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0 Unscented Transform

9 Unscented Kalman Filter

Q Gaussian Filter

@ Gauss-Hermite Kalman Filter (GHKF)
© cubature Kalman Filter (CKF)

Q Summary and Demonstration
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Linearization Based Gaussian Approximation

@ Problem: Determine the mean and covariance of y:
X ~N(p,0?)
y = sin(x)
@ Linearization based approximation:
o asin(u)
Y—S'”(M)JFT(X p) =+

which gives

Ely] ~ E[sin(u) + cos(u)(x — )] = sin(p)
Covly] ~ E[(sin(y) + cos(u)(x — ) — sin(u))?] = cos®(u) o°.
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Principle of Unscented Transform [1/3]

@ Form 3 sigma points as follows:

x©0 =,
XD =p+o
X(z)—u—a

@ We may now select some weights W©), W) W) such
that the original mean and (co)variance can be always
recovered by

p=3" Wi x0

i
o2 = Z W(l) (X(I) _ ///)2'
i
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Principle of Unscented Transform [2/3]

@ Use the same formula for approximating the distribution of
y = sin(x) as follows:

p=> W sin(x?)
i

02 =Y WO (sin(x?) — u)2.
i
@ For vectors x ~ N(m, P) the generalization of standard
deviation ¢ is the Cholesky factor L = +/P:

P—LL"

@ The sigma points can be formed using columns of L (here
c is a suitable positive constant):

X0 =m
X0 =m+cL,
X —m - cL;
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Principle of Unscented Transform [3/3]

@ For transformationy = g(x) the approximation is:
By = Z w g(x()
Ty = Z WO (g(x®) — ) (@(X D) — )T
i

@ Joint distribution of x and y = g(x) + q is then given as

: Kg(xﬁ q) ‘q] ~2 WO <g(256(?’>)> - <:‘y>

cov Kg(x;(+ q) q]

xD —m)x®—m7T  (x ’)— m) (g(x()) -
NZW < (XY = py) (XD —m)T (g(x D) — ) (g(x )

Simo Sarkka Lecture 5: UKF, GF, GHKF and CKF



Unscented Transform [1/3]

The unscented transform approximation to the joint distribution
of x and y = g(x) + g where x ~ N(m,P) and q ~ N(0,Q) is

()~ () (g s2)):

where the sub-matrices are formed as follows:
@ Form the sigma points as

X0 —m
X0 —m+ v+ [VP|
XU = m—vVn+ A [\/5], i=1,....n

I

I
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Unscented Transform [2/3]

Unscented transform (cont.)

@ Propagate the sigma points through g(-):
YD =gx®), ji=o0,...,2n

@ The sub-matrices are then given as:

2n
wy = Z Vvl(m) y(l)
i=0

2n
Su=>_ W 0D~ py) O — )" +Q
i=0
2n ' ;
Cu=> WO @) —m)") - py)".
i=0
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Unscented Transform [3/3]

Unscented transform (cont.)

@ )\ is a scaling parameter defined as A = o2 (n + &) — n.
@ « and « determine the spread of the sigma points.

o Weights W™ and W'° are given as follows:

W™ = X/(n+2)

W = M/(n+ X))+ (1 —a?+§)
W™ —1/{2(n+ )}, i=1,....2n
W —1/{2(n+A)}, i=1,....2n,

@ 3 can be used for incorporating prior information on the
(non-Gaussian) distribution of x.
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Linearization/UT Example

T ntan . e

d

DL —exp(-1), 11(0) = x
dyg 1

at = —EYS’ ¥2(0) = x2
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Linearization Approximation

F, GHKF and CKF



UT Approximation
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Unscented Kalman Filter (UKF): Derivation [1/4]

@ Assume that the filtering distribution of previous step is
Gaussian

P(Xk—1|Y1:k-1) = N(Xk_1 [ my_1,Px_1)

@ The joint distribution of x,_1 and xx = f(Xx_1) + qx_1 can
be approximated with UT as Gaussian

~ Xk—1 m; Piy P
P(Xk—1, Xk, | Y1:k—1) =N ([ X, ] ‘ (m’2> , <(P/12)T P,,) )

@ Form the sigma points X() of x,_1 ~ N(mx_1,Px_1) and
compute the transformed sigma points as X() = f(x'()),
@ The expected values can now be expressed as:

m) = my_4
mg =3 w20
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Unscented Kalman Filter (UKF): Derivation [2/4]

@ The blocks of covariance can be expressed as:
Pi1 = Pk
2= WO xD —my_q) (XD —mp)T
i

Ph = > WORD —mj) (R0 —my)T + Qs
i

@ The prediction mean and covariance of x, are then m5, and
P,,, and thus we get

m, = Z Wi(m) 20
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Unscented Kalman Filter (UKF): Derivation [3/4]

@ For the joint distribution of x, and yx = h(xx) + rx we
similarly get

~ Xk my PY,  Pi,
p(xk’yka ‘y1:k—1) ~ N <|:yk:| ‘ <m/2/> ) <(P/1/2)T P/2/2 )

o If x=() are the sigma points of x, ~ N(m, ,P,’) and
Y0 = h(x=), we get:

my =m,

m/ — Z VV,-(m) j}(i)
i

P{y =Py

Pl = - W@ 0 —miy 0 —mi)”

