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Chapter 1

Introduction

1.1 Why Bayesian Approach?

The mathematical treatment of the models and algorithms in this document is
Bayesian, which means that all the results are treated as being approxsnation
to certain probability distributions or their parameters. Probability distributions
are used for modeling both the uncertainties in the models and for modeling the
physical randomness. The theory of non-linear optimal filtering is formdilate
terms of Bayesian inference and both the classical and recent filteriogthigs
are derived using the same Bayesian notation and formalism.

The reason for selecting the Bayesian approach is more a practicagéerigm
than a philosophical decision. It simply is easier to develop a consisteoticalsy
applicable theory of recursive inference under Bayesian philostidny under,
for example, least squares or maximum likelihood philosophy. Another lusefu
consequence of selecting the Bayesian approach is that least squar@mum
likelihood and many other philosophically different results can be obtainepeas
cial cases or re-interpretations of the Bayesian results. Of courge,ajten the
same thing applies also other way around.

Modeling uncertainty as randomness is a very “engineering” way of magelin
the world. It is exactly the approach also chosen in statistical physics laasve
in financial analysis. Also the Bayesian approach to optimal filtering is ¢an fr
new (see, e.g., Ho and Lee, 1964; Lee, 1964; Jazwinski, 1966; Stkath, 1968;
Jazwinski, 1970), because the theory already existed at the same timenthalse
article of Kalman (1960b) was published. The Kalman filter was derived free
least squares point of view, but the non-linear filtering theory has Begesian
from the beginning (see, e.g., Jazwinski, 1970).

One should not take the Bayesian way of modeling unknown parameters as
random variables too literally. It does not imply that one believes that tleaitky r
is something random in the parameters - it is just a convenient way of esyires
uncertainty under the same formalism that is used for representing rardsmn
Also random or stochastic processes appearing in the mathematical maglels ar
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not necessarily really random in physical sense, but instead, themarads is
just a mathematical trick for taking into account the uncertainty in a dynamic
phenomenon.

But it does not matter if the randomness is interpreted as physical randesmne
or as a representation of uncertainty, as long as the randomness batedd suc-
ceed in modeling the real world. In the above engineering philosophy titeoco
versy between so called “frequentists” and “Bayesians” is simply silly — itiiteq
much equivalent to the unnecessary controversy about interpretafigosntum
mechanics, that is, whether, for example, the Copenhagen interpretationeral
worlds implementation is the correct one. The philosophical interpretation doe
not matter as long as we get meaningful predictions from the theory.

1.2 What is Optimal Filtering?

Optimal filtering refers to the methodology that can be used for estimating the
state of a time-varying system, which is indirectly observed through noisy mea-
surements. Thetateof the system refers to the collection of dynamic variables
such as position, velocities and accelerations or orientation and rotatiotiahmo
parameters, which describe the physical state of the systemmdidein the mea-
surements refers to a noise in the sense that the measurements are ynibattain
even if we knew the true system state the measurements would not be deterministic
functions of the state, but would have certain distribution of possible vallies

time evolution of the state is modeled as a dynamic system, which is perturbed
by a certainprocess noise This noise is used for modeling the uncertainties in
the system dynamics and in most cases the system is not truly stochastie but th
stochasticity is only used for representing the model uncertainties.

1.2.1 Applications of Optimal Filtering

Phenomena, which can be modeled as time varying systems of the aboveetype ar
very common in engineering applications. These kind of models can be ffmind,
example, in navigation, aerospace engineering, space engineenrgiersurveil-
lance, telecommunications, physics, audio signal processing, congjioleening,
finance and several other fields. Examples of such applications aralthveifg:

e Global positioning system (GP®aplan, 1996) is a widely used satellite
navigation system, where the GPS receiver unit measures arrival times of
signals from several GPS satellites and computes its position based on these
measurements. The GPS receiver typically uses an extended Kalman filter
or some other optimal filtering algorithm for computing the position and
velocity such that the measurements and the assumed dynamics (laws of
physics) are taken into account. Also the ephemeris information, which is
the satellite reference information transmitted from the satellites to the GPS
receivers is typically generated using optimal filters.
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Figure 1.1: In GPS system, the measurements are time delays of sasédlitals and the
optimal filter (e.g., EKF) computes the position and the aatutime.

e Target trackingBar-Shalom et al., 2001; Crassidis and Junkins, 2004) refers
to the methodology, where a set of sensors such as active or passars,r
radio frequency sensors, acoustic arrays, infrared sensorsthadtypes
of sensors are used for determining the position and velocity of a remote
target. When this tracking is done continuously, the dynamics of the target
and measurements from the different sensors are most naturally combined
using an optimal filter. The target in this (single) target tracking case can be
for example, a robot, a satellite, a car or an airplane.

Sensor

Figure 1.2: In target tracking, a sensor generates measurements @ngle measure-
ments) of the target, and the purpose is to determine thetargjectory.

e Multiple target tracking(Bar-Shalom and Li, 1995; Blackman and Popoli,
1999; Stone et al., 1999; Sarkka et al., 2007b) systems are usedfotere
surveillance in the cases, where there are multiple targets moving at the
same time in the same geographical area. This arises the concept of data
association (which measurement was from which target?) and the problem
of estimating the number of targets. Multiple target tracking systems are
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typically used in remote surveillance for military purposes, but possible civil
applications are, for example, monitoring of car tunnels, automatic alarm
systems and people tracking in buildings.
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Figure 1.3: In multiple target target tracking the data association lpiem has to be
solved, which means that it is impossible to know without athgitional information,
which target produced which measurement.

¢ Inertial navigation(Titterton and Weston, 1997; Grewal et al., 2001) uses
inertial sensors such as accelerometers and gyroscopes for comimgting
position and velocity of a device such as a car, an airplane or a missile.
When the inaccuracies in sensor measurements are taken into account the
natural way of computing the estimates is by using an optimal filter. Also
in sensor calibration, which is typically done in time varying environment
optimal filters are often applied.

e Integrated inertial navigatioriGrewal et al., 2001; Bar-Shalom et al., 2001)
combines the good sides of unbiased but inaccurate sensors, sutimas a
ters and landmark trackers, and biased but locally accurate inerti@rsens
Combining of these different sources of information is most naturally per-
formed using an optimal filter such as the extended Kalman filter. This kind
of approach was used, for example, in the guidance system of Apollo 11
lunar module (Eagle), which landed on the moon in 1969.

e GPS/INS navigatiofGrewal et al., 2001; Bar-Shalom et al., 2001) is a form
of integrated inertial navigation, where the inertial sensors are combined
with a GPS receiver unit. In GPS/INS navigation system the short term
fluctuations of the GPS can be compensated with the inertial sensors and
the inertial sensor biases can be compensated with the GPS receiver. An
additional advantage of this approach is that it is possible to temporarily
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switch to pure inertial navigation, when the GPS receiver is unable to com-
pute its position (i.e., has no fix) for some reason. This happens, for éxamp
indoors, in tunnels and in other cases when there is no direct line-of-sight
between the GPS receiver and the satellites.

e Spread of infectious diseas@snderson and May, 1991) can often be mod-
eled as differential equations for the number of susceptible, infectedeand
covered/dead individuals. When uncertainties are induced into the dynamic
equations, and when the measurements are not perfect, the estimation of the
spread of the disease can be formulated as an optimal filtering problem.

e Biological processegMurray, 1993) such as population growth, predator-
pray models and several other dynamic processes in biology can also be
modeled as (stochastic) differential equations. The estimation of the states
of these processes from inaccurate measurements can be formulated as a
optimal filtering problem.

e Telecommunicationg also a field where optimal filters are traditionally
used. For example, optimal receivers, signal detectors and phasalock
loops can be interpreted to contain optimal filters (Van Trees, 1968, 1971)
as components. Also the celebrated Viterbi algorithm (Viterbi, 1967) can be
interpreted as a combination of optimal filtering and optimal smoothing of
the underlying hidden Markov model.

e Audio signal processingpplications such as audio restoration (Godsill and
Rayner, 1998) and audio signal enhancement (Fong et al., 2008) usfee
TVAR (time varying autoregressive) models as the underlying audio signal
models. These kind of models can be efficiently estimated using optimal
filters and smoothers.

e Stochastic optimal contrdMaybeck, 1982b; Stengel, 1994) considers con-
trol of time varying stochastic systems. Stochastic controllers can typically
be found in, for example, airplanes, cars and rockets. The optimality, in
addition to the statistical optimality, means that control signal is constructed
to minimize a performance cost, such as expected time to reach a predefined
state, the amount of fuel consumed or average distance from a desired p
sition trajectory. Optimal filters are typically used for estimating the states
of the stochastic system and a deterministic optimal controller is constructed
independently from the filter such that it uses the estimate of the filter as
the known state. In theory, the optimal controller and optimal filter are not
completely decoupled and the problem of constructing optimal stochastic
controllers is far more challenging than constructing optimal filters and (de-
terministic) optimal controllers separately.

e Learning systemsr adaptive systems can often be mathematically formu-
lated in terms of optimal filters. The theory of stochastic differential equa-
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tions has close relationship with Bayesian non-parametric modeling, ma-
chine learning and neural network modeling (MacKay, 1998; Bishop5)L9
Methods, which are similar to the data association methods in multiple target
tracking are also applicable to on-line adaptive classification (Andriely, et a
2002). The connection between Gaussian process regression timdlop
filtering has also been recently discussed in Sarkka et al. (2007a) @and H
tikainen and Sarkka (2010).

e Physical systemwhich are time varying and measured through unideal sen-
sors can sometimes be formulated as stochastic state space models, and the
time evolution of the system can be estimated using optimal filters (Kaipio
and Somersalo, 2005). In Vauhkonen (1997) and more recentlydonge,
in Pikkarainen (2005) optimal filtering is applied to Electrical Impedance
Tomography (EIT) problem in time varying setting and in Hiltunen et al.
(2011) to the Diffuse Optical Tomography (DOT).

1.2.2 Origins of Bayesian Optimal Filtering

The roots of Bayesian analysis of time dependent behavior are in the optiesl
filtering. The idea of constructing mathematically optimal recursive estimatas wa
first presented for linear systems due to their mathematical simplicity and the most
natural optimality criterion in both mathematical and modeling point of view was
the least squares optimality. For linear systems the optimal Bayesian solution (with
MMSE utility) coincides with the least squares solution, that is, the optimal least
squares solution is exactly the posterior mean.

The history of optimal filtering starts from thé&iener filter(Wiener, 1950),
which is a spectral domain solution to the problem of least squares optimahglter
of stationary Gaussian signals. The Wiener filter is still important in communi-
cation applications (Proakis, 2001), digital signal processing (Hay@36) and
image processing (Rafael C. Gonzalez, 2008). The disadvantagles @fiener
filter are that it can only be applied to stationary signals and that the cotistruc
of a Wiener filter is often mathematically demanding and these mathematics cannot
be avoided (i.e., made transparent). Due to the demanding mathematics the Wiener
filter can only be applied to simple low dimensional filtering problems.

The success of optimal linear filtering in engineering applications is mostly due
to the seminal article of Kalman (1960b), which describes the recursivemsoto
the optimal discrete-time (sampled) linear filtering problem. The reason to the
success is that thikalman filtercan be understood and applied with very much
lighter mathematical machinery than the Wiener filter. Also, despite its mathemat-
ical simplicity, the Kalman filter (or actually the Kalman-Bucy filter; Kalman and
Bucy, 1961) contains the Wiener filter as its limiting special case.

In the early stages of its history, the Kalman filter was soon discovered to
belong to the class of Bayesian estimators (Ho and Lee, 1964; Lee, E%6nJd
ski, 1966, 1970). An interesting historical detail is that while Kalman andyBuc
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were formulating the linear theory in the United States, Stratonovich was dang th
pioneering work on the probabilistic (Bayesian) approach in Russia¢8owch,
1968; Jazwinski, 1970).

As discussed in the book of West and Harrison (1997), in the sixties, Kalma
filter like recursive estimators were also used in the Bayesian community and it is
not clear whether the theory of Kalman filtering or the theorgdwhamic linear
models(DLM) was the first. Although these theories were originally derived from
slightly different starting points, they are equivalent. Because of Kalnizn'di
useful connection to the theory and history of stochastic optimal controkidiais
ument approaches the Bayesian filtering problem from the Kalman filterimg po
of view.

Although the original derivation of th&alman filterwas based on the least
squares approach, the same equations can be derived from therpioabifistic
Bayesian analysis. The Bayesian analysis of Kalman filtering is well cowetbe
classical book of Jazwinski (1970) and more recently in the book of3afom
et al. (2001). Kalman filtering, mostly because of its least squares intatipre
has widely been used in stochastic optimal control. A practical reason to this is
that the inventor of the Kalman filter, Rudolph E. Kalman, has also made severa
contributions (Kalman, 1960a) to the theoryliofear quadratic GaussiafLQG)
regulators, which are fundamental tools of stochastic optimal control g&lten
1994; Maybeck, 1982b).

1.2.3 Optimal Filtering and Smoothing as Bayesian Inference

Optimal Bayesian filtering (see, e.g. Jazwinski, 1970; Bar-Shalom etGi)1;2
Doucet et al., 2001; Ristic et al., 2004) considers statistical inversidnlgms,
where the unknown quantity is a vector valued time sefigsxa, . ..) which is
observed through noisy measuremdts, yo, . . .) as illustrated in the Figure 1.4.

An example of this kind of time series is shown in the Figure 1.5. The process
shown is actually a discrete-time noisy resonator with a known angular velocity
The statex;, = (z;, 21)7 is two dimensional and consists of the position of the res-
onatorzy, and its time derivative,. The measuremenig are scalar observations

of the resonator position (signal) and they are corrupted by measurenisat

observed: y1 y2 Y3 Y4
hidden: X1 X2 X3 X4

Figure 1.4: In discrete-time filtering a sequence of hidden statess indirectly observed
through noisy measurements.
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Figure 1.5: An example of time series, which models a discrete-timenatw. The actual
resonator state (signal) is hidden and only observed tirtugnoisy measurements.

The purpose of thetatistical inversiorat hand is to estimate the hidden states
{x1,...,x7} given the observed measuremefys, ..., yr}, which means that
in the Bayesian sense (Bernardo and Smith, 1994; Gelman et al., 199%) lzdive
to do is to compute the joint posterior distribution of all the states given all the
measurements. This can be done by straightforward application of the’ Balges

PYl,---,¥7T | X1y, XT)P(X1y...,XT
p(X1,.., X7 |y1,...,¥T) = ( | )l )7 (1.1)

p(y1,....yr)
where
e p(x1,...,x7), IS the prior defined by the dynamic model,
e p(y1,...,yr|%x1,...,x7) is the likelihood model for the measurements,
e p(y1,...,yr) is the normalization constant defined as

p(y1,---,¥7) = /p(yl,...,yT|X1,...,XT)p(Xl,...,XT)d(Xl,...,XT).
(1.2)

Unfortunately, this full posterior formulation has the serious disadvartegeach

time we obtain a new measurement, the full posterior distribution would have to
be recomputed. This is particularly a problem in dynamic estimation (which is ex-
actly the problem we are solving here!), because there measuremetyigicadly
obtained one at a time and we would want to compute the best possible estimate
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after each measurement. When number of time steps increases, the dimensionality
of the full posterior distribution also increases, which means that the cotignata
complexity of a single time step increases. Thus after a sufficient number of time
steps the computations will become intractable, independently of available eompu
tational resources. Without additional information or harsh approximattbese

is no way of getting over this problem in the full posterior computation.

However, the above problem only arises when we want to computéulhe
posterior distribution of the states at each time step. If we are willing to relax
this a bit and be satisfied with selected marginal distributions of the states, the
computations become order of magnitude lighter. In order to achieve thidswe a
need to restrict the class of dynamic models into probabilistic Markov segsgnc
which as a restriction sounds more restrictive than it really is. The modeldor th
states and measurements will be assumed to be of the following type:

e Initial distribution specifies therior distribution p(x,) of the hidden state
x¢ at initial time stepk = 0.

e Dynamic modelmodels the system dynamics and its uncertaintiesvarkov
sequencedefined in terms of the transition distributiptxy, | xx—1).

e Measurement modelmodels how the measurement depends on the cur-
rent statex,. This dependence is modeled by specifying the distribution of
the measurement given the state . | xx).

Because computing the full joint distribution of the states at all time steps is com-
putationally very inefficient and unnecessary in real-time applicationsptimal
(Bayesian) filteringhe following marginal distributions are considered instead:

e Filtering distributionsare the marginal distributions diie current statexy,
giventhe previous measuremertg;, ..., yx}:

p(Xk | Y1, s Vi), k=1,...,T. (1.3)

e Prediction distributionsare the marginal distributions of the future states,
steps after the current time step:

P(Xptn | Y1y -+ -5 VE), k=1,....,T, n=1,2,..., (1.4)

e Smoothing distributionare the marginal distributions of the statgsgiven
acertain intervaly, ..., yr} of measurements with' > k:

p(Xk | Y1, y7), k=1,...,T. (1.5)



10

Introduction

k

T

Estimate

Prediction: ' | '
Filtering: ‘ | '
Smoothing: ‘ 4 ‘ '

Measurements

Figure 1.6: State estimation problems can be divided into optimal temh, filtering
and smoothing depending on the time span of measuremerilasd@avith respect to the

estimated state time span.
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Figure 1.7: The result of computing the filtering distributions for thisatete-time res-
onator model. Thestimatesare the posterior means of the filtering distributions ared th
quantiles are the 95% quantiles of the filtering distribogio

1.2.4 Algorithms for Optimal Filtering and Smoothing

There exists a few classes of filtering and smoothing problems which hasedclo

form solutions:

o Kalman filter (KF) is a closed form solution to the discrete linear filtering
problem. Due to linear Gaussian model assumptions the posterior distribu-
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Figure 1.8: The result of computing the smoothing distributions for thscrete-time
resonator model. Thestimatesare the posterior means of the smoothing distributions
and the quantiles are the 95% quantiles of the smoothinghiisbns. The smoothing
distributions are actually the marginal distributionstod full state posterior distribution.

tion is exactly Gaussian and no numerical approximations are needed.

e Rauch-Tung-Striebel smooth@&TSS) is the corresponding closed form smoother
to linear Gaussian state space models.

e Grid filters and smoothersre solutions to Markov models with finite state
spaces.

But because the Bayesian optimal filtering and smoothing equations analjyene
computationally intractable, many kinds of numerical approximation methods have
been developed, for example:

e Extended Kalman filtfEKF) approximates the non-linear and non-Gaussian
measurement and dynamic models by linearization, that is, by forming a
Taylor series expansion on the nominal (or Maximum a Posteriori, MAP)
solution. This results in Gaussian approximation to the filtering distribution.

e Extended Rauch-Tung-Striebel smoot{tfeRTSS) is the approximate non-
linear smoothing algorithm corresponding to EKF.

e Unscented Kalman filtefUKF) approximates the propagation of densities
through the non-linearities of measurement and noise processestgnted
transform This also results in Gaussian approximation.
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e Unscented Rauch-Tung-Striebel smoottiiRTSS) is the approximate non-

linear smoothing algorithm corresponding to UKF.

Sequential Monte Carlo methods patrticle filters and smoothergpresent
the posterior distribution a as weighted set of Monte Carlo samples.

Unscented particle filte(UPF) andlocal linearizationbased methods use
UKFs and EKFs, respectively, for approximating the importance distribu-
tions in sequential importance sampling.

Rao-Blackwellized particle filters and smoothase closed form integration
(e.g., Kalman filters and RTS smoothers) for some of the state variables and
Monte Carlo integration for others.

Interacting multiple model§iMM), and othermultiple modeimethods ap-
proximate the posterior distributions with mixture Gaussian approximations.

Grid based methodapproximate the distribution as a discrete distribution
defined in a finite grid.

Other methodsalso exists, for example, based on series expansions, describ-
ing functions, basis function expansions, exponential family of distribstion
variational Bayesian methods, batch Monte Carlo (e.g., MCMC), Galerkin
approximations etc.



Chapter 2

From Bayesian Inference to
Bayesian Optimal Filtering

2.1 Bayesian Inference

This section provides a brief presentation of the philosophical and mathainatic
foundations of Bayesian inference. The connections to the classitistista
inference are also briefly discussed.

