2 are independent Gaussian as follows:

a1 ∼ N(0, σ2)

a2 ∼ N(0, σ2),

where the varianceσ2 is known. The measurementsyk are modeled as

yk = a1 xk + a2 + ek, k = 1, . . . , n

whereek’s are independent Gaussian error terms with mean0 and variance1, that
is, ek ∼ N(0, 1). The valuesxk are fixed and known. The posterior distribution
can be now written as

p(a | y1, . . . , yn) = Z exp(−
1

2

n
∑

k=1

(a1 xk+a2−yk)
2) exp(−

1

2σ2
a2
1
) exp(−

1

2σ2
a2
2
)

whereZ is the normalization term, which is independent of the parametera =
(a1 a2)

T . The posterior distribution can be seen to be Gaussian and your task is to
derive its mean and covariance.

A) Write the exponent of the posterior distribution in matrix form as in Exercise
1 of Round 1 (in terms ofy, X, a andσ2).

B) Because Gaussian distribution is always symmetric, its meanm is at the max-
imum of the distribution. Solve the mean by computing the gradient of the expo-
nent and finding where it vanishes.

C) Find the covariance of the distribution by computing the second derivative
matrix (Hessian matrix)H of the exponent. The covariance is thenΣ = −H−1

(why?).

D) What is the resulting posterior distribution? What is the relationship with the
LS-estimate in Exercise 1 of round 1?
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Exercise 2. (Linear Regression with Kalman Filter)

The model in Exercise 1 can be written as a linear state space model as follows:

ak = ak−1

yk = Hk ak + ǫk,

whereHk = (xk 1), a0 ∼ N(0, σ2I) andǫk ∼ N(0, 1). The state in the model
is nowak = (a1,k a2,k)

T and the measurements areyk for k = 1, . . . , n. Assume
that Kalman filter is used for processing the measurementsy1, . . . , yn. Your task
is to prove that at time stepn, the mean and covariance ofan computed by the
Kalman filter are the same as the mean and covariance of the posterior distribution
computed in the previous exercise.

The Kalman filter equations for the above model can be writtenas:

Sk = Hk Pk−1H
T
k + 1

Kk = Pk−1 H
T
k S−1

k

mk = mk−1 +Kk (yk −Hk mk−1)

Pk = Pk−1 −Kk Sk K
T
k .

A) Write formulas for the posterior meanmk−1 and covariancePk−1 assuming
that they are the same as what would be obtained if the pairs{(yi, xi) : i =
1, . . . , k − 1} were (batch) processed as in the previous exercise. Write similar
equations for the meanmk and covariancePk. Show that the posterior means can
be expressed in form

mk−1 = Pk−1 X
T
k−1

yk−1

mk = Pk X
T
k yk,

whereXk−1 andyk−1 have been constructed asX andy in the previous exercise,
except that only the pairs{(yi, xi) : i = 1, . . . , k − 1} have been used.Xk and
yk have been constructed similarly from pairs up to stepk.

B) Rewrite the expressionsXT
k Xk andXT

k yk in terms ofXk−1, yk−1, Hk andyk.
Substitute these into the expressions ofmk andPk obtained in A).

C) Expand the expression of the covariancePk = Pk−1 − Kk Sk K
T
k by substi-

tuting the expressions forKk andSk. Convert it to simpler form by applying the
matrix inversion lemma:

Pk−1 −Pk−1H
T
k (Hk Pk−1 H

T
k + 1)−1 Hk Pk−1 = (P−1

k−1
+HT

k Hk)
−1.

Show that this expression forPk is equivalent to the expression in A).
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D) Expand the expression of the meanmk = mk−1 + Kk (yk − Hk mk−1) and
show that the result is equivalent to the expression obtained in A). Hint: The
Kalman gain can also be written asKk = Pk H

T
k .

E) Prove by induction argument that the mean and covariance computed by the
Kalman filter at stepn is the same as the posterior mean and covariance obtained
in the previous exercise.

Exercise 3. (Gaussian Identities)

Recall that the Gaussian probability density is defined as

N(x |m,P) =
1

(2 π)n/2 |P|1/2
exp

(

−
1

2
(x−m)T P−1 (x−m)

)

Derive the following Gaussian identities:

A) Let x andy have the Gaussian densities

p(x) = N(x |m,P), p(y |x) = N(y |Hx,R),

then the joint distribution ofx andy is
(

x

y

)

∼ N

((

m

Hm

)

,

(

P PHT

HP HPHT +R

))

and the marginal distribution ofy is

y ∼ N(Hm,HPHT +R).

Hint: Use the properties of expectationE[Hx + r] = H E[x] + E[r] and
Cov[Hx+ r] = H Cov[x]HT + Cov[r] (if x andr independent).

B) Write down the explicit expression for the joint and marginalprobability den-
sities above:

p(x,y) = p(y |x) p(x) =?

p(y) =

∫

p(y |x) p(x) dx =?

C) If the random variablesx andy have the joint Gaussian probability density
(

x

y

)

∼ N

((

a

b

)

,

(

A C

CT B

))

,

then the conditional density ofx giveny is given as follows:

x |y ∼ N(a+CB−1 (y − b),A−CB−1CT )

Hints:
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• Denote inverse covariance asD = [D11 D12;D
T
12

D22] and expand the
quadratic form in the Gaussian exponent.

• Compute the derivative with respect tox and set it to zero. Conclude that
due to symmetry the point where the derivative vanishes is the mean.

• Check from a linear algebra book that the inverse ofD11 is given by the
Schur complement:

D−1

11
= A−CB−1 CT

and thatD12 can be then written as

D12 = −D11 CB−1.

• Find the simplified expression for the mean by applying the identities above.

• Find the second derivative of the negative Gaussian exponent with respect
to x. Conclude that it must be the inverse conditional covarianceof x.

• Use the Schur complement expression above for computing theconditional
covariance.