Pl = 3 WOO0 - mt) 90 - )T+ R
i
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Unscented Kalman Filter (UKF): Derivation [4/4]

e

x|ly~N@+CB'(y—b),A-CB~'C’).

then

@ Thus we get the conditional mean and covariance:

my = m, + PY, (P32) " (yx —mj
Px =P, — P, (P52) ™" (P12)".
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Unscented Kalman Filter (UKF): Algorithm [1/4]

Unscented Kalman filter: Prediction step

@ Form the sigma points:

;E)1=mk 1,

X =my_y+v/n [\/Pk 1]
Xéin):mk_1—\/n+)\[\/Pk_1]i, i=1,...,n.

@ Propagate the sigma points through the dynamic model:

20 =), i=o,...,2n
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Unscented Kalman Filter (UKF): Algorithm [2/4]

Unscented Kalman filter: Prediction step (cont.)

@ Compute the predicted mean and covariance:
2n .
my =3 W 20
i=0
2n ) )
P => W R —m) (2 —m)T + Q.
i=0
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Unscented Kalman Filter (UKF): Algorithm [3/4]

Unscented Kalman filter: Update step

@ Form the sigma points:

Xk_(o):m;’

Xl(—(i):m;+\/n+)\ [\/P;].
I

X;(i’L"):m;—\/nJr)\[ P;], i=1,....n
i

@ Propagate sigma points through the measurement model:

Y —nhx D), i=o,... 2n
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Unscented Kalman Filter (UKF): Algorithm [4/4]

Unscented Kalman filter: Update step (cont.)
© Compute the following:

2n

= 3 W30
i=0
2n . .

Sk=> W D — ) PP = i) + Ry
i=0
2n ) )

Ck = Z VV,-(C) (Xk—(') —m;) (yl((l) _ Nk)T
i=0

Ky = C« S,

my =m, + Kg [yx — p]
Py = P, — Kk SkK].
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Unscented Kalman Filter (UKF): Advantages

@ No closed form derivatives or expectations needed.

@ Not a local approximation, but based on values on a larger
area.

@ Functions f and h do not need to be differentiable.

@ Theoretically, captures higher order moments of
distribution than linearization.
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Unscented Kalman Filter (UKF): Disadvantage

@ Not a truly global approximation, based on a small set of
trial points.

@ Does not work well with nearly singular covariances, i.e.,
with nearly deterministic systems.

@ Requires more computations than EKF or SLF, e.g.,
Cholesky factorizations on every step.

@ Can only be applied to models driven by Gaussian noises.
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Gaussian Moment Matching [1/2]

@ Consider the transformation of x into y:

X ~ N(m,P)
y = g(x).

@ Form Gaussian approximation to (x,y) by directly
approximating the integrals:

oy = / g(x) N(x | m, P) dx
Sy = / (9(X) — 1241) ((X) — ps)T N(X| M, P) 0Ix

Cu = [(x—m)(@(x) ~ )T N(x | m. P) .
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Gaussian Moment Matching [2/2]

Gaussian moment matching

The moment matching based Gaussian approximation to the
joint distribution of x and the transformed random variable
y = 9(x) + q where x ~ N(m, P) and q ~ N(0, Q) is given as

(5) () (< sw)):

iy = / g(x) N(x|m, P) dx
Sy = / (900 — piar) (90 — pias)T N(x|m, P) dx + Q

Cu = / (x —m) (@(x) — s4s)” N(x| m, P) dx.
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Gaussian Filter [1/3]

Gaussian filter prediction

Compute the following Gaussian integrals:

m, = /f(xk_1) N(Xk—1 | Mk_1,Px_1) dXg_

Py = / (FXk1) — M) ((xs_1) —my)T

X N(Xk_1|mMg_1,Pr_1) dX_1 + Qx_1.
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Gaussian Filter [2/3]
Gaussian filter update

@ Compute the following Gaussian integrals:

e = / h(x¢) N(x | my . P;) dx,
Sy = / (h(xk) — pai0) (R(Xk) — p1i) T N(xk |y, Py ) e + Ry

Cuc= [ (= mp) (h(xe) — a¢) NOxi | mi P) o

@ Then compute the following:

Kk = Ck S’
my =m, + K (Yx — 1g)
Py =P, — K« SkK/.

Simo Sarkka Lecture 5: UKF, GF, GHKF and CKF



Gaussian Filter [3/3]

@ Special case of assumed density filtering (ADF).

@ Multidimensional Gauss-Hermite quadrature = Gauss
Hermite Kalman filter (GHKF).

@ Cubature integration = Cubature Kalman filter (CKF).

@ Monte Carlo integration = Monte Carlo Kalman filter
(MCKEF).

@ Gaussian process / Bayes-Hermite Kalman filter: Form
Gaussian process regression model from set of sample
points and integrate the approximation.