2.1.1 Philosophy of Bayesian Inference

The purpose of Bayesian inference (Bernardo and Smith, 1994; Getnah,
1995) is to provide a mathematical machinery that can be used for modeling sys-
tems, where the uncertainties of the system are taken into account anditierde

are made according to rational principles. The tools of this machinery are the
probability distributions and the rules of probability calculus.

If we compare the so called frequentist philosophy of statistical analysis to
Bayesian inference the difference is that in Bayesian inference thalpitity of an
event does not mean the proportion of the event in an infinite number of tridls
the uncertainty of the event in a single trial. Because models in Bayesiaarioger
are formulated in terms of probability distributions, the probability axioms and
computation rules of the probability theory (see, e.g., Shiryaev, 1996 pplsly
in the Bayesian inference.

2.1.2 Connection to Maximum Likelihood Estimation

Consider a situation, where we know the conditional distributign. | 8) of con-
ditionally independent random variables (measurements). ., y,,, but the pa-
rameter® € R is unknown. The classical statistical method for estimating the
parameter is thenaximum likelihood methogMilton and Arnold, 1995), where
we maximize the joint probability of the measurements, also called the likelihood



14 From Bayesian Inference to Bayesian Optimal Filtering

function

L(0) =[] p(yx ). (2.1)
k

The maximum of the likelihood function with respect élogives themaximum
likelihood estimatéML-estimate)

0 = arg max L(6). (2.2)

The difference between the Bayesian inference and the maximum likelihdbdane
is that the starting point of Bayesian inference is to formally consider trespeter

0 as a random variable. Then the posterior distribution of the paramfieian be
computed by using thBayes' rule

p(y1,-.-,¥n|0)p(0)
p(y17~--7yn)

p(O|y1,....yn) = , (2.3)

wherep(0) is the prior distribution, which models the prior beliefs of the parameter
before we have seen any data aifst, . . .,y,) is a normalization term, which is
independent of the parametér Often this normalization constant is left out and if
the measuremengs, . .., y, are conditionally independent givéh the posterior
distribution of the parameter can be written as

pO1y1,....yn) < p(0) [[ p(yx|0). (2.4)
k

Because we are dealing with a distribution, we might now choose the mosijeob
value of the random variable (MAP-estimate), which is given by the maximum of
the posterior distribution. However, better estimate in mean squared sense is th
posterior mean of the parameter (MMSE-estimate). There are an infinite numbe
of other ways of choosing the point estimate from the distribution and thevagst
depends on the assumed loss function (or utility function). The ML-estimate ca
be considered as a MAP-estimate with uniform prior on the pararfleter

One can also interpret Bayesian inference as a convenient methodlfat-in
ing regularization terms into maximum likelihood estimation. The basic ML-
framework does not have a self-consistent method for including rezaitimn
terms or prior information into statistical models. However, this regularization in-
terpretation of Bayesian inference is not entirely right, because Bayies&ence
is much more than this.

2.1.3 The Building Blocks of Bayesian Models

The basic blocks of a Bayesian model are grer model containing the pre-
liminary information on the parameter and theasurement modeletermining

the stochastic mapping from the parameter to the measurements. Using the com-
bination rules, namely the Bayes’ rule, it is possible to infer an estimate of the
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parameters from the measurements. The distribution of the parameters,isvhich
conditional to the observed measurements is callegdaiseerior distributiorand it

is the distribution representing the state of knowledge about the paramditens w

all the information in the observed measurements and the model isRiselictive
posterior distributionis the distribution of the new (not yet observed) measure-
ments when all the information in the observed measurements and the model is
used.

e Prior model
The prior information consists of subjective experience based beligfseon
possible and impossible parameter values and their relative likelihoods be-
fore anything has been observed. The prior distribution is a mathematical
representation of this information:

p(0) = Information on parametét before seeing any observations. (2.5)

The lack of prior information can be expressed by using a non-informativ
prior. The non-informative prior distribution can be selected in various dif
ferent ways (Gelman et al., 1995).

e Measurement model
Between the true parameters and the measurements there often is a causal,
but inaccurate or noisy relationship. This relationship is mathematically
modeled using the measurement model:

p(y | @) = Distribution of observatioly given the parametes  (2.6)

e Posterior distribution
Posterior distribution is the conditional distribution of the parameters, and
it represents the information we have after the measuremdmas been
obtained. It can be computed by using the Bayes’ rule:

_p(y[0)p(6)
p(Oly) = o) p(y 10)p(0), (2.7)
where the normalization constant is given as
p(y) = / p(y[6)p(6)deo. (2.8)
R4

In the case of multiple measuremests . .., y,, if the measurements are
conditionally independent the joint likelihood of all measurements is the
product of individual measurements and the posterior distribution is

POy, yn) < p(8) [ [ vk 6), (2.9)
k

where the normalization term can be computed by integrating the right hand
side over6. If the random variable is discrete the integration reduces to
summation.
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e Predictive posterior distribution
The predictive posterior distribution is the distribution of new measurements

Yn+1:

p(yn+1|y1,-~,yn)Z/de(ynﬂ|9)p(9!>’1,---,yn)d9- (2.10)

After obtaining the measurements, . . ., y, the predictive posterior distri-
bution can be used for computing the probability distributionifof 1:th
measurement, which has not been observed yet.

In the case of tracking, we could imagine that the parameter is the sequience o
dynamic states of a target, where the state contains the position and velocity. Or
in the continuous-discrete setting the parameter would be an infinite-dimehsiona
random function describing the trajectory of the target at a given time adtelrv

both cases the measurements could be, for example, noisy distance atidrdire
measurements produced by a radar.

2.1.4 Bayesian Point Estimates

The distributions as such have no use in applications, but also in Bayesigue
tations finite dimensional summaries (point estimates) are needed. This selection
of a point from space based on observed values of random variatdestatisti-

cal decision, and therefore this selection procedure is most naturathufated

in terms ofstatistical decision theoryBerger, 1985; Bernardo and Smith, 1994;
Raiffa and Schlaifer, 2000).

Definition 2.1 (Loss Function) A loss functior.(0, a) is a scalar valued function,
which determines the loss of taking thetiona, when the true parameter value

is 8. The action (or control) is the statistical decision to be made based on the
currently available information.

Instead of loss functions it is also possible to work with utility functiéh®, a),
which determine the reward from taking the actimwith parameter value8.
Loss functions can be converted to utility functions and vice versa byidefin
U(B,a) =—L(0,a).

If the value of parametef is not known, but the knowledge on the parameter
can be expressed in terms of the posterior distribupi@h| y1,...,y»), then the
natural choice is the action, which gives timnimum (maximum) of the expected
loss (utility) (Berger, 1985):

BILO.2) vyl = [ 200y y) 0. (210

Commonly used loss functions are the following:
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e Quadratic error loss If the loss function is quadratic

L(6,a)= (6 —a)l (0 —a), (2.12)
then the optimal choica, is theposterior mearof the distribution of9:
a,= [ 6p(61y1.....v)db. (2.13)
R

This posterior mean based estimate is often callediinénum mean squar-

ed error (MMSE)estimate of the paramet@r The quadratic loss is the most
commonly used loss function, because it is easy to handle mathematically
and because in the case of Gaussian posterior distribution the MAP estimate
and the median coincide with the posterior mean.

e Absolute error lossThe loss function of the form

L(6,a) = |0; — ail, (2.14)

is called an absolute error loss and in this case the optimal choice is the
medianof the distribution (i.e., medians of the marginal distributions in
multidimensional case).

e 0-1loss If the loss function is of the form

1 , if6=a
L(G,a):{o 62 (2.15)

then the optimal choice is the maximum of the posterior distribution, that is,
themaximum a posterior (MAR)stimate of the parameter.

2.1.5 Numerical Methods

In principle, Bayesian inference provides the equations for computingdbte-

rior distributions and point estimates for any model once the model specificatio
has been set up. However, the practical problem is that computation oftéhe
grals involved in the equations can rarely be performed analytically andnieahe
methods are needed. Here we shall briefly describe numerical methaidk, ave

also applicable in higher dimensional problems: Gaussian approximations, multi-
dimensional quadratures, Monte Carlo methods, and importance sampling.

e \Very common types of approximations aeaussian approximation&sel-
man et al., 1995), where the posterior distribution is approximated with a
Gaussian distribution

p(@|y1,...,yn) = N(@|m,P). (2.16)

The meanm and covarianc® of the Gaussian approximation can be either
computed by matching the first two moments of the posterior distribution, or
by using the maximum of the distribution as the mean estimate and approxi-
mating the covariance with the curvature of the posterior on the mode.
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e Multi-dimensional quadrature or cubature integration methedsh as Gauss-

Hermite quadrature can also be often used if the dimensionality of the inte-
gral is moderate. In those methods the idea is to deterministically form a
representative set of sample poifs= {#) | i = 1,..., N} (sometimes
calledsigma pointyand form the approximation of the integral as weighted
average:

N
Elg(0) |y1,....ya ~ S W g(0), (217)

where the numerical values of the weights®) are determined by the al-
gorithm. The sample points and weights can be selected, for example, to
give exact answers for polynomials up to certain degree or to accouitef
moments up to certain degree.

In directMonte Carlo methoda set of N samples from the posterior distri-
bution is randomly drawn

09 ~ p(0|y1,...,yn), i=1,...,N, (2.18)

and expectation of any functigg(-) can be then approximated as the sample
average

Elg®)|y1,...,yal = §2g0< (2.19)

Another interpretation of this is that Monte Carlo methods form an approxi-
mation of the posterior density of the form

N
pO|y1,...,yn) ~ Z z— 20 (2.20)

whered(-) is the Dirac delta function. The convergence of Monte Carlo
approximation is guaranteed by thentral limit theorem (CLT)see, e.g.,
Liu, 2001) and the error term is, at least in theory, independent ofitherd
sionality of 6.

Efficient methods for generating non-independent Monte Carlo samges a
the Markov chain Monte CarldMCMC) methods (see, e.g., Gilks et al.,
1996). In MCMC methods, a Markov chain is constructed such that it leas th
target distribution as its stationary distribution. By simulating the Markov
chain, samples from the target distribution can be generated.

Importance samplingsee, e.g., Liu, 2001) is a simple algorithm for gener-
ating weightedsamples from the target distribution. The difference to the
direct Monte Carlo sampling and to MCMC is that each of the particles
contains a weight, which corrects the difference between the actuat targe
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distribution and the approximation obtained from an importance distribution
m(-).

Importance sampling estimate can be formed by drawNhgamples from
theimportance distribution

09 ~ (0 |y1,....yn), i=1,...,N. (2.21)

Theimportance weightare then computed as

. (4)
(O | y1,...,¥n)

and the expectation of any functign-) can be then approximated as

Zf\il w® g(e(i))

2.23
Zi\il w(® ( )

Elg(0)y1,...,yn] =

2.2 Batch and Recursive Estimation

In order to understand the meaning and applicability of optimal filtering and its
relationship with recursive estimation, it is useful to go through an examplerev
we solve a simple and familiar linear regression problem in a recursive manne
After that we shall generalize this concept to include a dynamic model i twde
illustrate the differences in dynamic and batch estimation.

2.2.1 Batch Linear Regression

Consider the linear regression model
Yk = 01 + Oz tg + e, (2.24)

where we assume that the measurement noise is zero mean Gaussian wath a giv
variancee;, ~ N(0, o2) and the prior distribution for parameters is Gaussian with
know mean and covariand ~ N(myg, P(). In the classical linear regression
problem we want to estimate the parametgrs (6, GQ)T from a set of measure-
ment datéD = {(y1,t1), ..., (Yx,tx)}. The measurement data and the true linear
function used in simulation are illustrated in Figure 2.1.

In compact probabilistic notation the linear regression model can be written as

p(yr|0) = N(yx | Hy, 6, 0%)

2.25
p(6) = N(6 | mo, Py). (2:29)

where we have introduced the matlik, = (1 ¢;) andN(-) denotes the Gaus-
sian probability density function (see, Appendix A.1). The likelihoodpfs, of
course, conditional on the regressorslso (or equivalentlyHy), but we will not
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Figure 2.1: The underlying truth and the measurement data in the sirim@ar regression
problem.

denote this dependence explicitly to simplify the notation and from now on this
dependence is assumed to be understood from the context.

Thebatch solutionto this linear regression problem can be obtained by straight-
forward application of the Bayes' rule:

(6 | y11) o p(8) [ [ p(ux | 6)
k

= N(0|mo, Po) [ [ N(yx | H, 6, 0%).
2

Also in the posterior distribution above, we assume the conditioning, caand
H,, but will not denote it explicitly. Thus the posterior distribution is denoted
to be conditional ony,.x = {v1,...,yx}, and not on the data s& containing
the regressor valuéeg also. The reason for this simplification is that the simplified
notation will also work in more general filtering problems, where there is hoala
way of defining the associated regressor variables.

Because the prior and likelihood are Gaussian, the posterior distribution will
also be Gaussian:

p(0]y1.x) = N(O | mg, Pr). (2.26)

The mean and covariance can be obtained by completing the quadratic ftren in
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exponent, which gives:

1 !
my = [Pgl - 2HTH] [QHTy + Py my
g ag
) (2.27)
) _
Py = [Pgl - 2HTH] :
g
whereH;, = (1 t;) and
H, It (1
H=| : |[=[: |, y=|:]. (2.28)
Hy 1 g YK

Figure 2.2 shows the result of batch linear regression, where the ipostezan
parameter values are used as the linear regression parameters.
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Figure 2.2: The result of simple linear regression with a slight regakgion prior used
for the regression parameters. For simplicity, the vagamas assumed to be known.

2.2.2 Recursive Linear Regression

Recursive solutiomo the regression problem (2.25) can be obtained by assuming

that we already have obtained posterior distribution conditioned on thépsev
measurements, ..., k — 1:

p(@|y1:k—1) = N(O |my_1,Pp_q).
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Now assume that we have obtained a new measureypamid we want to compute
the posterior distribution 08 given the old measurements.,_; and the new
measuremeny;. According to the model specification the new measurement has
the likelihood

p(yr |0) = N(y; | Hy, 0,07).

Using the batch version equations such that we interpret the previoteiposis
the prior, we can calculate the distribution

p(0 | y1x) o< p(yr | 0) p(0 | y1:k—1)

2.29
o N(0 | my, Py), (2:29)
where the Gaussian distribution parameters are
1 R
m; = |:P’;11 + 2H£Hk:| I:QHgyk + P;Elmk,1
g g
(2.30)

1 -1
~1 T
P, = [Pkl + —Hj H,f} .
By using the matrix inversion lemma , the covariance calculation can be written as
-1
Py =Py — Py Hf [H;P,Hf + 0] HyPj_;.

By introducing temporary variables, andK, the calculation of mean and covari-
ance can be written in form
Sy = H,P,_ H} + o2
Ky, =P, H[S !
my, = my_1 + Kilyp — Hymy 4]
P, =P, — K S K},

(2.31)

Note thatS), = HkPk_lH}f + 02 is a scalar, because measurements are scalar and
thus no matrix inversion is required.

The equations above actually are special cases of the Kalman filter update
equations. Only the update part of the equations is required, becausstithe
mated parameters are assumed to be constant, that is, there is no a pi@asttoc
dynamics model for the parametésFigure 2.3 illustrates the convergence of the
means and variances of parameters during the recursive estimation.

2.2.3 Batch vs. Recursive Estimation

In this section we shall generalize the recursion idea used in the pregciissto
general probabilistic models. The underlying idea is simply that at each neeasu
ment we treat the posterior distribution of previous time step as the prior for the
current time step. This way we can compute the same solution in recursivemann
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that we would obtain by direct application of Bayesian rule to the whole (patch

data set.
Thebatch Bayesian solutioto a statistical estimation problem can be formu-

lated as follows:

1. Specify the likelihood model of measurementg;, | @) given the parameter
6. Typically the measuremenys. are assumed to be conditionally indepen-
dent such that

p(y1k |0) = HPYHO

2. The prior information about the paramefkis encoded into the prior distri-
butionp(0).

3. The observed data set1® = {(¢1,y1),-.., (tx,yx)}, or if we drop the
explicit conditioning taty, the data isD = y1.x.

4. The batch Bayesian solution to the statistical estimation problem can be
computed by applying the Bayes’ rule

p(0]y1k) = HPYk|0

For example, the batch solution of the above kind to the linear regressiblepro
(2.25) was given by Equations (2.26) and (2.27).

Therecursive Bayesian solutidn the above statistical estimation problem can
be formulated as follows:

1. The distribution of measurements is again modeled by the likelihood func-
tion p(yx | €) and the measurements are assumed to be conditionally inde-
pendent.

2. In the beginning of estimation (i.e, at step 0), all the information about the
parametep we have, is the prior distributiop(9).

3. The measurements are assumed to be obtained one at a tima, fiingtny -
and so on. At each step we use the posterior distribution from the previous
time step as the current prior distribution:

p(8]y1) = lep<y1 16)p(6)

P8 y12) = Z12p<y2 10)p(8 | y1)
(0 y15) = Zlgp<y3 10)p(0 | y1.2)

1
p(6 \ ViK) = TP(YK | 0)p(0|y1.r-1)-
K
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It is easy to show that the posterior distribution at the final step above is
exactly the posterior distribution obtained by the batch solution. Also, re-
ordering of measurements does not change the final solution.

For example, the Equations (2.29) and (2.30) give the one step updaferrtiie
linear regression problem in Equation (2.25).
The recursive formulation of Bayesian estimation has many useful pieser

e The recursive solution can be considered asathlene learningsolution to
the Bayesian learning problem. That is, the information on the parameters is
updated in online manner using new pieces of information as they arrive.

e Because each step in the recursive estimation is a full Bayesian update step
batchBayesian inference isgpecial case of recursii@ayesian inference.

e Due to the sequential nature of estimation we can also model the effect of
time to parameters. That is, we can build model to what happens to the
paramete# between the measurements — this is actuallytsas of filtering
theory, where time behavior is modeled by assuming the parameter to be a
time-dependent stochastic procéss).

2.3 Towards Bayesian Filtering

Now that we are able to solve the static linear regression problem in reeursi
manner, we can proceed towards Bayesian filtering by allowing the paramete
change between the measurements. By generalizing this idea, we endbenter
Kalman filter, which is the workhorse of dynamic estimation.

2.3.1 Drift Model for Linear Regression

Assume that we have similar linear regression model as in Equation (2.2%)ebu
paramete#d is allowed to performGaussian random walketween the measure-
ments:

P(yk | 0x) = N(yi | Hy 6, 07)
(01| 0r—1) =N(0]6,-1,Q) (2.32)
p(6o) = N(8o | mo, Po),

whereQ is the covariance of the random walk. Now, given the distribution
P(Ok—1|y1:-1) = N(Op—1 | mp_1,Pp_1),
the joint distribution 0, and@;,_ is*

POk, 0k—1|y1k—1) = p(Ok | Ok—1) P(Or—1 | Y1:5—1)-

'!Note that this formula is correct only for Markovian dynamic models, nehe
POk | Ok—1,y1:6—1) = P(Ok | Or—1).
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The distribution 0#;, given the measurement history up to time step 1 can be
calculated by integrating ové,_

POk | yik—1) = /P(Gk |0k—1) p(Ok—1|y1:6—1) AO)_1.

This relationship is sometimes called tBkapman-Kolmogorov equatioBecause
p(0r | Ox—1) andp(Ox_1 | y1.x—1) are Gaussian, the result of the marginalization is
Gaussian:
POk | y1:k—1) = N(Oy [m, P),

where

m, =myg_]

P, =P, +Q
By using this as the prior distribution for the measurement likelihe(ad | 6;.) we
get the parameters of the posterior distribution

(0 | y1.k) = N(O | my, Py),

which are given by equations (2.31), whar,_; andP;_; are replaced byn,
andP,:

Sy = HyP_H + o?

K, =P, H[S,'

my, = m, + K[y, — Hym, |

P, =P, — K S:K}.
This recursive computational algorithm for the time-varying linear regpasgeights
is again a special case of the Kalman filter algorithm. Figure 2.4 shows tHeaksu
recursive estimation of sine signal assuming a small diagonal Gaussiam oldié|
for the parameters.

At this point we shall change from tliegression notationised so far intstate

space model notationwhich is commonly used in Kalman filtering and related

dynamic estimation literature. Because this notation easily causes confusion to
people who have got used to regression notation, this point is emphasized:

(2.33)

e In state space notatior means the unknown state of the system, that is, the
vector ofunknown parameters in the systeliris notthe regressor, covariate
or input variable of the system.

e For example, the time-varying linear regression model with drift presented
in this section can be transformed into more standdate space model
notationby replacing the variabl@;, = (6, j GM)T with the variablex;, =
(21,k 962,1<:)T1

pyk | xk) = N(yx, | Hg x, 0%)
p(Xk [ xp—1) = N(xp [ x5-1, Q) (2.34)

p(x0) = N(x0 | mg, Po).



26 From Bayesian Inference to Bayesian Optimal Filtering

2.3.2 Kalman Filter for Linear Model with Drift

The linear model with drift in the previous section had the disadvantage tat th
covariatest;, occurred explicitly in the model specification. The problem with
this is that when we get more and more measurements, the paramefews
without a bound. Thus the conditioning of the problem also gets worse in time.
For practical reasons it also would be desirable to have time-invariantintbae

is, @ model which is not dependent on the absolute time, but only on the eelativ
positions of states and measurements in time.

The alternative state space formulation of the linear model with drift, without
using explicit covariates can be done as follows. Let's denote time differen
between consecutive times As,_; = t, — t,_1. The idea is that if the under-
lying phenomenon (signal, state, parametgr)vas exactly linear, the difference
between adjacent time points could be written exactly as

Ty — The1 = T Atg_q (2.35)

wherez is the derivative, which is constant in the exactly linear case. The diver-
gence from the exactly linear function can be modeled by assuming thatdale ab
equation does not hold exactly, but there is a small noise term on the rigtit ha
side. The derivative can also be assumed to perform small random nalthas

not be exactly constant. This model can be written as follows:

1k =21 -1+ Atp_122 51 + w1
Tok = Tok + w2 (2.36)

Yk =211 t e

where the signal is the first components of the sigtg and the derivative is the
secondrs . The noises are ~ N(0,0?), (wy;w2) ~ N(0,Q). The model can
also be written in form

p(yr | xk) = N(ye | Hxy, 0°)
p(xg | xp—1) = N(xp | Ap—1 x1-1, Q),

1 Aty
Ak1:<0 f1>, H:(l 0).

With suitableQ this model is actually equivalent to model (2.32), but in this for-
mulation we explicitly estimate the state of the signal (point on the regression line)
instead of the linear regression parameters.

We could now explicitly derive the recursion equations in the same manner as
we did in the previous sections. However, we can also uskalean filter, which
is a readily derived recursive solution to generic linear Gaussian madélks fmrm

(2.37)

where

p(yr | xx) = N(yx | Hg X1, Ri)
p(xi | Xk—1) = N(Xp | Ap—1 Xp—1, Qr—1)-
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Our alternative linear regression model in Equation (2.36) can be seem @0 b
special case of these models. The Kalman filter equations are often seghias
prediction and update steps as follows:

1. Prediction step:

m; =Ap 1m;
P, =A P AL+ Q.

2. Update step:

S =H; P, HI +R;

K, =P, H{ S, '

m; =m, + K[y, —Hym,]
P, =P, —K;S;Kf.

The result of tracking the sine signal with Kalman filter is shown in Figure 2l5. A
the mean and covariance calculation equations given in this documentisavéar
been special cases of the above equations, including the batch solutierstatar
measurement case (which is a one-step solution). The Kalman filter regtyrsi
computes the mean and covariance of the posterior distributions of the form

P(Xk Y1, -5 ¥e) = N(xg | my, Py).

Note that the estimates &f, derived from this distribution are non-anticipative in
the sense that they are only conditional to measurements obtained baefaiaiaa
time stepk. However, after we have obtained measuremgnis. . , y, we could
compute estimates of;,_1, xx_o, ..., Which are also conditional to the measure-
ments after the corresponding state time steps. Because more measurements an
more information is available for the estimator, these estimates can be expected to
be more accurate than the non-anticipative measurements computed by the filter

The above mentioned problem of computing estimates of state by condition-
ing not only to previous measurements, but also to future measurements @ calle
optimal smoothin@s already mentioned in Section 1.2.3. The optimal smoothing
solution to the linear Gaussian state space models is given bRaheh-Tung-
Striebel smootherThe full Bayesian theory of optimal smoothing as well as the
related algorithms will be presented in Chapter 4.

It is also possible to predict the time behavior of the state in the future that we
have not yet measured. This procedure is cadiptimal prediction Because op-
timal prediction can always be done by iterating the prediction step of the optimal
filter, no specialized algorithms are needed for this.

The non-linear generalizations of optimal prediction, filtering and smoothing
can be obtained by replacing the Gaussian distributions and linear funations



28 From Bayesian Inference to Bayesian Optimal Filtering

model (2.37) with non-Gaussian and non-linear ones. The Bayesiamilymes-
timation theory described in this document can be applied to generic non-linear
filtering models of the following form:

Vi~ p(ye | %)
X ~ P(Xg | Xp—1).

To understand the generality of this model is it useful to note that if we @cpp
the time-dependence from the state we would get the model

Yk ~ p(¥r %)
x ~ p(x).

Becausex denotes an arbitrary set of parameters or hyper-parameters of the sys
tem, all static Bayesian models are special cases of this model. Thus in dynamic
estimation context we extend the static models by allowing a Markov model for
the time-behavior of the (hyper)parameters.

The Markovianity also is less of a restriction than it sounds, becausewehat
have is a vector valued Markov process, not a scalar one. Thernemgerecall
from the elementary calculus that differential equations of an arbitratgraran
be always transformed into vector valued differential equations of thedider.
In analogous manner, Markov processes of an arbitrary ordereamatsformed
into vector valued first order Markov processes.
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Figure 2.3: (a) Convergence of the recursive linear regression means fifial value is
exactly the same as that was obtained with batch linearssigre Note that time has been
scaled tal atk = K. (b) Convergence of the variances plotted on logarithmidescAs
can be seen, every measurement brings more informationh@ndnicertainty decreases
monotonically. The final values are the same as the varianictsned from the batch
solution.
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Figure 2.4: Example of tracking sine signal with linear model with drifthere the pa-
rameters are allowed to vary according to Gaussian randdknmadel.
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Figure 2.5: Example of tracking sine signal with locally linear statasp model. The
result differs a bit from the random walk parameter modetabise of slightly different
choice of process noise. It could be made equivalent if ddsir



Chapter 3

Optimal Filtering

In this chapter we first present the classical formulation of the discreteepne
timal filtering as recursive Bayesian inference. Then the classical Kafittens,
extended Kalman filters and statistical linearization based filters are présente
terms of the general theory. In addition to the classical algorithms the uesicen
Kalman filter, general Gaussian filters, Gauss-Hermite Kalman filters aradureb
Kalman filters are also presented. Sequential importance resampling lzasele p
filtering, as well as Rao-Blackwellized particle filtering are also covered.

For more information, reader is referred to various articles and booksatited
the appropriate sections. The following books also contain useful infaman
the subject:

e Classic books: Lee (1964); Bucy and Joseph (1968); Meditch (19&88&)yvin-
ski (1970); Sage and Melsa (1971); Gelb (1974); Anderson araté4d 979);
Maybeck (1979, 1982a)

e More recent books on linear and non-linear Kalman filtering: Bar-Shalom
et al. (2001); Grewal and Andrews (2001); Crassidis and JunRiD&4(

e Recent books with particle filters also: Ristic et al. (2004); Candy (2009)

3.1 Formal Filtering Equations and Exact Solutions

3.1.1 Probabilistic State Space Models

Before going into the practical non-linear filtering algorithms, in the nexices
the theory of probabilistic (Bayesian) filtering is presented. The Kalmanifiigter
equations, which are the closed form solutions to the linear Gaussiantditione
optimal filtering problem, are also derived.

Definition 3.1 (State space modelpiscrete-time state space moadelprobabilis-
tic non-linear filtering model is a recursively defined probabilistic modethef
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form

Xp ~ p(Xp | Xp—1)

Yi ~ Yk | Xk), (31)

where
e x; € R™ is thestateof the system on the time step
e yi. € R™ is the measurement on the time skep

e p(xy | x;—1) is thedynamic modelwhich models the stochastic dynamics
of the system. The dynamic model can be a probability density, a counting
measure or combination of them depending on if the statis continuous,
discrete or hybrid.

e p(yx | xx) is themeasurement modelvhich models the distribution of the
measurements given the state.

The model is assumed to be Markovian, which means that it has the following
two properties:

Property 3.1 (Markov property of states)

States{x; : k= 1,2,...} form a Markov sequence (or Markov chain if the state
is discrete). This Markov property means that (and actually the whole future
Xk+1, Xk+2, - - -) givenxg_q is independent from anything that has happened in the
past:

P(X | X1k—1,Y1:k—1) = P(Xk [ Xp—1). (3.2)

Also the past is independent of the future given the present:

P(Xp—1 | Xk, Yier) = P(Xk—1 | Xk)- (3.3)

Property 3.2 (Conditional independence of measurements)

The measuremegt, given the state; is conditionally independent from the mea-
surement and state histories:

Yk | X1k, Y1:k—1) = P(Y | Xk)- (3.4)

As simple example of a Markovian sequence is the Gaussian random walk.
When this is combined with noisy measurements, we obtain an example of a prob-
abilistic state space model:

Example 3.1(Gaussian random walk{zaussian random walk model can be writ-

ten as

Tp = Tp—1 + Wg—1, —1 ~ N(O,
k= Th—1 + Wp—1, Wg—1 0,q) (3.5)
Yk = Tk + €, er ~ N(0,7),
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wherezy, is the hidden state angl. is the measurement. In terms of probability
densities the model can be written as

p(xk | xp—1) = N(zg | 25-1,q)

1 1
= exp (—Qq(ﬂﬁk - 96k1)2>

2mq

7

(3.6)
p(yk [ zk) = N(yk | 2k, 7)

1 ( 1 ( >2>
= exp | ——(yp —

which is a discrete-time state space model.

The filtering model (3.1) actually states that the joint prior distribution of the

stateqxo, . . ., x7) and the joint likelihood of the measureme(ys, ..., yr) are,
respectively
T
p(xo, ..., x7) = p(x0) [ [ p(xk[xr-1) (3.7)
k=1
T
Py - yr %0, xr) = [ [ pye | xx). (3.8)
k=1

In principle, for givenT we could simply compute the posterior distribution of the
states by the Bayes rule:

p()’b-"7YT\XO,---,XT)p(XO,---,XT)
p(y1,--5¥T) (3.9)
X p(y1,---,¥T | X0, -, X7) (X0, - - ., XT).

p(X07‘°'7xT|yl7"'7yT):

However, this kind of explicit usage of the full Bayes’ rule is not feasibleeal

time applications, because the amount of computations per time step increases
when new observations arrive. Thus, this way we could only work witHIstata

sets, because if the amount of data is not bounded (as in real time sgregopiit
cations), then at some point of time the computations would become intractable.
To cope with real time data we need to have an algorithm which does constant
amount of computations per time step.

As discussed in Section 1.2.8ltering distributions prediction distributions
andsmoothing distributionsan be computed recursively such that only constant
amount of computations is done on each time step. For this reason we slzalhnot
sider the full posterior computation at all, but concentrate to the above-medtio
distributions instead. In this chapter, we shall mainly consider computatiore of th
filtering and prediction distributions, and algorithms for computing the smoothing
distributions will be considered in the next chapter.
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3.1.2 Optimal Filtering Equations

The purpose obptimal filteringis to compute thenarginal posterior distribution
of the statex;, on the time steg given the history of the measurements up to the

time stepk
(XK | ¥1:k)- (3.10)

The fundamental equations of the Bayesian filtering theory are givenebfoth
lowing theorem:

Theorem 3.1(Bayesian optimal filtering equationsJhe recursive equations for
computing thepredicted distributiorp(xy, | y1.x—1) and thefiltering distribution
p(xx | y1.x) on the time stef are given by the followin@®ayesian filtering equa-
tions

e Initialization. The recursion starts from the prior distributigrixg).
e Prediction. The predictive distribution of the state, on time stepk given

the dynamic model can be computed by the Chapman-Kolmogorov eguatio

P(Xp | Yik—1) = /p(Xk\Xkl)p(Xk1 | V1:k—1) dxp_1. (3.11)

e Update.Given the measurememnt, on time stepk the posterior distribution
of the statex;, can be computed by the Bayes'’ rule

1
P(Xk | yik) = Zp()’k | xk) P(Xk | Y1:6—1), (3.12)

where the normalization consta#j; is given as
2= [ ol x0) p 1) (3.13)

If some of the components of the state are discrete, the correspontikgegils are
replaced with summations.

Proof. The joint distribution ofk;, andx;_; giveny;.,_1 can be computed as

P(Xp, X1 | Y1) = DXk | Xi—1, Y1:6—1) P(Xh—1 | Y1:5-1)

(3.14)
= p(xp | xXp—1) P(Xk—1 | Y1:6-1),

where the disappearance of the measurement higtory, is due to the Markov
property of the sequende, £ = 1,2, ...}. The marginal distribution af;, given
y1.k_1 can be obtained by integrating the distribution (3.14) oxgr;, which
gives theChapman-Kolmogorov equation

p(%k | Y1) = / Pk | %5 1) P(xet | yie ) dxe_1. (3.15)
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dynamics
current

previous

Figure 3.1: Visualization of the prediction step: the prediction prgptes the state
distribution of the previous measurement step through theachic model such that the
uncertainties (stochastic terms) in the dynamic model aken into account.

posterior

(b)

Figure 3.2: Visualization of the update step: (a) Prior distributiomiin prediction and the
likelihood of measurement just before the update step. l{b)pbsterior distribution after
combining the prior and likelihood by Bayes’ rule.

If x;_1 is discrete, then the above integral is replaced with sum =yey. The
distribution ofx;, giveny, andyy.;_1, thatis, giveny,., can be computed by the
Bayes' rule

1
P(Xk | yik) = ka(Yk | Xk, Y1k—1) D(Xk | Y1:6—-1)
(3.16)

1
= 7P(Yk | x1) p(Xk | Y1:6—1)
2
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where the normalization constant is given by Equation (3.13). The diasgpee
of the measurement histogy.,_1 in the Equation (3.16) is due to the conditional
independence af;, from the measurement history, givep. O

3.1.3 Kalman Filter

The Kalman filter(Kalman, 1960b) is the closed form solution to the optimal
filtering equations of the discrete-time filtering model, where the dynamic and
measurements models are linear Gaussian:

Xp = Ap_1Xp—1 +qi—1 (3.17)
yi = Hpxp + 1y,

wherex; € R" is the statey;, € R™ is the measuremeniy_; ~ N(0,Qx_1) is

the process noise;, ~ N(0, Ry) is the measurement noise and the prior distribu-
tion is Gaussiaxy ~ N(myg, Py). The matrixA_; is the transition matrix of the
dynamic model and,, is the measurement model matrix. In probabilistic terms

the model is
1) = N(xp | Apy %51, Qo
P(Xp | Xp—1) (xp | Ag—1 Xp—1, Qr—1) (3.18)
p(yr | xx) = N(yx | Hp xz, Ry).

Algorithm 3.1 (Kalman filter) The optimal filtering equations for the linear fil-
tering model3.17)can be evaluated in closed form and the resulting distributions
are Gaussian:

P(Xp | yi—1) = N(xx [m, , P,)
p(xk | y1:6) = N(xp | my, Pg) (3.19)
p(Yk | y1:6-1) = N(yx [ Hem,, Sg).

The parameters of the distributions above can be computed with the following
Kalman filterpredictionandupdate steps

e The prediction stes

m; =Ap 1mg

" (3.20)
P, =A 1P AL+ Q.

e The update ste

v =yr — Hpym,

S =H; P, HI + Ry

K, =P, H} S, (3.21)
my = m,; + Kj vy

P, =P, —K;S; K}.
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The initial state has a given Gaussian prior distributign ~ N(mg, Pg), which
also defined the initial mean and covariance.

The Kalman filter equations can be derived as follows:

1. By Lemma A.1 on page 103, the joint distributionsof andx;_; given
Yik-11S

P(Xp—1, Xk | Y1:6—1) = P(Xpe | Xp—1) P(Xp—1 | Y1:6—1)
= N(xp [ Ap—1X5-1, Qr—1) N(xp—1 |my_1,Pp_1)

()

(3.22)
where
m — ( my_q ) P — < Py Py 1%{_1 ) ‘
Ap 1my 1)’ Ap 1Prg A Pra Al +Qr
(3.23)
and the marginal distribution of;, is by Lemma A.2
p(xk ‘ y1:k—1) = N(Xk | m]?a Plz)v (324)

where
m; = A, 1myg_q, P, =A; 1P 1Al | +Qp1.  (3.25)
2. By Lemma A.1, the joint distribution of;, andx;, is

P(Xks Yk | Y1:k—1) = D(Yk | %k) P(Xk | Y1:8-1)
= N(yr | Hpxx, Ri) N(xp [m,P)

- N <|:Xk:| ‘ m//’ P//> :
Yk
where

- - -7
" _ m, P — P, P, H; 397
" <Hkm,;>’ (HkP,; H.P H + R, &%)

(3.26)

3. By Lemma A.2 the conditional distribution &f, is

P(Xk | Vs Y1:k—1) = P(Xk | Y1:8)

(3.28)
= N(Xk’ ‘ my, Pk’)a
where
my, = m, + P, Hy (Hy Py Hj + Ry) ™y — Hymy ] (3.29)
P, =P, — P; H! (H, P_ H! + R,)""H, P} '

which can be also written in form (3.21).
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The functional form of the Kalman filter equations given here is not the posy
sible one. In the numerical stability point of view it would be better to work with
matrix square roots of covariances instead of plain covariance matricesh&ory

and details of implementation of this kind of methods is well covered, for example,
in the book of Grewal and Andrews (2001).

Example 3.2(Kalman filter for Gaussian random walkAssume that we are ob-
serving measuremenyg of the Gaussian random walk model given in Example 3.1

and we want to estimate the statg on each time step. The information obtained
up to time stefk — 1 is summarized by the Gaussian filtering density

p(rp—1|y1:6—-1) = N(zp—1 | mp_1, Pr_1). (3.30)
The Kalman filter prediction and update equations are now given as

my = Mg—1

P =P, 1+q
(g —mp) (3.31)
me =m —m .
b k Pk_—i-ryk k
P—2
Py =P, — (_’f) :
Pk +r
6 ° o M'easurement |
o od\o o °° —— Signal

0 20 40 60 80 100

Figure 3.3: Simulated signal and measurements of the Kalman filteringgte (Example
3.2).
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Figure 3.4: Signal, measurements and filtering estimate of the Kalmgerifig example
(Example 3.2).

3.2 Extended and Unscented Filtering

Often the dynamic and measurement processes in practical applicationstare
linear and the Kalman filter cannot be applied as such. However, still ofeen th
filtering distributions of this kind of processes can be approximated with <&aus
distributions. In this section, three types of methods for forming the Gaussian
approximations are considered, the Taylor series based extended Kiiteran
statistical linearization based statistically linearized filters and unscentetbimans
based unscented Kalman filters.

3.2.1 Linearization of Non-Linear Transforms

Consider the following transformation of a Gaussian random variabigo an-
other random variablg

(3.32)

wherex € R, y € R™, andg : R" — R™ is a general non-linear function.
Formally, the probability density of the random varialplés® (see, e.g Gelman
et al., 1995)

p(y) =3(y)| N(g"'(y) |m, P), (3.33)

This actually only applies to invertiblg(-), but it can be easily generalized to the non-invertible
case.
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where|J(y)| is the determinant of the Jacobian matrix of the inverse transform
g (y). However, it is not generally possible to handle this distribution directly,
because it is non-Gaussian for all but lingar

A first order Taylor series based Gaussian approximation to the distriboftion
y can be now formed as follows. If we l&t= m + §x, wherejx ~ N(0, P), we
can form Taylor series expansion of the functig(n) as follows:

g(x) = g(m+x) = g(m)+Gx(m) 5X+Z %6XT Ggf,)((m) oxe;+... (3.34)

where andGx(m) is the Jacobian matrix gf with elements

9g;(x)
[Gx(m)]; ;; = =2 (3.35)
J5J 3!76]" —
andGﬁfx(m) is the Hessian matrix af;(-) evaluated ain:
(4) _ Pgi(x)
[Gxx(m)]jﬁj/ = Guon, | (3.36)

e;=(0---010 --- 0)7 is a vector with 1 at position and other elements are
zero, that is, it is the unit vector in direction of the coordinate axis

The linear approximation can be obtained by approximating the function by
the first two terms in the Taylor series:

g(x) =~ g(m) + Gy (m) dx. (3.37)

Computing the expected value w.it gives:

Elg(x)] ~ E[g(m)] + Gx(m) x|
= g(m) + Gx(m) E[dx] (3.38)
= g(m).