@ Linearization, unscented transform, central differences,
divided differences can be considered as special cases.
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Gauss-Hermite Kalman Filter (GHKF) [1/2]

@ One-dimensional Gauss-Hermite quadrature of order p:
o P ,
| g0 Nex 0.1y de = > wig(xih),
- i=1

o ¢() are roots of pth order Hermite polynomial:

X

X

X

(
(
(
(

IIxx
(I
><><><—L

X 3x...

@ The weights are W) = p!/(p? [Hp_1(£D)]?).
o Exact for polynomials up to order 2p — 1.
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Gauss-Hermite Kalman Filter (GHKF) [2/2]

@ Multidimensional integrals can be approximated as:
[ 90 N(x|m. P) ox
— [am+ VPe) Ng|0.n de

I~ Z W(i1) X oo X W(In)g(m+ \/ﬁs(lﬁ,...,in)).

@ Needs p" evaluation points.

@ Gauss-Hermite Kalman filter (GHKF) uses this for
evaluation of the Gaussian integrals.
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Spherical Cubature Integration [1/3]

@ Postulate symmetric integration rule:
[a@ Ngl0.nde ~ WY glou?),
i

where the points u() belong to the symmetric set [1] with
generator (1,0,...,0):

1 0 —1 0
1 0 —1

[1] = o, |10f,...1] 0,10,
0 0 0 0

and W is a weight and c is a parameter yet to be
determined.
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Spherical Cubature Integration [2/3]

@ Due to symmetry, all odd orders integrated exactly.
@ We only need to match the following moments:

/N(g\o,l)d§:1

& Nelonde 1

@ Thus we get the equations

WZ1 = W2n=1
i
W e uj(")]2 = W2c® =1

@ Thus the following rule is exact up to third degree:

[ 9 N0 de ~ 55" g(vAu),
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Spherical Cubature Integration [3/3]

@ General Gaussian integral rule:

/g(x) N(x | m,P) dx
:/g(m+ﬁg) N(£10.1) dg

2n
1 .
Pr Y g(m+ VP,
i=1
where

S(,'): \/ﬁe,- , i=1,....n
—vnei_, , i=n+1,...,2n,

where e; denotes a unit vector to the direction of
coordinate axis i.
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Cubature Kalman Filter (CKF) [1/4]

@ Form the sigma points as:

X0 —my_g+ /P €D i=1,....2n.

@ Propagate the sigma points through the dynamic model:

A

20 —tx"). i=1...2n

@ Compute the predicted mean and covariance:

2n

_ 1 (i

i=1

2n
— 1 A~(~] _ A~ T
Pe=15, S8 —m) (£ —m)T + Q.

i=1
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Cubature Kalman Filter (CKF) [2/4]

Cubature Kalman filter: Update step

@ Form the sigma points:

=m, +/P. ¢0  i=1,..2n

Q Propagate sigma points through the measurement model:

Y —h D), i=1. 2n
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Cubature Kalman Filter (CKF) [3/4]

Cubature Kalman filter: Update step (cont.)
© Compute the following:

1 om0

(7

Kk = E,z;yk
=

2n

1 N7 N7
Sk=5- > (O — ) O — m)7 + R
i=1
1 2n ) )
Cre =5 > (X —m) ) — )T
i=1
Kk = Ck S’

my =m, + Ky [k — ]
Py = P, — Kk Sk K.
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Cubature Kalman Filter (CKF) [4/4]

@ Cubature Kalman filter (CKF) is a special case of UKF with
a=1,8=0,and x = 0 —the mean weight becomes zero
with these choices.

@ Rule is exact for third order polynomials (multinomials) —
note that third order Gauss-Hermite is exact for fifth order
polynomials.

@ UKF was also originally derived using similar way, but is a
bit more general.

@ Very easy algorithm to implement — quite good choice of
parameters for UKF.
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@ Unscented transform (UT) approximates transformations of
Gaussian variables by propagating sigma points through
the non-linearity.

@ In UT the mean and covariance are approximated as linear
combination of the sigma points.

@ The unscented Kalman filter uses unscented transform for
computing the approximate means and covariance in
non-linear filtering problems.

@ A non-linear transformation can also be approximated with
Gaussian moment matching.

@ Gaussian filter is based on matching the moments with
numerical integration = many kinds of Kalman filters.
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Summary (cont.)

@ Gauss-Hermite Kalman filter (GHKF) uses
multi-dimensional Gauss-Hermite for approximation of
Gaussian filter.

@ Cubature Kalman filter (CKF) uses spherical cubature rule
for approximation of Gaussian filter — but turns out to be
special case of UKF.

@ We can also use Gaussian processes, Monte Carlo or
other methods for approximating the Gaussian integrals.

@ Taylor series, statistical linearization, central differences
and many other methods can be seen as approximations
to Gaussian filter.

Simo Sarkka Lecture 5: UKF, GF, GHKF and CKF



Unscented/Cubature Kalman Filter (UKF/CKF):

Example

@ Recall the discretized pendulum model

SN X+ x2_ At 0
2] =2 " osinx! VAL T
Xk X1 — g sin(xy_4) k1

f(xk—1)
Yk = sin(x}) +r,
——

h(x«)

@ = Matlab demonstration
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