The covariance can be then approximated as

E|(8(x) ~ Blg()]) (8(x) ~ Elg(x)))" |

[(g(x) — g(m)) (g(x) - g(m))”|

[(8(m) + Gix(m) x — g(m)]) (g(m) + Gux(m) ox — g(m))”
[(Gx(m) 65) (Ge(m) 0)” |

E [0x 6x"] G (m)

(3.39)
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We are also often interested in the the joint covariance between the varables
andy. Approximation to the joint covariance can be achieved by considering the

augmented transformation
X
&(x) = . 3.40
g(x) <g (X)) ( )

The resulting mean and covariance are:

I

g(m)
I 1\
g ~ 3.41
o)~ (g ) * Gy tom) 40
B P PGI(m)
T \Gx(m)P Gy(m)PGI(m))/"
In the derivation of the extended Kalman filter equations, we need a bit more
general transformation of the form
x ~ N(m,P)
q~N(0,Q) (3.42)
y=8(x)+aq,
whereq is independent ok. The joint distribution ofx andy as defined above
is now the same as in Equations (3.41) except that the covarf@riseadded to

the lower right block of the covariance matrix §f-). Thus we get the following
algorithm:

Algorithm 3.2 (Linear approximation of additive transform}he linear approxi-
mation based Gaussian approximation to the joint distributios ahd the trans-
formed random variablg = g(x) + q wherex ~ N(m, P) andq ~ N(0,Q) is

given as
X m P CL
()=~ () (& 52): @43
where
pr = g(m)
S, =Gx(m)PGL(m)+Q (3.44)
Cr =PGI(m),

and Gx(m) is the Jacobian matrix og with respect tox, evaluated atk = m
with elements
_ 99;()

33" O i

[Gx(m)] (3.45)

X=m
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Furthermore, in filtering models where the process noise is not additive, we
often need to approximate transformations of the form

x ~ N(m, P)
a~N(0,Q) (3.46)
y = g(x,q).
wherex andq are uncorrelated random variables. The mean and covariance can be
now computed by substituting the augmented vegtoy) to the vectox in Equa-
tion (3.41). The joint Jacobian matrix can be then writterGasy = (Gx Gq).
Here G is the Jacobian matrix of(-) with respect tog and both the Jacobian

matrices are evaluated at= m,q = 0. The approximations to the mean and
covariance of the augmented transform as in Equation (3.41) are themagv

E[g(x,q)] ~ g(m, 0)

covteteal= (6 atm) (b 8) (et o)

(o P G (m) )
~ \Gu(m) P Gx(m) P GZ(m) + Gq(m) QG (m)
(3.47)

The approximation above can be formulated as the following algorithm:

Algorithm 3.3 (Linear approximation of non-additive transformljhe linear ap-
proximation based Gaussian approximation to the joint distributios @ind the
transformed random variablg = g(x, q) whenx ~ N(m, P) andq ~ N(0, Q)

is given as
X m P CL
()=~ () (& ) @48
where
py, = g(m)
Sr. = Gx(m) P G (m) + G4(m) Q G (m) (3.49)
C.=PGI(m),

andGx(m) is the Jacobian matrix af with respect tok, evaluated ak = m, q =
0 with elements
9g;(x,q)
[Gx(m)]; ;, = = : (3.50)
! axj, x=m,q=0

andGq(m) is the corresponding Jacobian matrix with respectjto

- 89]’ (Xv q)

[Gq(m)]; , = 94y (3.51)

x=m,q=0
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3.2.2 Extended Kalman Filter (EKF)

The extended Kalman filter (EKF) (see, e.g., Jazwinski, 1970; Mayd&3Qa;
Bar-Shalom et al., 2001; Grewal and Andrews, 2001) is an extenstbe &alman
filter to non-linear optimal filtering problems. If process and measuremeésg$o
can be assumed to be additive, the EKF model can be written as

xp = f(xp-1) + qr—1

(3.52)
yi = h(xg) +rg,

wherex;, € R” is the statey;, € R™ is the measurementy,_1 ~ N(0, Qx_1)
is the Gaussian process noisg,~ N(0, Ry) is the Gaussian measurement noise,
f(-) is the dynamic model function arie(-) is the measurement model function.
The functionsf andh can also depend on the step numbkebut for notational
convenience, this dependence has not been explicitly denoted.

The idea of extended Kalman filter is to form Gaussian approximations

P(xXp | yik) = N(xp [ my, Py), (3.53)

to the filtering densities. In EKF this is done by utilizing linear approximations to
the non-linearities and the result is

Algorithm 3.4 (Extended Kalman filter 1) The prediction and update steps of the
first order additive noise extended Kalman filter (EKF) are:

e Prediction:

m, = f(m;_,)

¢ . (3.54)
P, =Fy(mp_1)Pp_1 Fy(mp_y) + Qp_y.

e Update:

Vi =y, — h(m,)

Sk = Hx(m;)) Py Hy (my) + Ry,

K; =P, HL (m;)S;" (3.55)
my = m, + K vy

P, =P, - K;S;Ki.

These filtering equations can be derived by repeating the same steps as in
derivation of the Kalman filter in Section 3.1.3 and by applying Taylor series
approximations on appropriate steps:

1. The joint distribution ofx; and x;_; is non-Gaussian, but we can form
Gaussian approximation to it by applying the approximation Algorithm 3.2
to the function

f(xp—1) + a1, (3.56)
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which results in the Gaussian approximation

p(xk—laxka |y1:k—1) ~N ([Xi;1:| ’ mla P,> 5 (357)
where
m — < my_j >
f(my_
() ) 559
P/ — Pk)—]. P]{?—l F$
F,Pi1 F,P  FT + Q1)

and the Jacobian matri, of f(x) is evaluated at = my_1. The marginal
mean and covariance g&f. are thus
m, = f(my_;)

" (3.59)
P, =F, P, 1 FL + Qu_1.

. The joint distribution ofy; andx is also non-Gaussian, but we can again

approximate it by applying the Algorithm 3.2 to the function

We get the approximation
~ Xk " op
p(xka Yk | yl:k—l) ~ N <|:yk:| ‘ m >P ) ) (361)
where
y [ my v [ Py P, HY
" <h<mk>> P (Hka H, P, H! +R,) (%

and the Jacobian matrbi, of h(x) is evaluated at = m,_.

. By Lemma A.2 the conditional distribution &f, is approximately

P(Xk | Y, Y1:k—1) = N(xp [ myg, Py), (3.63)
where
my; = m;, + P, HL (Hx P, HY + Ry) " '[yx — h(my))]

vk " - - (3.64)
P, =P, — P, H (H,P, Hl + R;) 'H P,

A more general non-additive noise EKF filtering model can be written as

xp = f(Xp—1, dp—1)

(3.65)
yi = h(xg, 1),

whereqi_1 ~ N(0,Qx—1) andr; ~ N(0,Ry) are the Gaussian process and
measurement noises, respectively. Again, the functieralh can also depend on
the step numbek.
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Algorithm 3.5 (Extended Kalman filter Il) The prediction and update steps of the
(first order) extended Kalman filter (EKF) in the non-additive noise @ase

e Prediction:

m]: = f(mkfl, 0)

P, = Fy(my 1) Py FY(my 1) + Fo(my 1) Qp 1 F(my ).
(3.66)

e Update:

Vi =y, — h(m, ,0)

Sk = Hy (my) Py Hy (my) + Hy (my) Ry, Hy (my)

K, =P, H.(m;)S;' (3.67)
my = m, + Ky vy

P, =P, - K;S; K.

where the matrice¥«x(m), Fq(m), Hx(m), andH,(m), are the Jacobian ma-
trices off andh with respect to state and noise, with elements

[Fx(m)]; ;, = W (3.68)
J x=m,q=0
afi(x
Pom)],, = e (3.69
J x=m,q=0
[Hy(m)]; ; = (%é-g:ﬂ (3.70)
x=m,r=0
H,(m)], , = 24T) (3.71)
[Hr(m)]; oy :
x=m,r=0

These filtering equations can be derived by repeating the same steps @s in th
derivation of the extended Kalman filter above, but instead of using theriigo
3.2, we use the Algorithm 3.3 for computing the approximations.

The advantage of EKF over the other non-linear filtering methods is its relativ
simplicity compared to its performance. Linearization is very common engineering
way of constructing approximations to non-linear systems and thus it is asgy e
to understand and apply. A disadvantage of it is that because it is basad o
local linear approximation, it will not work in problems with considerable non-
linearities. Also the filtering model is restricted in the sense that only Gaussian
noise processes are allowed and thus the model cannot contain, foplexalis-
crete valued random variables. The Gaussian restriction also pre by of
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hierarchical models or other models where significantly non-Gaussiaibdigin
models would be needed.

The EKF is also the only filtering algorithm presented in this document, which
formally requires the measurement model and dynamic model functions to-be dif
ferentiable. This as such might be a restriction, but in some cases it mighiealso
simply impossible to compute the required Jacobian matrices, which renders the
usage of EKF impossible. And even when the Jacobian matrices exist afltl co
be computed, the actual computation and programming of Jacobian matrices can
be quite error prone and hard to debug.

In so called second order EKF the non-linearity is approximated by retaining
the second order terms in Taylor series expansion:

Algorithm 3.6 (Extended Kalman filter 1ll) The prediction and update steps of
the second order extended Kalman filter are:

e Prediction:
m; = f(my_q) Zeztr{ xx(my_1) Py 1}
P,;:F (my_1) Py FL(my_1)

(3.72)
+ = Zeze/tr{ xx(my_1)Py_ 1F§(x)(mk 1)Pr_ 1}

+ ka—1-
e Update:
vVi=Yyr—h Zeztr{ XX mk)P,;}
Sk = ( p )P k)

Hy (m
+ = Zez /tr{Hgfx m, )P, Hﬁ(x)(mk) ;}+Rk (3.73)

Ky, =P, Hx(m,;) S; !
mg =m, + K v
P, =P, - K;S; K,
where the matrice¥y(m) and Hy(m) are given by the Equation.68) and

(3.70) The matrice®{)(m) andH{.(m) are the Hessian matrices gf and h;
respectively:

() 0% fi(x)

|:FxX( )i| j,j' - 5:13] ale . (374)
(1) B 82hi(x)

[ xx(m)L,j/  Ox; Oz B (3.75)
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The non-additive version can be derived in analogous manner, leutodits
complicated appearance, it is not presented here.

3.2.3 Statistical Linearization of Non-Linear Transforms

In statistically linearized filter (Gelb, 1974) the Taylor series approximatied us
the EKF is replaced by statistical linearization. Recall the transformatiorigmob
considered in Section 3.2.1, which was stated as
x ~ N(m,P)
y = g(x).
In statistical linearization we form a linear approximation to the transformation as

follows:
g(x) ~ b+ A ix, (3.76)

wheredx = x — m, such that the mean squared error is minimized:
MSE(b, A) = E[(g(x) — b — Aéx)T (g(x) — b — A dx)]. (3.77)
Setting derivatives with respect tband A zero gives

b = E[g(x)]

A = E[g(x)6xT ] P~L. (3.78)

In this approximation of transforrg(x), b is now exactly the mean and the ap-
proximate covariance is given as

E[(g(x) — Elg(x)]) (g(x) - Elg()])"]
~APAT (3.79)
= Elg(x) 0x’| P! E[g(x) oxT]T.

We may now apply this approximation to the augmented fun@ioet) = (x; g(x))
in Equation (3.40) of Section 3.2.1, where we get the approximation

E1g0) ~ (p1g00)

(3.80)
Coviga] ~ (5 Plato) o’
E[g(x) 0x"] E[g(x)ox"| P~ Elg(x)ox"]"
We now get the following algorithm corresponding to Algorithm 3.2 in Section

3.2.1:

Algorithm 3.7 (Statistically linearized approximation of additive transforrije
statistical linearization based Gaussian approximation to the joint distribution of
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x and the transformed random variabje= g(x) + q wherex ~ N(m, P) and
q ~ N(0,Q) is given as

@ - ((@ | (gﬁ §§)> , (3.81)

ps = Elg(x)]
Ss = E[g(x) 0xT| P! E[g(x) 0x”]T + Q (3.82)
Cs = E[g(x) oxT]7.

where

The expectations are taken with respect to the distributicn of

Applying the same approximation witfx, q) in place ofx we obtain the
following mean and covariance:

E[g(x,q)] ~ (E[gg:, q)]>

Thus we get the following algorithm for non-additive transform as in Algon
3.3

Algorithm 3.8 (Statistically linearized approximation of non-additive transfarm)
The statistical linearization based Gaussian approximation to the joint distributio
of x and the transformed random variabje= g(x,q) whenx ~ N(m,P) and

q ~ N(0,Q) is given as

() () er ). 050

(3.85)
The expectations are taken with respect to variaklesd q.

If the functiong(x) is differentiable, it is possible to use the following well
known property of Gaussian random variables for simplifying the esjpras:

Elg(x) (x — m)"] = E[G,(x)] P, (3.86)
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whereE[:] denotes the expected value with respedita | m, P), andG,(x) is

the Jacobian matrix og(x). The statistical linearization equations then reduce
to the same form as Taylor series based linearization, except that indtdzel o
Jacobians we have the expected values of the Jacobians (see s)eltisealso
possible to form higher order approximations using the same idea as in sthtistica
linearization. The higher order approximations will have the same form &ghig
order Taylor series based approximations, but the derivativesfaeeesl with their
expected values.

3.2.4 Statistically Linearized Filter

Statistically linearized filter (SLF) (Gelb, 1974) or quasi-linear filter (Sterigg9d4)

is a Gaussian approximation based filter, which can be applied to the samé kind o
models as EKF, that is, to models of the form (3.52) or (3.65). The filter is similar
to EKF, but the difference is that statistical linearization algorithms 3.7 and8.8 a
used instead of the Taylor series approximations.

Algorithm 3.9 (Statistically linearized filter 1) The prediction and update steps of
the additive noise statistically linearized (Kalman) filter are:

e Prediction:
m, = E[f(xx_1)]
P, = E[f(x;_1) 0xi 1] P}, Elf (xp_1) 6xi_1]7 + Qi1

wheredx,_1 = x,_1 — my;_1 and the expectations are taken with respect
to the variablex;_1 ~ N(my_1,Py_1).

(3.87)

e Update:
v = yi — E[h(xg)]
Sk = Elh(xy) x[] (P,
K = E[h(xy) 6x1]" S,
m; = m, + Ki vy
P, =P, —K;S; K},

)71 E[h(xk) (5X£]T + Rk
1 (3.88)

where the expectations are taken with respect to the varigble N(m, , P, ).

Algorithm 3.10 (Statistically linearized filter Il) The prediction and update steps
of the non-additive statistically linearized (Kalman) filter are:

e Prediction:
m, = E[f(x;_1,qp—1)]
P = E[f(xp—1,qe-1) 0x}_ 1] P!y E[f (xp_1, qe1) 0xf_ )"

+ E[f(xp-1,96-1) dt_1] Q.1 Blf(xp—1,ar-1) ar_1]",
(3.89)
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wheredx,_1 = x;_1 — my_1 and the expectations are taken with respect
to the variables<; 1 ~ N(my_1,Px_1) andqx_1 ~ N(0, Qx_1)-

e Update:
Vi = Y& — E[h(xg, 11)]
Sk = E[h(xy, ry) 0%} (P,) ! Elh(xy, 1) oxi]t
+ Elh(xg, rp) r}] R,;l E[h(xy, 1) ri]"
K = E[h(x, ;) 6x1 ] Che
my = m,; + Kg vy
P, =P, —K;S; K} .

(3.90)

where the expectations are taken with respect to variabjes N(m,, P,)
andr; ~ N(0,Ry).

Both the filters above can be derived by following the derivation of the EKF
Section 3.2.2 and by utilizing the statistical linearization approximations instead of
linear approximations on appropriate steps.

The advantage of SLF over EKF is that it is more global approximation than
EKF, because the linearization is not only based on the local region citben
mean but on a whole range of function values. The non-linearities alsotdwmme
to be differentiable nor do we need to derive their Jacobian matrices. \ldowk
the non-linearities are differentiable, then we can use the Gaussiamraagiable
property (3.86) for rewriting the equations in EKF-like form. The clear diisa-
tage of SLF over EKF is that the certain expected values of the non-linectidns
have to be computed in closed form. Naturally, it is not possible for all funstio
Fortunately, the expected values involved are of such type that one istidkehd
many of them tabulated in older physics and control engineering booksdse
Gelb and Vander Velde, 1968).

3.2.5 Unscented Transform

Theunscented transforfUT) (Julier and Uhlmann, 1995; Julier et al., 2000) is a
relatively recent numerical method, which can be also used for approxgrtae
joint distribution of random variables andy defined as

x ~ N(m, P)

y = g(x).
However, the philosophy in UT differs from the linearization and statistical lin
earization in the sense that it tries to directly approximate the mean and caearian
of the target distribution instead of trying to approximate the non-linear fumctio
(Julier and Uhlmann, 1995).

The idea of UT is to form a fixed number of deterministically chosen sigma-
points, which capture the mean and covariance of the original distribution of
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exactly. These sigma-points are then propagated through the non-linaadity

the mean and covariance of the transformed variable are estimated from them.
Note that although the unscented transform resembles Monte Carlo estimation th
approaches are significantly different, because in UT the sigma poirdelected
deterministically (Julier and Uhlmann, 2004). The difference between lagar
proximation and UT is illustrated in Figures 3.5, 3.6 and 3.7.

£

L PR

(a) Original (b) Transformed

Figure 3.5: Example of applying a non-linear transformation to a randeamiable on the
left, which results in the random variable on the right.

(a) Original (b) Transformed

Figure 3.6: Illustration of linearization based (EKF) approximation the transformation
in Figure 3.5. The Gaussian approximation is formed by daliing the curvature at the
mean, which results in bad approximation further from themeThe true distribution is
presented by the blue dotted line and the red solid line iafoximation.

The unscented transforforms the Gaussian approximatfowith the follow-
ing procedure:

2Note that this Gaussianity assumption is one interpretation, but unscentsébtra can also
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(a) Original (b) Transformed

Figure 3.7: lllustration of unscented transform based (UKF) approxiima to the trans-
formation in Figure 3.5. The Gaussian approximation is fechiby propagating the sigma
points through the non-linearity and the mean and covaraace estimated from the
transformed sigma points. The true distribution is presedry the blue dotted line and
the red solid line is the approximation.

1. Form a set on + 1 sigma points as follows:

X0 =m
XD =m+vn+ A [\/ﬁ} (3.91)

2

me:un—vﬁii[ﬁﬂj i=1,... .n,

1

wherel]; denotes théth column of the matrix, and is a scaling parameter,
which is defined in terms of algorithm parametarandx as follows:

A=a?(n+rK)—n. (3.92)

The parameters andx determine the spread of the sigma points around the
mean (Wan and Van der Merwe, 2001). The matrix square root denotes a

matrix such that/P vP' = P. The sigma points are the columns of the
sigma point matrix.
2. Propagate the sigma points through the non-linear funefion

YO =gx@), i=0,...,2n,

which results in transformed sigma poigts).

be applied without the Gaussian assumption. However, because thepissumakes Bayesian
interpretation of UT much easier, we shall use it here.
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3. Estimates of the mean and covariance of the transformed variable can be
computed from the sigma points as follows:

2n
Elg(x)] ~ Z Wi(m) y®
=0 (3.93)

2n
Cov]g(x)] =~ Z Wi(c) (y(i) —p) (y(i) w7
i=0

where the constant weighwi(m) and WZ.(C) are given as follows (Wan and
Van der Merwe, 2001):

W™ = A/ (n+A)

Wéc) =M (n+ )+ (1-a*+p)
wi™ =1/{2(n+ N}, i=1,....2n
W9 =1/{2(n+ N}, i=1,...,2n,

andg is an additional algorithm parameter, which can be used for incorpo-
rating prior information on the (non-Gaussian) distributionkofWWan and
Van der Merwe, 2001).

If we apply the unscented transform to the augmented fungtian = (x, g(x)),

we simply get the set of sigma points, where the sigma paifitsand ) have
been concatenated to the same vector. Thus, also forming approximationtto join
distributionx andg(x) + q is straightforward and the result is:

(3.94)

Algorithm 3.11 (Unscented approximation of additive transforriihe unscented
transform based Gaussian approximation to the joint distributiorx aind the
transformed random variable = g(x)+q wherex ~ N(m, P) andq ~ N(0, Q)

is given as
X m P Cy
~N , , 3.95
(5)=~(()- (e &) @9
where the submatrices can be computed as follows:
1. Form the set o2n + 1 sigma points as follows:

X0 =m
XD =m+ v+ [\/ﬁ} (3.96)

X0t —m — Vn A [\/ﬁ}, 1=1,...,n
where the parametex is defined in Equatioli3.92)
2. Propagate the sigma points through the non-linear funcgjon:

YO —gx@), i=o0,...,2n.
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3. The submatrices are then given as:

2n
Hu = Z Wz'(m) Yo
i=0

2n
Su=> WOV —u) O )" +Q (@97
=0
2n ' _
Cu = > W7 (A0 —m) 9 — )",
=0

where the constant WeighWi(m) and Wi(c) were defined in the Equation
(3.94)

The unscented transform approximation to a transformation of the oem
g(x, q) can be derived by considering the augmented random vakabléx, q)
as the random variable in the transform. The resulting algorithm is:

Algorithm 3.12 (Unscented approximation of non-additive transfarrihe un-
scented transform based Gaussian approximation to the joint distributica of
and the transformed random variable = g(x,q) whenx ~ N(m,P) and

q ~ N(0,Q) is given as

)+ () (e &) o

where the submatrices can be computed as follows. Let the dimensiondlities o
andq ben andn,, respectively, and let’ = n + n,.

1. Form the sigma points for the augmented random variabie (x, q)

20 =4V TN [VB] (3.99)

7

P /Y] [\/ﬂ i=1,....1

(2

where parametel’ is defined as in Equatiof8.92), but withn replaced by
n’, and the augmented mean and covariance are defined by

- m ~ P O
==(5) »-(0a)
2. Propagate the sigma points through the function:

PO = g(XO= FOa) =0, 2,

where Xz and X():¢ denote the parts of the augmented sigma paint
which correspond t& andq, respectively.
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3. Compute the predicted meag;, the predicted covarianc®;; and the cross-
covarianceCy:

2n’
i=0

2n’
Su = Z Wz'(c) VD = ) (YD = )™
i=0

2n’
Cu = W (O ) (PO — ",
i=0

where the definitions of the weightg™" and )" are the same as in

)

Equation(3.94) but withn replaced byn’ and \ replaced by\'.

3.2.6 Unscented Kalman Filter (UKF)

Theunscented Kalman filt§flJKF) (Julier et al., 1995; Julier and Uhlmann, 2004;
Wan and Van der Merwe, 2001) is an optimal filtering algorithm that utilizes the
unscented transform and can be used for approximating the filtering digintof
models having the same form as with EKF and SLF, that is, models of the form
(3.52) or (3.65). As EKF and SLF, UKF forms a Gaussian approximationeo th
filtering distribution:

(XK [ Y15+, yi) & N(xg | my, Py), (3.100)
wherem;, andP;, are the mean and covariance computed by the algorithm.

Algorithm 3.13 (unscented Kalman filter.l)n the additive form unscented Kalman
filter (UKF) algorithm, which can be applied to additive models of the f(3r62)
the following operations are performed on each measurementkstep, 2, 3, . . .

1. Prediction step:
(a) Form the sigma points:
Xk((i)l =my_1,
2 = my+ VA [ VP
A =y = VX [P L =1

i

(3.101)

where the parametex is defined in Equatio3.92)
(b) Propagate the sigma points through the dynamic model:

20 =), i=o0,...,2n (3.102)
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(c) Compute the predicted meam,_ and the predicted covariande, :

2n
. (3.103)
Py =Y w2 &Y —mp) (7 - mp)T + Qi
=0

where the weightBVi(m) and m(c) were defined in Equatiof8.94)

2. Update step:
(a) Form the sigma points:
—(0 _
Xy, O = my,

XY = mp + Vi [\/ PE] , (3.104)

(2

Xk_(Hn):m,;— n+)\[ Pk]‘, i=1,...,n.
K3

(b) Propagate sigma points through the measurement model:
Y —nh@x, D), i=o0,...,2n (3.105)

(c) Compute the predicted mean, the predicted covariance of the mea-
surementS;, and the cross-covariance of the state and measurement
Cy:

2n
Ky = Z Wz‘(m) yl(;)
=0

2n
Sk, = Z Wi(C) (JA)IEZ) - Ky) (3}18) - Mk)T + R (3.106)
1=0

2n
Ci = Z Wz(C) (Xk_(Z) _ m’;) (y]gZ) _ /“l’k)T'
1=0

(d) Compute the filter gailK;, and the filtered state mean; and covari-
anceP,, conditional to the measuremey:

K) = CyS; !
m; = m, + Ky [yr — ] (3.107)
P, =P, —K;S; K;.
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The filtering equations above can be derived in analogous manner to EKF
equations, but the unscented transform based approximations arastezd of
the linear approximations.

The non-additive form of UKF (Julier and Uhimann, 2004) can be édrlyy
augmenting the process or measurement noises with the state vector arnidgapply
UT approximation to that. Alternatively, one can first augment the state vector
with process noise, then approximate the prediction step and after that shntiee
with measurement noise on the update step. The different algorithms amsd way
of doing this in practice are analyzed in article (Wu et al., 2005). Howdver
directly apply the non-additive UT in the Algorithm 3.12 separately to prediction
and update steps, we get the following algorithm:

Algorithm 3.14 (unscented Kalman filter 1l)In the augmented form unscented
Kalman filter (UKF) algorithm, which can be applied to non-additive models of
the form(3.65), the following operations are performed on each measurement step
k=1,2,3,...

1. Prediction step:

(a) Form the sigma points for the augmented random varighle 1, qx—1):

‘X~‘]§(i)1 = fhk—la

29 =y Vi + N {\/ﬁ] ' (3.108)

2

;e,iﬁ"”—mkl—\/m{ Pkl], i=1....n

%

- my_ ~ P, 0
() (i &)

Heren’ = n + n,, wheren is the dimensionality of the statg,_; and
nq is the dimensionality of the noigg._;. The parametel’ is defined
as in Equation(3.92) but withn replaced byr’.

(b) Propagate the sigma points through the dynamic model:

where

A = (O, B0, =0, (3.109)

whereX"" denotes the first components i\ | and ("¢ denotes
then, last components.

(c) Compute the predicted meam,_ and the predicted covariande, :

2n
m =3 )
=0 (3.110)

2n
P =Y w9 (R —mp) (B - mp)T.
1=0
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where the weightWi(m)/ and Wi(c)/ are the same as in Equati@8.94),
but withn replaced byn’ and X by \'.

2. Update step:

(a) Form the sigma points for the augmented random variékler;):

5—(0) o~

X, =my,

X = i VN [V Pk] (3.111)
& T~y = TN [V P, ] i=1,...n"

- m, ~ P, O
wi=() P w)

Here we have defined’ = n+n,., wheren is the dimensionality of the
statex; andn, is the dimensionality of the noisg. The parameter
M is defined as in Equatio8.92) but withn replaced byn”.

(b) Propagate sigma points through the measurement model:
YO —n@, O 20N =0, 2", (3.112)

where X, )" denotes the first, components int, ") and &, "
denotes they,. last components.

(c) Compute the predicted mean, the predicted covariance of the mea-

surementS;, and the cross-covariance of the state and measurement

Cs:
2n//

Ky = Z Wz‘(m) j}ki)
i=0

2n//
k=Y W O = ) O — )" (3.113)
=0
an’’ . ' '
=Y W (O —mp) 9 — )"
=0

"

where the weightd?™" and W are the same as in Equation
(3.94) but withn replaced byn” and X by \”.

(d) Compute the filter gailK;, and the filtered state mean; and covari-
anceP,, conditional to the measuremey:

K) = CyS; !
m; = m, + Ky [yr — ] (3.114)
P, =P, —K;S; Ki.
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The advantage of the UKF over EKF is that UKF is not based on local linear
approximation, but uses a bit further points in approximating the non-linearity
As discussed in Julier and Uhlmann (2004) the unscented transform igcable
capture the higher order moments caused by the non-linear transformtbatie
the Taylor series based approximations. The dynamic and model functiens a
also not required to be formally differentiable nor their Jacobian matriced toe
be computed. The advantage of UKF over SLF is that in UKF there is no need
to compute any expected values in closed form, only evaluations of the dynamic
and measurement models are needed. However, the accuracy of UKét ce
expected to be as good as of SLF, because SLF try uses larger areadp-th
proximation, whereas UKF only selects fixed number of points on the area. T
disadvantage over EKF is that UKF often requires slightly more computational
operations than EKF.

The UKF can be interpreted to belong to a wider class of filters called sigma-
point filters (van der Merwe and Wan, 2003), which also includes othmstyf
filters such as central differences Kalman filter (CDKF), Gauss-Hernailen&n
filter (GHKF) and a few others (Ito and Xiong, 2000; Wu et al., 2006;d¢ard
et al., 2000; Arasaratnam and Haykin, 2009). The classification to Sogmh-
methods by van der Merwe and Wan (2003) is based on interpreting thedsetho
as special cases of (weighted) statistical linear regression (Lefebsatg 2002).

As discussed in (van der Merwe and Wan, 2003), statistical linearization is
closely related to sigma-point approximations, because they both are redated
statistical linear regression. However, it is important to note that the statistical
ear regression (Lefebvre et al., 2002) which is the basis of sigma-fpamework
(van der Merwe and Wan, 2003) is not exactly equivalent to statisticariragion
(Gelb, 1974) as sometimes is claimed. The statistical linear regression can be
considered as a discrete approximation to statistical linearization.

3.3 Gaussian Filtering

3.3.1 Gaussian Moment Matching

One way to unify various Gaussian approximation based approachesiiskalih
of them as approximations to Gaussian integrals of the form:

/g(x) N(x|m,P) dx.

If we can compute these, a straight-forward way to form the Gaussianxapm-
tion for (x, y) is to simply match the moments of the distributions, which gives the
following algorithm:

Algorithm 3.15 (Gaussian moment matching of additive transforiff)}e moment
matching based Gaussian approximation to the joint distributiorx Gfnd the
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transformed random variable = g(x)-+q wherex ~ N(m, P) andq ~ N(0, Q)
is given as
X m P CM
~N , : 3.115
<Y> <<MM> (Cﬂ SM)) (3419

py = | g(x) N(x|m,P)dx
Su = [ (g(x) — par) (8(x) — ppr)” N(x|m,P)dx + Q (3.116)
Cy = | (x—m)(g(x) — pp)" N(x|m,P)dx.

It is now easy to check by substituting the approximaiggs) = g(m) +
G.(m) (x —m) to the above expression that in the linear case the integrals indeed
reduce to the linear approximations in the Algorithm 3.2. And the same applies
to statistical linearization. However, many other approximations can also Ive inte
preted as such approximations as is discussed in the next section.

The non-additive version of the transform is the following:

Algorithm 3.16 (Gaussian moment matching of non-additive transforfitje mo-
ment matching based Gaussian approximation to the joint distributiareoid the
transformed random variable = g(x, q) wherex ~ N(m, P) andq ~ N(0, Q)

is given as
X m P Cy
G)-~((n) (e 80) e

pag = / g(x, q) N(x|m,P) N(q|0,Q) dxdq

where

Sy = / (8(x,) — i) (8, @) — )" N(x |m, P) N(q |0, Q) dx dq

Cy = / (x - m) (8(x, ) — )" N(x|m, P) N(q|0, Q) dxda.
(3.118)

3.3.2 Gaussian Filter

If we replace the linear approximations in EKF with the moment matching approx-
imations in the previous section, we get the followiBgussian assumed density
filter (ADF) which is also calledzaussian filteMaybeck, 1982a; Ito and Xiong,
2000; Wu et al., 2006):

Algorithm 3.17 (Gaussian filter L) The prediction and update steps of the additive
noise Gaussian (Kalman) filter are:
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e Prediction:

m, = /f(xk—l) N(xp—1 | mp_1,Pr_1) dxp_1

P, = / (F(xhr) — my) (F(xpr) — mip)T
X N(xp—1 |mp_1,Pr_1) dxp_1 + Qp_1.

(3.119)

e Update:
My = /h(xk) N(xy [m,,P.) dx;
Si = / (B(xx) — ) ((xe) — ) N, |y, Py ) dx + Ry

Cr = / (s — m™) (h(xg) — i)™ Nixg | mi, P} dx
K. =C; S,;l
my, =m, + K (yr — )

P, =P, —K;S; K}.
(3.120)

The advantage of the moment matching formulation is that it enables usage of
many well known numerical integration methods such as Gauss-Hermiteaguadr
tures, cubature rules and central difference based methods (Itoiand,>2000;

Wu et al., 2006; Ngrgaard et al., 2000; Arasaratham and Haykin,)200Be
unscented transformation can also be interpreted as an approximation éo thes
integrals (Wu et al., 2006).

One interesting way to approximate the integrals is to use the Bayes-Hermite
quadrature (O’Hagan, 1991), which is based of fitting a Gaussiaregsaegres-
sion model to the non-linear functions on finite set of training points. Thiscsuh
is used in the Gaussian process filter of Deisenroth et al. (2009). lbipassible
to approximate the integrals by Monte Carlo integration, which is the approach
used in Monte Carlo Kalman Filter (MCKF) of Kotecha and Djuric (2003).

The Gaussian filter can be extended to non-additive noise models as follows

Algorithm 3.18 (Gaussian filter 1l) The prediction and update steps of the non-
additive noise Gaussian (Kalman) filter are:

e Prediction:
m, = /f(Xk—1,%—1)
X N(xg—1|mg_1,Pr 1) N(qr—1|0,Qp—1) dxr_1dqs1
P, = /(f(xk—LQk—l) =) (-1, k1) = my)"

X N(xp—1 [mg_1,Pr_1) N(qr—1]0, Qr—1) dxp—1 dqr—1
(3.121)
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e Update:

My, = /h(sz,I‘k)

x N(xp |m, ,P, ) N(ry|0,Ry) dxy, dry,
S1 = [ (hGxe.re) — pag) (bl mu) = )"

x N(xi [my,P;7) N(ry | 0, Rg) dxp, dry,
Cr = /(ch —m”) (h(xg, rp) — )"

x N(xg | my , P})) N(rg [0, Ry) dxy, dry,
Kj =C;S; !

my, =m, + K, (yr — pp)
P, =P, - K;S; K{.

(3.122)

3.3.3 Gauss-Hermite Integration

In the Gaussian filter (and later in smoother) we are interested in approximating
Gaussian integrals of the form

/g(x) N(x|m,P)dx

1 1 _
= Q2P| /g(X) exp (—2(x —m)" P (x - m)) dx,
(3.123)

whereg(x) is an arbitrary function. In this section, we shall derive a Gauss-
Hermite based numerical cubat@ir@gorithm for computing such integrals. The
algorithm is based on direct generalization of the one-dimensional Garssite
rule into multiple dimensions by taking Cartesian product of one-dimensioadrgu
tures. The disadvantage of the method is that the required number of tevalua
points is exponential with respect to the number of dimensions.

In its basic form, one-dimensional Gauss-Hermite quadrature integrafers re
to the special case of Gaussian quadratures with unit Gaussian wengiiofu
w(z) = N(x]0,1), that is, to approximations of the form

/OO g(x) N(z]0,1)dz ~ > WWg(x), (3.124)

—00

whereW® i = 1,...,p are the weights and(® are the evaluation points —
also called sigma points. Note that the quadrature is often defined for thatweig

3As one-dimensional integrals ageadratures multidimensional integrals have been tradition-
ally calledcubatures
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functionexp(—x?), but here we shall use the “probabilists’ definition” above. The
two versions of the quadrature are related by simple scaling of variables.
Obviously, there is an infinite number of possible ways to select the weigthts an
evaluation points. In Gauss-Hermite integration, as in all Gaussian quaratu
the weights and sigma points are chosen such that with polynomial integrand the
approximation becomes exact. It turns out that the polynomial order wi#mgiv
number of points is maximized is we choose the sigma points to be roots of Hermite
polynomials. When usingth order Hermite polynomial,(x), the rule will be
exact for polynomials up to ord€p — 1. The required weights can be computed
in closed form (see below).
Hermite polynomial of ordep is here defined as (these are so called “proba-
bilists’ Hermite polynomials”):

Hy(z) = (—1) exp(z?/2) % exp(—x2/2). (3.125)

The first few Hermite polynomials are given as:

Hy(z) =1

Hy(z) ==

Hy(z) = 2? (3.126)
Hz(z) = 2% — 32

Hy(z) = 2* — 622 + 3.

Using the same weights and sigma points, integrals over non-unit Gaussigmsve
functionsN(x | m, P) can be evaluated using a simple change of integration vari-
able:

/OO g(z) N(z | m, P)dz = /oo g(PY2¢+m) N(€|0,1)d¢  (3.127)

— 0 —00
The Gauss-Hermite integration can be written as the following algorithm:

Algorithm 3.19 (Gauss-Hermite quadrature]Jhe pth order Gauss-Hermite ap-
proximation to the 1-dimensional integral

/00 g(z) N(z|m, P)dz (3.128)

—0o0
can be computed as follows:

1. Compute the unit sigma points as the roote,: = 1,...,p of Hermite
polynomial H,(x).

2. Compute the weights as

(3.129)
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3. Approximate the integral as

e’} p
/ g9(x) N(z|m, P)dz =~ > Wg(PY?el) 4 m). (3.130)

- i=1

By generalizing the change of variables idea, we can form approximation to

multidimensional integrals of the form (3.123). First Bt= vP /P, where
VP is the Cholesky factor of the covariance maffor some other similar square
root of the covariance matrix. If we define new integration variaglbg

x=m+VPE, (3.131)

we get
/g(x) N(x|m,P)dx = /g(m +VPE) N(£]0,1)de (3.132)

The integration over the multidimensional unit Gaussian can be written as iter-
ated integral over one-dimensional Gaussian distributions, and eacle oht:
dimensional integrals can be approximated with Gauss-Hermite quadrature:

/g(m+\/§€) N(£]0,1)d¢

~ Z W) s . W(in)g(m+ \/ﬁé(il,...,in)).

U1,.0n

(3.133)

The weightsiW (i) k= 1. ..,n are simply the corresponding one-dimensional
Gauss-Hermite weights agéf* ) is an-dimensional vector with one-dimensional
unit sigma point(*) at element. The algorithm can be now written as follows:

Algorithm 3.20 (Gauss-Hermite cubatureThepth order Gauss-Hermite approx-
imation to the multidimensional integral

/g(x) N(x|m,P)dx (3.134)

can be computed as follows:

1. Compute the one-dimensional weighit§?,i = 1,...,p and unit sigma
pointsé(® as in the one-dimensional Gauss-Hermite quadrature Algorithm
3.19.
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2. Form multidimensional weights as the products of one-dimensionahtseig

W tnin) — ) s 7 Gin)

_ P! S p! (3.135)
PP [Hp—l(g(il))]Q p? [Hp—l(f(i”))]z’

where eachi;, takes valuesg, ..., p.

3. Form multidimensional unit sigma points as Cartesian product of the one
dimensional unit sigma points:

é‘(il)
€(i1,...,in) _ . (3136)
5(%)

4. Approximate the integral as

/ g(x) N(x|m,P)dx~ 3 Wig(m + VP gltiv),

(3.137)

wherey/P is a matrix square root defined B = VP VP .

The pth order multidimensional Gauss-Hermite integration is exact for mono-
mials of the formz z% ... z% and their arbitrary linear combinations, where
each of the orderd; < 2p — 1. The number of sigma points required fof
dimensional integral witlpth order rule isp™, which quickly becomes unfeasible
when the number of dimensions grows.

3.3.4 Gauss-Hermite Kalman Filter (GHKF)

The additive form multidimensional Gauss-Hermite cubature based filter&an b
derived by replacing the Gaussian integrals in the Gaussian filter Algorithm 3
with the Gauss-Hermite approximations in Algorithm 3.20:

Algorithm 3.21 (Gauss-Hermite Kalman filter)The additive form Gauss-Hermite
Kalman filter (GHKF) algorithm is the following:

1. Prediction step:

(a) Form the sigma points as:

ngz_liﬂn) =my_ + \/ﬁé(lhﬂn) iyt =1,...,p,
(3.138)

where the unit sigma poings’») were defined in Equatiof8.136)
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(b) Propagate the sigma points through the dynamic model:
i) — gty g =1, p, (3.139)

(c) Compute the predicted meam,_ and the predicted covariande, :

- _ 11 4eeeylnm 7/17:)
m, = ZW

Ulyensin

Py = > Wl (i) ey (B0 )T Q.

Ulsensin

(3.140)
where the weightsl/ (i1:-in) were defined in Equatiof8.135)
2. Update step:
(a) Form the sigma points:

x i) — e [P gin) i, in=1,...,p,
(3.141)

where the unit sigma poingg?++*») were defined in Equatiof8.136)
(b) Propagate sigma points through the measurement model:

Plein) — g teindy gy =1, p, (3.142)

(c) Compute the predicted mean, the predicted covariance of the mea-
surementS;, and the cross-covariance of the state and measurement

Cs:
M = Z W(Zl ----- in y(llv 2
7/1, 7177,
Sk = Z Wt z‘n)(j;lgu,u., —Hk)(y(“’ " — )"+ Ry,
$1,eeesbn,
Gum 5 W) o) G
L1 yeeesbn

(3.143)

where the weightsl (1) were defined in Equatio¢8.135)
(d) Compute the filter gailK; and the filtered state mean; and covari-
ancePy, conditional to the measurememnt:
K) = CyS; !
my, = m, + Ky, [yr — p) (3.144)
P, =P, —K;S; Ki.



3.3 Gaussian Filtering 67

The non-additive version can be obtained by applying the Gauss-Hennmaitieat
ture to the non-additive Gaussian filter Algorithm 3.18 in similar manner. Howeve
due to the rapid growth of computational requirements in state dimension the aug-
mented form is computationally quite heavy, because it requires roughbtidgu
of the dimensionality of the integration variable.

3.3.5 Spherical Cubature Integration

In this section we shall derive the third order spherical cubature ruieghawvas
proposed and popularized by Arasaratnam and Haykin (2009). ¥owastead of
using the derivation of Arasaratnam and Haykin (2009), we shall esgdhvation
presented by Wu et al. (2006), due to its simplicity. Although, the derivation
that we present here is far simpler than the alternative, both the derwatien
completely equivalent. Furthermore, the derivation presented hereecamote
easily extended to more complicated spherical cubatures.

Recall from the derivation of Gauss-Hermite cubature in Section 3.3.3xhat e
pectation of a non-linear function over an arbitrary Gaussian distribdtjar] m, P)
can always be transformed into expectation over unit Gaussian distributgjro, I).
Thus, we can start by considering the multidimensional unit Gaussian ihtegra

JEGRELR IS (3.145)
We now wish to form &n-point approximation of the form
[ 8@ Nglo.nde~ WS geu), (3.146)

where the points1”) belong to the symmetric sét] with generator(1,0, ... ,0)
(see, e.g., Wu et al., 2006; Arasaratnam and Haykin, 2009):

1 0 -1 0
0 1 0 -1

1] = 01, 10f,---1 0, O], (3.147)
0 0 0 0

andWV is a weight and is a parameter yet to be determined.
Because the point set is symmetric, the rule is exact for all monomials of the

form 29 292 ... 2% if at least one of the exponents is odd. Thus we can

construct a rule, which is exact up to third degree by determining the cieef$
W andc such that it is exact for selectiops(§) = 1 andg;(£) = f?. Because the

true values of the integrals are

/N(§|0,I)d§ =1
(3.148)

/ﬁN@QDMZL
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we get the equations

WZl:W2n:1

‘ (3.149)

WZ[CU§i)]2 =W2t =1,

which have the solutions

1
W= _—
2n (3.150)
c=+/n.

That is, we get the following simple rule, which is exact for monomials up to third
degree:

[ s© Nelondg~ 53 e(viru®), (315)

We can now easily extend the method to arbitrary mean and covariance gyhesin
change of variables in equations (3.131) and (3.132) and the resultfltveing
algorithm:

Algorithm 3.22 (Spherical cubature integrationfhe 3rd order spherical cubature
approximation to the multidimensional integral

/ g(x) N(x|m, P) dx (3.152)

can be computed as follows:

1. Compute the unit sigma points as

(z): \/ﬁei s z':l,...,n
S {—\/ﬁei_n . i=n+1,...,2n, (3.153)

wheree; denotes a unit vector to the direction of coordinate axis

2. Approximate the integral as
1 2n
~ (i)
/g(x> N(x|m, P)dx ~ _- ;g(m +VP¢W), (3.154)

wherey/P is a matrix square root defined B = VP VP .

It is easy to see that the approximation above is a special case of thatausce
transform (see Section 3.2.5) with parameters- 1, 5 = 0, andx = 0. With
this parameter selection the mean weight is zero and the unscented traisform
effectively a2n-point approximation as well.
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The derivation presented by Arasaratham and Haykin (2009) is a bi#& mor
complicated than the derivation of Wu et al. (2006) presented aboveisasaised
on converting the Gaussian integral into spherical coordinates anddhsigering
the even order monomials. However, Wu et al. (2006) actually did noepteise
most useful special case given in the Algorithm 3.22, but instead, mezs¢he
method for more general generatdu$. The method in the above Algorithm 3.22
has the pleasant property that its weights are always positive, whict &weys
true for more general methods (Wu et al., 2006).

We can generalize the above approach by ugimg- 1 point approximation,
where the origin is also included:

/ 8(6) N(€[0,1)dé ~ Wy g(0) + 3 g(eul) (3.155)

We can now solve the parametéig, I/ andc such that we get the exact result
with selectiongy;(§) = 1 andg;(§) = 5?. The solution can be written in form

K
W p—
0 n+k
W b (3.156)
2(n+ k)
c=+vn+k,

wherek is a free parameter. This gives an integration rule that can be written as

2n
K 1 )
N P ~ S Pe®
[ 860 N (x| m. P dx B+ gy sl VPO
(3.157)
where TR
(i) _ n+kre; , i=1,...,n
¢ {—\/n+/€ei_n , t=n-+1,...,2n. (3.158)

The rule can be seen to coincide with original UT (Julier and Uhlmann, 1995),
which corresponds to the unscented transform presented in Sectiomw8Rb=

1, 8 = 0 and wheres is left as a free parameter. With the selectioa 3 — n, we

can also match the fourth order moments of the distribution (Julier and Uhlmann,
1995), but with the price that when the dimensionality> 3, we get negative
weights and approximation rules that can sometimes be unstable. But nothing
prevents us from using other values for the parameter.

Note that the third order here means a different thing than in the Gaussiteer
Kalman filter — apth order Gauss-Hermite filter is exact for monomials up to order
2p — 1, which means that 3rd order GHKF is exact for monomials up to fifth order.
However, the 3rd order spherical rule is exact only for monomials up to thder.

It is also possible to derive symmetric rules that are exact for higher tlirain th
order. However, this is no longer possible with a number of sigma pointshvidic
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linearO(n) in state dimension (Wu et al., 2006; Arasaratnam and Haykin, 2009).
For example, for fifth order rule, the required number sigma points is aunsta
times the state dimension squa@@h?).

3.3.6 Cubature Kalman Filter (CKF)

When we apply the 3rd spherical cubature integration rule in Algorithm 3.22 to
the Gaussian filter equations in Algorithm 3.17, we get the cubature Kalman filter
(CKF) of Arasaratnam and Haykin (2009):

Algorithm 3.23 (Cubature Kalman filter 1) The additive form cubature Kalman
filter (CKF) algorithm is the following:

1. Prediction step:

(a) Form the sigma points as:

X9 —my o /Pr €D i=1,...2n,  (3.159)
where the unit sigma points are defined as
G _ | Vne; L i=1,...,n

S _{ —v/nei_, , i=n+1,...,2n. (3.160)

(b) Propagate the sigma points through the dynamic model:
29—y, i=1..2n (3.161)

(c) Compute the predicted meam,_ and the predicted covariande, :

. (3.162)

=1
2. Update step:
(a) Form the sigma points:
X0 —my /P eD i=1,... 2n, (3.163)

where the unit sigma points are defined as in Equafft60)
(b) Propagate sigma points through the measurement model:

Y —nh "), i=1...2n (3.164)
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(c) Compute the predicted mean, the predicted covariance of the mea-
surementS,,, and the cross-covariance of the state and measurement
Cs:

1 2n 0

(4

“k:%;yk
2n

1 o (i 5 (i
St = 5 0O —m) O~ H R (3.169)
1 2n ) .
Cro= g > (4" —m) 7 — )"
i=1

(d) Compute the filter gailK;, and the filtered state mean, and covari-
anceP, conditional to the measuremen:

K) =CyS; !
my, = m; + Ky [yr — py) (3.166)
P, =P, - K;S;Ki.

By applying the cubature rule to the non-additive Gaussian filter in Algorithm
3.18 we get the following augmented form cubature Kalman filter (CKF):

Algorithm 3.24 (Cubature Kalman filter 1) The augmented non-additive form
cubature Kalman filter (CKF) algorithm is the following:

1. Prediction step:

(a) Form the matrix of sigma points for the augmented random variable
(Xk—1,9k—1):

X9 vy P €D i=1,.. 20 (3.167)

- my_ ~ P._ 0
() (i &)

Heren' = n + ny, wheren is the dimensionality of the statg,_; and
nq is the dimensionality of the noisg,_;. The unit sigma point are
defined as

E(i)/: Wei y ’i=1,...,n/
—Vnle_ , i=n'+1,...,20.

where

(3.168)
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(b) Propagate the sigma points through the dynamic model:

X0 =207, 00, i=1.20  (3.169)

whereX"" denotes the first components ict(” | and ("¢ denotes
then, last components.

(c) Compute the predicted meam,_ and the predicted covariande, :

2n'

_ 1 5 (4)
m, = on Z;Xk
’2—, (3.170)
_ 1 -~ ~(1 _ 1 _
=g oA - m) () - m)”

2. Update step:

(a) Letn” = n + n,, wheren is the dimensionality of the state ang is
the dimensionality of the measurement noise. Form the sigma points
for the augmented vectdky, ry) as follows:

X D =g /P =1, 20, (3.171)

where

- (my - (P, 0

we(3) w52
The unit sigma point§” are defined as in Equatiof3.168) but with
n’ replaced byn”.

(b) Propagate sigma points through the measurement model:
Y —hx, O 2O =12, (3.172)

where X' denotes the first. components i, ) and X, "
denotes they,. last components.

(c) Compute the predicted mean, the predicted covariance of the mea-
surementS;, and the cross-covariance of the state and measurement

Cy:
1 2n' )
By = ! Z yk
=1
1 2n'! ' '
o= L SN0 ) 05— e
=1
2n//
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(d) Compute the filter gailK;, and the filtered state mean;, and covari-
anceP,, conditional to the measuremen:

K) =C;S; !
my, = my + Ky, [yr — py] (3.174)
P, =P, - K;S;Ki.

3.4 Monte Carlo Approximations

3.4.1 Principles and Motivation of Monte Carlo

Within statistical methods in engineering and science, as well as in optimal filter-
ing, it is often necessary to evaluate expectations in form

Elg(x)) = / g(x) p(x) dx, (3.175)

whereg : R™ — R™ in an arbitrary function ang(x) is the probability density of
x. Now the problem is that such an integral can be evaluated in closed fdym o
in a few special cases and generally, numerical methods have to be used.
Monte Carlomethods provide a numerical method for calculating integrals of
the form (3.175). Monte Carlo refers to general class of methods,endiesed
form computation of statistical quantities is replaced by drawing samples frem th
distribution and estimating the quantities by sample averages.
In (perfect) Monte Carlo approximation, we draw independent randonpkes
from x() ~ p(x) and estimate the expectation as

Elg(x)] ~ % Z g(x™). (3.176)

Thus Monte Carlo methods approximate the target density by a set of samples
that are distributed according to the target density. Figure 3.8 represdms
dimensional Gaussian distribution and its Monte Carlo representation.

The convergence of Monte Carlo approximation is guaranteed by Ceinrtril L
Theorem (CLT) (see, e.g., Liu, 2001) and the error terr@@ﬁf—m), regardless
of dimensionality of. This invariance of dimensionality is unique to Monte Carlo
methods and makes them superior to practically all other numerical methods when
dimensionality ofx is considerable. At least in theory, not necessarily in practice.

In Bayesian inference the target distribution is typically the posterior distribu
tionp(x|yi,...,yn)anditis assumed that it is easier to draw (weighted) samples
from the distribution than to compute, for example, integrals of the form (3.175
This, indeed, often happens to be the case.
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Figure 3.8: (a) Two dimensional Gaussian density. (b) Monte Carlo regmtation of the
same Gaussian density.

3.4.2 Importance Sampling

It is not always possible to obtain samples directly frpfs) due to its compli-
cated formal appearance. importance samplinglS) (see, e.g., Liu, 2001) we
use approximate distribution called importance distributid®), which we can
easily draw samples from. Having sampi$ ~ 7(x) we can approximate the
expectation integral (3.175) as

1 sx") p(x®)
Elg(x)] ~ Z ) (3.177)
Figure 3.9 illustrates the idea of importance sampling. We sample from the impor-
tance distribution, which is an approximation to the target distribution. Because
the distribution of samples is not exact, we need to correct the approximation b
associating a weight to each of the samples.

The disadvantage of this direct importance sampling is that we should be able
to evaluate(x(?)) in order to use it directly. But the problem is that we often do not
know the normalization constant pfx()), because evaluation of it would require
evaluation of an integral with comparable complexity to the expectation integral
itself. In importance sampling we often use an approximation, where we define
unnormalized weights as

P = . 3.178
v W(X(Z)) ( )
and approximate the expectation as
; X(i) Wy
Elg(x)] ~ L8 wi , (3.179)

> Wi

which has the fortunate property that we do not have to know the normatizatio
constant ofp(x).
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@) (b)

Figure 3.9: (a) Importance distribution approximates the target ittistion (b) Weights
are associated to each of the samples to correct the ap@tieim

3.5 Particle Filtering

3.5.1 Sequential Importance Sampling

Sequential importance samplifg§lS) (see, e.g., Doucet et al., 2001) is a sequen-
tial version of importance sampling. It is based on fact that we can evahmte
importance distribution for states, on each time step recursively as follows:

T(X0:k|Y1:5) = T(Xk|X0:k—1, Y1:5) T (X0:k—1]Y 1:5—1) (3.180)

Thus, we can also evaluate the (unnormalized) importance weights xetyrsi

4 , CNIPRCING
i\ m,@lp(y’“”‘k ) PO - (3.181)

r(xVx oy

The SIS algorithm can be used for generating Monte Carlo approximations to
filtering distributions of generic state space models of the form

X ~ p(Xp | Xp—1)

(3.182)
Yi ~ Yk | Xi),

wherex;, € R” is the state on time stgpandy; € R™ is the measurement. The

state and measurements may contain both discrete and continuous components.
The SIS algorithm uses a weighted set of partiz@(es,ﬁ” : xfj)) ci=1,...,N}

for representing the filtering distributigrix;, | y1.r) such that on every time stép

an approximation of the expectation of an arbitrary funcgiér) can be calculated

as the weighted sample average

Elg(xi) | y14] = Zw (3.183)
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Equivalently, SIS can be interpreted to form an approximation of the poster
distribution as

p(xk [ y1:k) Zwk)é (xk —xk)), (3.184)

whered(-) is the Dirac delta function.
The generic sequential importance sampling algorithm can be now described
as follows:

Algorithm 3.25 (Sequential importance samplingyteps of SIS are the following:
1. Initialization: Draw N samples:éi) from the prior
x) ~ p(x0) (3.185)

and set '
w) =1/N (3.186)

2. Prediction: Draw N new samplex,(f) from importance distribution

X](gl) ~ ﬂ-(xk’ |X[(]Z;3€_1a Y1:k) (3187)

3. Update: Calculate new weights according to

- () () | (0)
w0 = P(Yk|xk )P(Xk 1%;21)

X (3.188)

<@
‘ XO k—1° AAE k’)
and normalize them to sum to unity.

4. Setk < k + 1 and go to step 2.

3.5.2 Sequential Importance Resampling

One problem in the SIS algorithm described in the previous section is that we
very easily encounter the situation that almost all the particles have zerbtaeig
and only a few of them (or only one) are non-zero. This is callediggeneracy
problem in particle filtering literature and it used to prevent practical agjita

of particle filters for long time.

The degeneracy problem can be solved by usesamplingprocedure. It
refers to a procedure where we draivnew samples from the discrete distribution
defined by the weights and replace the old se¥afamples with this new set. This
procedure can be be written as the following algorithm:

Algorithm 3.26 (Resampling) Resampling procedure can be described as fol-
lows:
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1. Interpret each Weight;,(f) as the probability of obtaining the sample index
in the set{xfj) li=1,...,N}.

2. Draw N samples from that discrete distribution and replace the old sample
set with this new one.

3. Set all weights to the constant valwéi) =1/N.

The idea of the resampling procedure is to remove particles with very small
weights and duplicate particles with large weights. Although, the theoretical dis
tribution represented by the weighted set of samples does not chasgepleng
induces additional variance to estimates. This variance introduced byshm+e
pling procedure can be reduced by proper choice of the resampling anefhe
stratified resamplin@lgorithm (Kitagawa, 1996) is optimal in terms of variance.

Sequential importance resampling (SIRpordon et al., 1993; Kitagawa, 1996;
Doucet et al., 2001; Ristic et al., 2004), is a generalization op#récle filtering
framework, in which the resampling step is included as part of the sequiential
portance sampling algorithm.

Usually the resampling is not performed on every time step, but only when it
is actually needed. One way of implementing this is to do resampling on etlery
step, wheren is some predefined constant. This method has the advantage that it
is unbiased. Another way, which is used here, isatiaptive resamplingin this
method, the effective number of particles, which is estimated from the varianc
of the particle weights (Liu and Chen, 1995), is used for monitoring the fared
resampling. The estimate for the effective number of particles can be courgmite

1
Ei\; (wl(:)) 3
(@)

wherew,’ is the normalized weight of particle on the time stepe (Liu and
Chen, 1995). Resampling is performed when the effective number ttlpar
is significantly less than the total number of particles, for example,< N/10,

whereN is the total number of particles.

(3.189)

Neff =~

Algorithm 3.27 (Sequential importance resamplinghhe SIR algorithm can be
summarized as follows:

1. Draw new pointx,(f) for each point in the sample s{ak,(le,z’ =1,...,N}
from the importance distribution:

XS) ~ (x| ngzp}’m)y i=1...,N. (3.190)

4Sequential importance resampling (SIRplso often referred to aampling importance resam-
pling (SIR) orsequential importance sampling resampling (SISR).
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2. Calculate new weights
oo P e (%)

0 — @ LEL. . i=1,....,N. (3.191)
7T(X](€) ‘ x]&lel:k)

and normalize them to sum to unity.
3. If the effective number of particl€¢3.189)is too low, perform resampling.

The performance of the SIR algorithm is depends on the quality of the impor-
tance distributionr(-), which is an approximation to posterior distribution of states
given the values at the previous step. The importance distribution shoiridbeh
functional form that we can easily draw samples from it and that it is plestib
evaluate the probability densities of the sample poifitee optimal importance
distributionin terms of variance (see, e.g., Doucet et al., 2001; Ristic et al., 2004)
is

T(Xk | Xk—1,¥1:6) = P(Xk | Xp—1, Y 1:8)- (3.192)

If the optimal importance distribution cannot be directly used, good importance
distributions can be obtained ligcal linearizationwhere a mixture of extended
Kalman filters (EKF), unscented Kalman filters (UKF) or other types of liveear
Kalman filters are used for forming the importance distribution (Doucet et al.,
2000; Van der Merwe et al., 2001). Van der Merwe et al. (2001) algmest

a Metropolis-Hastings step after (or in place of) resampling step to smooth the
resulting distribution, but from their results, it seems that this extra computation
step has no significant performance effect. A particle filter with UKF impagan
distribution is also referred to amscented particle filte(UPF). Similarly, we
could call a particle filter with Gauss-Hermite Kalman filter importance distribu-
tion Gauss-Hermite particle filte(GHPF) and one with cubature Kalman filter
importance distributiocubature particle filte(CPF).

By tuning the resampling algorithm to specific estimation problems and pos-
sibly changing the order of weight computation and sampling, accuracgane
putational efficiency of the algorithm can be improved (Fearnhead anfbi@lif
2003). An important issue is that sampling is more efficient without replacemen
such that duplicate samples are not stored. There is also evidence tloatén s
situations it is more efficient to use a simple deterministic algorithm for preserving
the V most likely particles. In the article (Punskaya et al., 2002) it is shown that
in digital demodulation, where the sampled space is discrete and the optimization
criterion is the minimum error, the deterministic algorithm performs better.

The bootstrap filteGordon et al., 1993) is a variation of SIR, where the
dynamic modep(xy, | xx—1) is used as the importance distribution. This makes
the implementation of the algorithm very easy, but due to the inefficiency of the
importance distribution it may require a very large number of Monte Carlo sample
for accurate estimation results. In bootstrap filter the resampling is normaléy don
at each time step.



3.5 Particle Filtering 79

Algorithm 3.28 (Bootstrap filter) The bootstrap filter algorithm is given as fol-
lows:

1. Draw new pointx,(f) for each point in the sample s{ak,(ﬁl,z' =1,...,N}
from the dynamic model:

Xl(;) ~ p(Xk ’ ngzl)’ 7 = 1, e N. (3193)

2. Calculate the weights
w? =plye |x7),  i=1,...,N. (3.194)
and normalize them to sum to unity.

3. Do resampling.

Another variation of sequential importance resampling is the auxiliary SIR
(ASIR) filter (Pitt and Shephard, 1999). The idea of the ASIR is to mimic the
availability of optimal importance distribution by performing the resampling at
stepk — 1 using the available measurement at tikne

One problem encountered in particle filtering, despite the usage of resgmplin
procedure, is calledample impoverishme(gee, e.g., Ristic et al., 2004). It refers
to the effect that when the noise in the dynamic model is very small, many of the
particles in the particle set will turn out to have exactly the same value. That is,
the resampling step simply multiplies a few (or one) particles and thus we end up
having a set of identical copies of certain high weighted particles. Thislgro
can be diminished by using, for example, resample-move algorithm, regtilamiza
or MCMC steps (Ristic et al., 2004).

Because low noise in the dynamic model causes problems with the sample
impoverishment, it also implies that pure recursive estimation with particle filters
is challenging. This is because in pure recursive estimation the processiso
formally zero and thus a basic SIR based particle filter is likely to perform ver
badly. However, pure recursive estimation, such as recursive estinwtitatic
parameters can be done by applying a Rao-Blackwellized particle filter éhefea
a basic SIR patrticle filter.

3.5.3 Rao-Blackwellized Particle Filter

One way of improving the efficiency of SIR is to use Rao-Blackwellizatione Th
idea of theRao-Blackwellized particle filtg§RBPF) (Akashi and Kumamoto, 1977;
Doucet et al., 2001; Ristic et al., 2004) is that sometimes it is possible to evalu-
ate some of the filtering equations analytically and the others with Monte Carlo
sampling instead of computing everything with pure sampling. According to the
Rao-Blackwell theorenfsee, e.g., Berger, 1985; Casella and Robert, 1996) this
leads to estimators with less variance than what could be obtained with pute Mon
Carlo sampling. An intuitive way of understanding this is that the marginalization
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replaces the finite Monte Carlo particle set representation with an infinitedclose
form particle set, which is always more accurate than any finite set.

Most commonly Rao-Blackwellized patrticle filtering refers to marginalized
filtering of conditionally Gaussian Markov models of the form

P(Xk | Xp—1,0k-1) = N(xp | Ap—1(Ok—1) Xk—1, Qr—1(0x—1))
P(Yk | Xk, Or) = N(yr | Hi(0r) xi, Ri.(01)) (3.195)
p(0y | Bx—1) = (any given form)

wherex;, is the statey,, is the measurement, afig is an arbitrary latent variable.

If also the prior ofx;, is Gaussian, due to conditionally Gaussian structure of the
model the state variableg, can be integrated out analytically and only the latent
variablesd;, need to be sampled. The Rao-Blackwellized particle filter uses SIR
for the latent variables and computes everything else in closed form.

Algorithm 3.29 (Conditionally Gaussian Rao-Blackwellized particle filteBiven
an importance distributionr (6, | Ggf)kfl,yl:k) and a set of weighted samples
{w,(fll, 01(21, mfjll, PSL : i =1,...,N}, the Rao-Blackwellized particle filter
processes each measuremgptas follows (Doucet et al., 2001):

1. Perform Kalman filter predictions for each of the Kalman filter means and
covariances in the particles = 1,..., N conditional on the previously
drawn latent variable valueg'” |

i = A 10 ),

P, = A0 ) P AT (6 ) + Quoa(6)),). 2450
2. Draw new latent variablee,(f) for each particle ini = 1,..., N from the
corresponding importance distributions
0\ ~7(6),16\) | yix)- (3.197)
3. Calculate new weights as follows:
0 ocff 2] O yit) o010 , (3.198)

(0161}, y 1)
where the likelihood term is the marginal measurement likelihood of the
Kalman filter
p(y | 9%, Yik—1)
N (v (6 m, O 760 P O BT 6) + Ru(6()).
(3.199)

such that the model parameters in the Kalman filter are conditioned on the
drawn latent variable value,(j). Then normalize the weights to sum to unity.
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4. Perform Kalman filter updates for each of the particles conditional on the
drawn latent variable®”

vi) = yi — Hy(8)) m;,

k E\Y k E\Yg AT
K](;) — P;(l) Hg(el(;)) Slzl (3.200)
m® = m~® 4 KO ¢

P = p 0 - ks )
5. If the effective number of particl€3.189)is too low, perfornresampling

The Rao—BIackweIIized particle'filter produces for each time étepset of
weighted samplegw,gf), 0,(;), m,(j), P,(;) . i=1,..., N} such that expectation of
a functiong(-) can be approximated as

N
Elg(xk. 1) |y = Y w}’ / g(x;, 0))) N(xi, |m”, P}”) dx;. (3.201)
=1

Equivalently the RBPF can be interpreted to form an approximation of therfiter
distribution as

N
p(xi, O | yi) = Y wy 6(8; — 6)) N(x | my”, P}). (3.202)
=1

The optimal importance distribution, that is, the importance distribution that mini-
mizes the variance of importance weights in the RBPF case is

POk | y14,01)) < plyi | 0k, 0%) ) p(61 | 6% | yix_1).  (3.203)

In general, normalizing this distribution or drawing samples from this distribution
directly is not possible. But, if the space of the latent variaBles finite, we can
normalize this distribution and use this optimal importance distribution directly.

In some cases, when the filtering model is not strictly Gaussian due to slight
non-linearities in either dynamic or measurement models it is possible to replace
the exact Kalman filter update and prediction steps in RBPF with extended Kalman
filter (EKF) or unscented Kalman filter (UKF) prediction and update steps.

In addition to the conditional Gaussian models, another general class ef mod
els where Rao-Blackwellization can often be applied are state space models with
unknown static parameters. These models are of the form (Storvik, 2002)

xi ~ p(Xp | Xk—1,0)
Vi ~ p(¥i | Xk, 0) (3.204)
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where vectof contains the unknown static parameters. If the posterior distribution
of parameter® depends only on some sufficient statistics

Ty = Tr(xX1:6,Y1:8), (3.205)

and if the sufficient statics are easy to update recursively, then samptimg state

and parameters can be efficiently performed by recursively computisgffieent

statistics conditionally to the sampled states and the measurements (Storvik, 2002)
A particularly useful special case is obtained when the dynamic model is in-

dependent of the parametés In this case, if conditionally to the statg, the

prior p(@) belongs to the conjugate family of the likelihopfy . | xx, ), the static

parameter® can be marginalized out and only the states need to be sampled.



Chapter 4

Optimal Smoothing

In this chapter we shall first present the Bayesian theory of smoothirigen T
we shall present the classical Rauch-Tung-Striebel smoother and siiatgon
based non-linear extensions. We shall also cover unscented transe@auss-
Hermite, and cubature based non-linear RTS smoothers as well as sdioke par
smoothers.

In addition to the various articles cited in the text, the following books contain
useful information on non-linear smoothing:

e Linear smoothing can be found in classic books: Meditch (1969); Aonders
and Moore (1979); Maybeck (1982a); Lewis (1986)

e Linear and non-linear case is treated, for example in the following classical
books: Lee (1964); Sage and Melsa (1971); Gelb (1974) as well tiein
more recent book of Crassidis and Junkins (2004).

4.1 Formal Equations and Exact Solutions

4.1.1 Optimal Smoothing Equations

The purpose obptimal smoothinjis to compute the marginal posterior distribu-
tion of the statex;, at the time step after receiving the measurements up to a time
stepT’, whereT > k:

p(xx | y1.7)- (4.1)

The difference between filters and smoothers is thatoptimal filtercomputes

its estimates using only the measurements obtained before and on the time step
k, butthe optimal smootheuses also the future measurements for computing its
estimates. After obtaining the filtering posterior state distributions, the following
theorem gives the equations for computing the marginal posterior distrisution

each time step conditionally to all measurements up to the timerlstep

This definition actually applies to fixed-interval type of smoothing.
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Theorem 4.1 (Bayesian optimal smoothing equation3he backward recursive
equations for computing themoothed distributions(xy, | y1.7) foranyk < T are
given by the followinddayesian (fixed interval) smoothing equations

p(ist | Y1) = / p(ocist | x1) pOx | Y1) dxc

P(Xp1 | X)) P(Xp1 | Y17
p(Xk | y1.T) ZP(XHYLk)/[ (1| 5) pOXk1 | y17) dXp41,
P(Xpt1 | Y1:k)

wherep(xy, | y1.x) is the filtering distribution of the time stép Note that the term
p(xXk+1 | y1:1) is simply the predicted distribution of time step- 1. The integra-
tions are replaced by summations if some of the state components arteliscr

Proof. Due to the Markov properties the statg is independent of 1.7 given

Xp41, Which givesp(xg [ X4 1,Y1.7) = p(Xk | Xry1, Y1) By using theBayes'’
rule the distribution ofk;, givenx;; andy.r can be expressed as

p(Xk | Xp+1, y1.1) = P(Xk [ Xk41, Y1:1)
. P(Xps Xkt 1 \Y1:k)
 p(Xkg1 |y
_ p(Xpg1 [ Xk, yik) P(Xk | Y1:1) (4.3)
B P(Xkg1 | Y1)
_ p(Xpq1 | xe) p(xk | 1)
B P(Xkt1 | yik) '

The joint distribution ofx;, andxy; giveny;.r can be now computed as

P(Xp, Xpg1 | Y1.1) = P(Xk | Xpe 1, Y1.1) P(Xet 1 | Y1.7)
= p(Xp | Xp41, Y1:k) P(Xpt1 | Y1.7) (4.4)
P(Xk+1 | Xk) P(Xk | y1:0) P(Xbt1 [Y1:7)

P(Xps1 | Yik)

)

wherep(x;11 | y1.7) is the smoothed distribution of the time stépt 1. The
marginal distribution ofx; giveny;.r is given by integral (or summation) over
xk+1 In Equation (4.4), which gives the desired result. O

4.1.2 Rauch-Tung-Striebel Smoother

The Rauch-Tung-Striebel (RTS) smooﬁhesee, e.g., Rauch et al., 1965; Gelb,
1974; Bar-Shalom et al., 2001) can be used for computing the closadsfopoth-
ing solution

p(Xk |Y1:T) = N(Xk | mzv PZ)? (4-5)

2Also sometimes called Kalman smoother.
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to the linear filtering model (3.17). The difference to the solution computedéy th
Kalman filteris that the smoothed solution is conditional on the whole measure-
ment datay.7, while the filtering solution is conditional only on the measurements
obtained before and on the time steghat is, on the measurementsy.

Theorem 4.2(RTS smoother) The backward recursion equations for the discrete-
time fixed interval Rauch-Tung-Striebel smoother (Kalman smootregigen as
m; ., = Apmy
P =AP Al +Q
Gr=PrA[ [P ]! (4.6)
mj, = my, + Gg [mj; —m,_ ]
P} =Py + Gy [Pi,, — P ] G,
wherem,, andP, are the mean and covariance computed by the Kalman filter. The

recursion is started from the last time st€pwith m?. = my andP?, = Pr. Note
that the first two of the equations are simply the Kalman filter prediction equstio

Proof. Similarly to the Kalman filter case, by Lemma A.1, the joint distribution of
X andxy1 givenyy.x Is

P(Xk, X1 | Y1) = P(Xpt1 | xi) DXk | Y1:1)
= N(Xp41 | Ak Xk, Q) N(xp [ my, Py)

=N<[“]\mhm>,
Xk+1

my Pk Pk Ag >
mi; = y P = . 4.8
! (Ak mk) ! (Ak P, APLA] 4+ Qy (4.8)

Due to the Markov property of the states we have

(4.7)

where

P(Xk | X1, Y1:1) = P(Xk | X 1, Y1:1) (4.9)

and thus by Lemma A.2 we get the conditional distribution

P(Xk | Xpt1, Y1:1) = DXk | Xt 1, Y1:1)

(4.10)
= N(Xk ‘ mo, Pg),

where

Gr=Pr Al (AyPLA] + Qi) !
mo = my + Gy (Xk+1 — A, mk) (4.11)
Py =P, — G; (A PL A + Qi) G].
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The joint distribution ofx;, andxy_; given all the data is

P(Xkt1, Xk | Y1.17) = D(Xk | Xt 1, Y1.7) P(Xt1 | Y1:7)
= N(Xk; | my, P2) N(Xk+1 | mi+1a Pz+1)

(4.12)
_ Xk+1
N (5] om)
where
_ mj
meaq =
3 <mk + Gg (IIlz_i_1 — Ay mk)> (4.13)
Py ( P}y P}, Gf > |
GrPiyy GiPj, Gi + Py
Thus by Lemma A.2, the marginal distributionxf is given as
p(xx | y1.1) = N(xx, | mj, Py), (4.14)
where
m; =my +G,(m;.; — A,m
;z k k( sk+1 k k)T ) (4.15)
P; =Pr+ G (Pry —ArPrAp — Qi) Gy
O

Example 4.1(RTS smoother for Gaussian random walkhe RTS smoother for
the random walk model given in Example 3.1 is given by the equations

My = Mg

Py =PFe+q

s L -
my, = mj + F(mk+1 — M) (4.16)
k+1

2
s By, s -
Pk:PkJF(]D—) [Piv1 — Pl
ot 1

wherem,;. and P, are the updated mean and covariance from the Kalman filter in
Example 3.2.

4.2 Extended and Unscented Smoothing

4.2.1 Extended Rauch-Tung-Striebel Smoother

The first order (i.e., linearized) extended Rauch-Tung-Striebel sraoHRTSS)
(Cox, 1964; Sage and Melsa, 1971) can be obtained from the basisiRd&her
equations by replacing the prediction equations with first order approxinsatio
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Figure 4.1: Filter and smoother variances in the Kalman smoothing elarfipxample
4.1).
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Figure 4.2: Filter and smoother estimates in the Kalman smoothing elaifiixample
4.1).

Higher order extended Kalman smoothers are also possible (see, e.g.196dx
Sage and Melsa, 1971), but only the first order version is preseated h

For the additive model Equation (3.52) the extended Rauch-Tung-Stsimbether
algorithm is the following:

Algorithm 4.1 (Extended RTS smoother)rhe equations for the extended RTS
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smoother are

m, ., = f(my)

P, ., = Fx(m;) P F](my) + Qp
Gy, =P, F}(my) [P, ]! (4.17)
mj, = my, + Gy [mj, | — m,;rl]
P; =P, + G, [P}, — P, |G,

where the matri¥'« (my,) is the Jacobian matrix df(x) evaluated aimy,.

The above procedure is a recursion, which can be used for computeng th
smoothing distribution of stefpfrom the smoothing distribution of time step- 1.
Because the smoothing distribution and filtering distribution of the last timelstep
are the same, we hawa?, = mr, P35, = Pr, and thus the recursion can be used
for computing the smoothing distributions of all time steps by starting from the last
stepk = T and proceeding backwards to the initial step= 0.

Proof. Assume that the approximate means and covariances of the filtering distri-
butions

p(Xk | Y1) = N(xx [ my, Py),

for the model (3.52) have been computed by the extended Kalman filter or arsimila
method. Further assume that the smoothing distribution of timeistepis known
and approximately Gaussian

P(Xpr1 | Y1) = N(Xpq1 [ mi, 1, Pi ).

As in the derivation of the prediction step of EKF in Section 3.2.2, the apprd&ima
joint distribution ofx; andxy 1 giveny; . is

P(Xk, Xp11 | Y1) =N <[ o ] ‘ml’P1> , (4.18)

where

e (f(r;lnkk)>

P1:< Py P, F )

(4.19)

where the Jacobian matrRR, of f(x) is evaluated ak = my. By conditioning to
Xk+1 a@s in RTS derivation in Section 4.1.2 we get

P(Xk | X1, Y1:17) = P(Xk | X1, Y1:)

4.20
- N(Xk ’ my, PQ); ( )
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where
G =P,F (F,P,F. + Q)"
my = my, + Gy (x+1 — f(my)) (4.21)
Py =P, — G (F, P,FL + Q) GY.

The joint distribution ofx;, andxy.; given all the data is now

P(Xpt1, Xk | Y1.1) = P(Xk | Xpot 1, Y1.1) P(Xppt1 | Y1:7)

e ([XW] ‘m&Pg) (4.22)

Xk

where

_ mj
s <mk + Gy (my | — f(mk))>

. ) (4.23)
Ps — ( P Piy Gi ) .
GPi, GiPi,Gi+P,
The marginal distribution ok, is then
p(xx |y1.T) = N(x¢ | m§, Py), (4.24)
where
m; =m; + G (m;., — f(m
;: k K ( sk-‘,—l ( k))T i (4.25)
Pk: = Pk+Gk(Pk+1 7FkaFx — Qk:)Gk;
O

The generalization to non-additive model (3.65) is analogous to the filtering
case.

4.2.2 Statistically Linearized RTS Smoother

The statistically linearized Rauch-Tung-Striebel smoother for the additivdemo
(3.52) is the following:

Algorithm 4.2 (Statistically linearized RTS smootherfJhe equations for the sta-
tistically linearized RTS smoother are

m, ;= E[f(xy)]

P, = E[f(xi) 0xi] Pyt E[f(xz) 0x]" + Qp
Gy = E[f(xy) ox¢ T [Py, )7 (4.26)
mj, = my, + Gg [mj; —m;_ ]
P; =P, + G, [P}, — P, |G{,

where the expectations are taken with respect to the filtering distributjon-
N(mk, Pk)
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Proof. Analogous to the ERTS case. Ol

The generalization to the non-additive case is also straight-forward.

4.2.3 Unscented Rauch-Tung-Striebel (URTS) Smoother

Theunscented Rauch-Tung-Striebel (URTS) smodtérkka, 2008) is a Gaussian
approximation based smoother, where the non-linearity is approximatedthsing
unscented transform. The smoother equations for the additive mode) &5

given as follows:

Algorithm 4.3 (Unscented Rauch-Tung-Striebel smootherThe additive form
unscented RTS smoother algoritlisrthe following:

1. Form the sigma points:

/'\-’;50) = my,

0 =y Vi [V (4.27)

7

X,C(H"):mk—\/m [\/Fk}, 1=1,....n

7

where the parametex was defined in Equatiof8.92)
2. Propagate the sigma points through the dynamic model:

20 =), i=o0,...2n

3. Compute the predicted meam_ ,, the predicted covariancP,_ , and the
cross-covarianc®y,  1:

m/’;+1 Z W = Xl£+1
Pi= ZW 20 —mp, )@Y —mp, )T+ Q. (4.28)

Diy1 = Z Wi () — ) (B, —mp, )7,
i=0

where the weights were defined in Equat{B8rd4)

4. Compute the smoother gai®,, the smoothed mean;, and the covariance
P; as follows:

Gk = Dk-i-l [P];+1]_1
mz =my; + Gy, (szrl — ml;rl) (429)
=Py + G (Piy1 —Pryy) G
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The above computations are started from the filtering result of the last tirpe ste
mj. = mp, P} = P and the recursion runs backwards fer=T7T —1, ..., 0.

Proof. Assume that the approximate means and covariances of the filtering distri-
butions are available:

P(Xk | yik) = N(xp [ my, Py),

and the smoothing distribution of time stép+ 1 is known and approximately
Gaussian

P(Xpr1 | yrr) = N(Xpq1 [ mi, 1, Pi ).

An unscented transform based approximation to the optimal smoothing solution
can be derived as follows:

1. Generate unscented transform based Gaussian approximation to the join
distribution ofx; andxj1:

Xp, my, Pr  Dgp
(@) G B
(Xk+1> 1 my..q D£+1 P ( )

This can be done by using the additive form of the unscented transformatio
in Algorithm 3.11 for the nonlinearity;; = f(xx) + qx. This is done in
Equations (4.28).

2. Because the distribution (4.30) is Gaussian, by the computation rules of
Gaussian distributions and the conditional distributiox pfs given as

Xp; | Xk+1, Y117 ~ N(mg, Ps),
where

Gi = Diy1 [PI;H]_I
my = my, + Gp(Xpy1 —my )

Py =P, - G,P,,,G[.

3. Therest of the derivation is completely analogous to the derivation 88ER
in Section 4.2.1.

O]

The corresponding augmented version of the smoother is almost the same,
except that the augmented UT in Algorithm 3.12 is used instead of the additive
UT in Algorithm 3.11. The smoother can be formulated as follows:

Algorithm 4.4 (Unscented Rauch-Tung-Striebel smoother N)single step of the
augmented form unscented RTS smooikers follows:
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1. Form the sigma points for th€ = n + n, -dimensional augmented random

variable (x ql)”

(4.31)

where

Whereif)’x and X,(f)” denote the parts of the augmented sigma paint
which correspond te;, andqy, respectively.

. Compute the predicted meam, . ,, the predicted covariancB, , ; and the

cross-covarianc®y ;1

&) (0

m; ., = Z VVim th
i=0
A (el (00 (i

— c) /o0 — (1 — \T

Pk+1 = Z Wi (Xk-q-l - mk+1) (Xk+1 - mk+1) (4'32)
i=0
2n/ L '

D1 = Z VVi(C) (X’gz)w — my) (Xlﬁl —my )t
i=0

where the definitions of the parametérand the weightdv™" and W,
are the same as in Section 3.2.5.

. Compute the smoother gai®y,, the smoothed mean;, and the covariance

P

Gr = Dpya [PI;H]_I
m;, = my + Gy, [mzJrl — m,;rJ (4.33)
P =Pr+ Gy [Pl — P ] Gy
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4.3 General Gaussian Smoothing

4.3.1 General Gaussian Rauch-Tung-Striebel Smoother

The Gaussian moment matching described in Section 3.3.1 can be used in sg1oothe
in analogous manner as in Gaussian assumed density filters in Section 3m&:2. If
follow the extended RTS smoother derivation in Section 4.2.1, we get the foflow
algorithm (Sarkkéa and Hartikainen, 2010):

Algorithm 4.5 (Gaussian RTS smoother. IThe equations of the additive form
Gaussian RTS smoothare the following:

m. = /f(Xk) N(x, | my, Py) dxj
P = /[f(xk) —my ) [f(xk) — my ] N(xg | my, Py) dxi + Qp

Dy = /[Xk — mk] [f(Xk) — m];+1]TN(Xk ’ mk,Pk) dxy,
Gr = D1 [PIZH]_I
mj, = my, + Gy (mj_ | — m;;rl)

=Pr+ G (Pi41 —Pryy) G
(4.34)

The integrals above can be approximated using analogous numericahintegr
tion or analytical approximation schemes as in the filtering case, that is, with
Gauss-Hermite quadratures or central differences (Ito and Xior@f); 20argaard
et al., 2000; Wu et al., 2006), cubature rules (Arasaratham and Ha3®09),
Monte Carlo (Kotecha and Djuric, 2003), Gaussian process / Bagestké based
integration (O’Hagan, 1991, Deisenroth et al., 2009), or with many otiveenical
integration schemes.

Algorithm 4.6 (Gaussian RTS smoother IlJfhe equations of the non-additive
form Gaussian RTS smoothare the following:

my ., = /f(xkuCIk)N(Xk|mk7Pk)N(CIk|Oan)dxk day,
P];+1\k /[f(xk, Qk:) - mI;.H] [f<xk7 qr) — mI;.H]T
x N(xy | mg, Pr) N(qx | 0, Qx) dxx dqg
Dir = [ o~ m (£, @) — i )7 (4.35)
N(

x N(xy | my, P) N(q | 0, Qk) dx day,
Gy = Dy [Py,
m;, = my, + Gy (mj, | — m;;+1)
=Py + G (Pio1 —Pry) G
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4.3.2 Gauss-Hermite Rauch-Tung-Striebel (GHRTS) Smoother

By using the Gauss-Hermite approximation to the additive form Gaussian RTS
smoother, we get the following algorithm:

Algorithm 4.7 (Gauss-Hermite Rauch-Tung-Striebel smooth&headditive form
Gauss-Hermite RTS smoother algoritlsrthe following:

1. Form the sigma points as:
Xl =y /Pl i =1, (4.36)

where the unit sigma point® ) were defined in Equatiof8.136)

2. Propagate the sigma points through the dynamic model:

) = gl i =1, (4.37)

3. Compute the predicted meam_ ,, the predicted covariancP,_ , and the
cross-covariancdy ., 1:

- — 01 yeensl 117 -t )
my = Z wi Xt

U1 5eeeyin

— B yeenyl ] yeeey? — (21,5 002n — T
Pk+1 = Z Wi Xl&il )_mk+1)(X1§J:1 )_mk;—i-l) + Qk

U1 5eeeyin

Di1 = Z Wit X(l)_mk)(xlgl mz?+1)T7
117 ,Zn

(4.38)

where the weightgl’ (1) were defined in Equatio(8.135)
4. Compute the gaix;, meanm; and covarianceP; as follows:
G =Dy [P;;rl]*l

mj;, = my + Gg (mj —m_ ) (4.39)
Z:PkJFGk:( 2-1-1 k+1)GT

4.3.3 Cubature Rauch-Tung-Striebel (CRTS) Smoother

By using the 3rd order spherical cubature approximation to the additine@aus-
sian RTS smoother, we get the following algorithm:

Algorithm 4.8 (Cubature Rauch-Tung-Striebel smootherTheadditive form cu-
bature RTS smoother algorithismithe following:
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1. Form the sigma points:

XY =my+/Pre®, =120, (4.40)
where the unit sigma points are defined as

E(i)Z{\/ﬁei , i=1...,m

—v/nei_, , i=n+1,...,2n. (4.41)

2. Propagate the sigma points through the dynamic model:
20 =), i=o0,...2n

3. Compute the predicted meam,_ ,, the predicted covariancP,_ , and the
cross-covarianc®y 1

2n
_— (1)
mg., = m X1
i=1
1S o) (i)
Py = m Z(XkJrl —my ) (A, — ml;rl)T + Qk (4.42)
i—1
2n
1 i 5 (i _
D41 = n Z(Xlg = my) (Xlgl - mk:+1)T~
i=1

4. Compute the gaifx;,, meanm; and covarianceP; as follows:

Gi = Dy [PI;-H]_I
mz =my + Gy, (mZH — ml;rl) (4.43)
Pi =Pr + Gy (Pz+1 - P];+1) G%

By using the 3rd order spherical cubature approximation to the non-alditi
form Gaussian RTS smoother, we get the following algorithm:

Algorithm 4.9 (Cubature Rauch-Tung-Striebel smoother W) single step of the
augmented form cubature RTS smootiseas follows:

1. Form the sigma points for th€ = n + n, -dimensional augmented random
variable (x! qf )7

wn() ne(i 8)

where
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2. Propagate the sigma points through the dynamic model:

£, = A0S, =1

where;\?,f)’“ and X,(f)’q denote the parts of the augmented sigma paint
which correspond te; andqyg, respectively.

3. Compute the predicted meam,_ ,, the predicted covariancP,_ , and the
cross-covarianc®y, ;1

1 2n/ 0

_ 5 (i

My =57 Z e
i=1

2n’

- 1 ) e T
Pin=5 (Vg =) (A —my ) (4.45)
=1
2n'
1 v (i),z (i _
Dy = %7 (X,g )e _ my,) (X,ngl — mk+1)T,

=1
4. Compute the gai;, meanm; and covarianceP;:

Gi =Dy [Pyy] ™!
m; = my + Gy, [mZJrl — mlzﬂ} (4.46)
P =Pr+ G [Piy, - Pl;rl] Gy

4.4 Fixed-Point and Fixed-Lag Gaussian Smoothing

The smoother algorithms that we have considered this far have all foeszh
interval smoothing algorithms, which can be used for computing estimates of a
fixed time interval of states given the measurements on the same interval. éfpwev
there exists a couple of other types of smoothing problems as well:

e Fixed-point smoothingefers to methodology, which can be used for effi-
ciently computing the optimal estimate of tiv@tial state or some other
fixed-time state of a state space model, given an increasing number of mea-
surements after it. This kind of estimation problem arises, for example,
in estimation of the state of a space craft at a given point of time in the
past (Meditch, 1969) or in alignment and calibration of inertial navigation
systems (Grewal et al., 1988).

e Fixed-lag smoothings methodology for computing delayed estimates of
state space models given measurements up to the current time plus up to a
constant horizon in the future. Fixed-lag smoothing can be considems as
timal filtering, where a constant delay is tolerated in the estimates. Potential
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applications of fixed-lag smoothing are all the problems where optimal filters
are typically applied, and where the small delay is tolerated. An example of
such application is digital demodulation (Tam et al., 1973).

The presentation here is based on the results presented in (Sarkkardikedirien,
2010), except that the derivations are presented in a bit more detaiirtithn
original reference.

4.4.1 General Fixed-Point Smoother Equations

The general fixed-interval RTS smoothers described in this documesttha
property that given the gain sequence, we only need linear operatiopsrform-
ing the smoothing, and in this sense, the smoothing is a complaielr oper-
ation. The only non-linear operations in the smoother are in the approximations
of the Gaussian integrals. However, these operations are performeslftibetting
results and thus we can compute the smoothing gain seq@entem the filtering
results in a causal manner. Because of these properties we may negvaléxied-
point smoother using the similar methods as have been used for derivingdae lin
fixed-point smoother from the linear Rauch-Tung-Striebel smoother ed{t¢h,
1969).

We shall now denote the smoothing means and covariances using notation of
typemy,,, andPy,,,, which refer to the mean and covariance of the statevhich
is conditioned to measuremeyt, . .., y,. With this notation, the filter estimates
aremy,;, Py, and the RTS smoother estimates, which are conditionddrtea-
surements have the formm;;, Py . The RTS smoothers have the following
common recursion equations:

Gi = Diy1 [Pryy] ™!
myp = mg + Gy [mk+1|T — m,;_H] (4.47)
Piur=Pi+ Gy [Priyr — Pp.y] GI.
which are indeed linear recursion equations for the smoother mean aawbrme.
Note that the gain&s; only depend on the filtering results, not on the smoother

mean and covariance. Because the gd&hsare independent of’, from the
equations (4.47) we get for= j, .. ., k the identity:

my — mMy;; = Gi[mi+1\k - mi+1|i]' (4.48)
Similarly, fori = j,...,k — 1 we have
my g — my); = Gylmy g — my ). (4.49)

Subtracting these equations gives the identity

myp, — myp_1 = Gimy g, —my ) (4.50)
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By varyingi from j to k — 1 we get the identities

my, —mj_1 = Gj [mj+1|k - ijrl\kfl]
m; g — M- = Gjp[myop — mj o]
(4.51)

my_ ), — My = Gro1[my — my;p_q].

If we sequentially substitute the above equations to each other starting feom th
last and proceeding to the first, we get the equation

m;, = myj,_1 + Bjjp[my, — my_q], (4.52)
where
Bj\k = Gj X oo X kal- (453)

Analogously for the covariance we get
P = Pjj—1 + Bjju[Prj — Pk|k—1]B]T\k;~ (4.54)

The general fixed-point smoothelgorithm for smoothing the time point can
be now implemented by performing the following operations on each time step
k=1,2,3,....

1. Gain computation:Compute the predicted mean,;_;, predicted covari-
ancePy,_, and cross-covariancB;, from the filtering results using one
of equations in the smoother algorithms. Then compute the gain from the
equation
Gp_1 =Dy [P, ]\ (4.55)

2. Fixed-point smoothing:

(a) If k < 7, just store the filtering result.

(b) If k = j, setB;); = I. The fixed-point smoothed mean and covariance
on stepj are equal to the filtered mean and covariancg; andP ;.

(c) If & > 7, compute the smoothing gain and the fixed-point smoother
mean and covariance:
Bk = Bjjr—1Gr-1
my, = myy + By [my, — myq] (4.56)
Pjje = Pjjp—1 + B[P — Pk|k71]BJT|k-

Because only constant number of computations is needed on each time step, th
algorithm can be easily implemented in real time.
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4.4.2 General Fixed-Lag Smoother Equations

It is also possible to derive a general fixed-lag smoother by using a simieep
dure as in the previous section. However, this approach will lead to a icather
unstable algorithm as will be seen shortly. kebe the number of lags. From the
fixed-point smoother we get

myg_p-1jk = Me_p—1k—1

(4.57)
+ Bt Mg — M)
From the fixed-interval smoother we get
myg_pn-1jk = Mi_n-1jk—n-1 (4.58)

+ Gr—1-n My — My 1]

Equating the right hand sides, and solving fay,_,;, while remembering the
identity By, = G];_ln_lBk—n—l\k results in the smoothing equation

Mg _plk = Mg_nlk—n—1
1
+ Gy, My 1 — My 1] (4.59)

+ B [ — myp_q].
Similarly, for covariance we get

Pr_wk =Pr_njk—n-1
+G L Pronap-1 — Pronc1p-n1]Gi s (4.60)
+ Bine[Prp — Pk|k71]B£_n\k'

The equations (4.59) and (4.60) can be principle, used for recursively com-
puting the fixed-lag smoothing solution. The number of computations does not
depend on the lag length. This solution can be seen to be of the same foren as th
fixed-lag smoother given in (Rauch, 1963; Meditch, 1969; Crassidislankins,
2004). Unfortunately, it has been shown (Kelly and Anderson, 18iét)his form

of smoother isnumerically unstableand thus not usable in practice. However,
sometimes the equations do indeed work and can be used if the user is willing to
take the risk of potential instability.

In (Moore, 1973; Moore and Tam, 1973) stable algorithms for optimal fiagd
smoothing are derived by augmenting théagged states to a Kalman filter. This
approach ensures the stability of the algorithm. Using certain simplifications it is
possible to reduce the computations, and this is also possible when certain type
extended Kalman filters are used (Moore, 1973; Moore and Tam, 10/78)rtu-
nately, such simplifications cannot be done in more general case amctafople,
when the unscented transformation (Julier et al., 1995, 2000) or aajuesirule
(Ito and Xiong, 2000) is used, the required amount of computations becloigie
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because the Cholesky factorization of the whole joint covariance of tlagged
states would be needed in the computations. Another possibility, which is em-
ployed here, is to take advantage of the fact that Rauch-Tung-Stsetmither
equations are numerically stable and can be used for fixed-lag smoothivey. T
fixed-lag smoothing can be efficiently implemented by taking into account that the
gain sequence needs to be evaluated only once, and the same gainsusaa be
in different smoothers operating on different intervals. Thusgeeeral fixed-

lag smoothercan be implemented by performing the following on each time step
k=1,2,3,...

1. Gain computation:During the Gaussian filter prediction step compute and
store the predicted meam,,;,_,, predicted covarianc®y,_, and cross-
covarianceD, using one of equations in the smoother algorithms. Also
compute and store the smoothing gain

Giy_1 =Dy [P (4.61)

2. Fixed-lag smoothingUsing the stored gain sequence, compute the smooth-
ing solutions for stepg = k — n,...,k using the following backward
recursion, starting from the filtering solution on steg- k:

myyj, = myj; + Gy [mype —my )] (4.62)
P =P+ Gy [Pyap — Pjays] Gj.

The required number of computations per time step grows linearly with the length

of lag. Thus the computational requirements are comparable to algorithms pre-

sented in (Moore, 1973; Moore and Tam, 1973). The algorithm definedua-

tions (4.59) and (4.60) would be computationally more efficient, but as airead

stated, it would be numerically unstable.

45 Monte Carlo Based Smoothers

4.5.1 Sequential Importance Resampling Smoother

Optimal smoothingan be performed with the SIR algorithm with a slight modifi-
cation to the filtering case. Instead of keeping Monte Carlo samples of the state
on single time step:,g), we keep samples of the whole state hlStOlSté% The
computations of the algorithm remain exactly the same, but in resampling stage
the whole state histories are resampled instead of the states of single time steps.
The weights of these state histories are the same as in normal SIR algorithm and
the smoothed posterior distribution estimate of time &tgwen the measurements

up to the time stefi” > k is given as (Kitagawa, 1996; Doucet et al., 2000)

N
P(Xk \ Y1:T) ~ Z wgf)d(xk — xgj)). (4.63)
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whered(-) is the Dirac delta function an:dﬁj) is thekth component |nc(f2r

However, if T" > k this simple method is known to produce very degen-
erate approximations (Kitagawa, 1996; Doucet et al., 2000). In (Goetsdl.,
2004) more efficient methods for sampling from the smoothing distributions are

presented.

4.5.2 Rao-Blackwellized Particle Smoother

The Rao-Blackwellized particle smoothem be used for computing the smooth-
ing solution to the conditionally Gaussian RBPF model (3.195). A weighted set
of Monte Carlo samples from the smoothed distribution of the parame@ieis

the model (3.195) can be produced by storing the histories instead of tjle sin
states, as in the case of plain SIR. The corresponding histories of thes raedn
the covariances are then conditional on gagameter historie®);... However,

the means and covariances at time gtege only conditional on themeasurement
historiesup to k&, not on the later measurements. In order to correct this, Kalman
smoothers have to be applied to each history of the means and the covariance

Algorithm 4 10 (Rao-Blackwellized particle smoothet\ set of weighted samples
{w 07 ,ml’(T), ’( ) . i=1,...,N} representing the smoothed distribu-
tion can be computed as follows:

1. Compute the weighted set of Rao-Blackwellized state histories
(w60 m PO =1 N} (4.64)
by using the Rao-Blackwellized particle filter.

2. Set
s,(4) _ (4)

w = w
T ) (f) (4.65)
917:T =017
3. Apply the Kalman smoother to each of the mean and covariance histories
§>T, Pg )T fori =1,..., N to produce the smoothed mean and covariance
historiesm?, (T) Py ()

The Rao-Blackwellized particle smoother in this simple form also has the same
disadvantage as the plain SIR smoother, that is, the smoothed estinthteaf
be quite degenerate T >> k. Fortunately, the smoothed estimates of the actual
statesx;, can still be quite good, because its degeneracy is avoided by the Rao-
Blackwellization. To avoid the degeneracy in estimate@,0it is possible to use
more efficient sampling procedures for generating samples from the simpoth
distributions (Fong et al., 2002).
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As in the case of filtering, in some cases approximately Gaussian parts of a
state space model can be approximately marginalized by using extended Kalman
smoothers or unscented Kalman smoothers.

In the case of Rao-Blackwellization of static parameters (Storvik, 2002) the
smoothing is much easier. In this case, due to lack of dynamics, the posterior
distribution obtained after processing the last measurement is the smoottied dis
bution.



Appendix A

Additional Material

A.1 Properties of Gaussian Distribution

Definition A.1 (Gaussian distribution)Random variablex € R™ has Gaussian
distribution with meamm € R™ and covariancd® € R™*" if it has the probability
density of the form

N(x|m,P) = W exp (—;(x ~—m) P! (x - m)> , (Al

where|P| is the determinant of matriR.

Lemma A.1 (Joint density of Gaussian variabled) random variablesx € R"

andy € R™ have the Gaussian probability densities
x ~ N(x|m,P)
(A.2)
y|x~NyHx+uR),

then the joint density of, y and the marginal distribution of are given as

x|y m P PH”
vl ™~ (Hm—l—u "|HP HPHT+R> (A.3)

y ~NHm+u, HPH? + R).

Lemma A.2 (Conditional density of Gaussian variable#)the random variables
x andy have the joint Gaussian probability density

RN

then the marginal and conditional densitiesxodndy are given as follows:
x ~ N(a, A)

(b,B)

x|y ~N@a+CB™! (y—b),A— cBich)

y|x~Nb+C'Al(x—a),B-CTAIC).

vy~ (A.5)
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