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0 What is Optimal Smoothing?

Q Bayesian Optimal Smoothing Equations
Q Rauch-Tung-Striebel Smoother

Q Gaussian Approximation Based Smoothing
Q Particle Smoothing

Q Summary and Demonstration
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Filtering, Prediction and Smoothing

Prediction: ' '
Filtering: t | '
Smoothing: ‘ ‘ ‘ '

Measurements Estimate
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Types of Smoothing Problems

o Fixed-interval smoothing: estimate states on interval [0, T]
given measurements on the same interval.

@ Fixed-point smoothing: estimate state at a fixed point of
time in the past.

@ Fixed-lag smoothing: estimate state at a fixed delay in the
past.

@ Here we shall only consider fixed-interval smoothing, the
others can be quite easily derived from it.
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Examples of Smoothing Problems

@ Given all the radar measurements of a rocket (or missile)
trajectory, what was the exact place of launch?

o Estimate the whole trajectory of a car based on GPS
measurements to calibrate the inertial navigation system
accurately.

@ What was the history of chemical/combustion/other
process given a batch of measurements from it?

@ Remove noise from audio signal by using smoother to
estimate the true audio signal under the noise.

@ Smoothing solution also arises in EM algorithm for
estimating the parameters of a state space model.
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Optimal Smoothing Algorithms

@ Linear Gaussian models

@ Rauch-Tung-Striebel smoother (RTSS).
o Two-filter smoother.

@ Non-linear Gaussian models

o Extended Rauch-Tung-Striebel smoother (ERTSS).

@ Unscented Rauch-Tung-Striebel smoother (URTSS).

o Statistically linearized Rauch-Tung-Striebel smoother
(URTSS).

o Two-filter versions of the above.

@ Non-linear non-Gaussian models

@ Sequential importance resampling based smoother.
@ Rao-Blackwellized particle smoothers.
o Grid based smoother.
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Problem Formulation

@ Probabilistic state space model:

measurement model: yx ~ p(Yk | Xk)
dynamic model: X, ~ p(Xx | Xk—1)

@ Assume that the filtering distributions p(xx | y1.x) have
already beed computed for all k =0, ..., T.

@ We want recursive equations of computing the smoothing
distribution for all k < T:

P(Xk |Y1.7)-

@ The recursion will go backwards in time, because on the
last step, the filtering and smoothing distributions coincide:

p(X7 | Y1.7).

Simo Sarkka Lecture 7: Optimal Smoothing



Derivation of Formal Smoothing Equations [1/2]

@ The key: due to the Markov properties of state we have:

P(Xk | Xk41,¥1:7) = P(Xk | Xk11,Y1:k)

@ Thus we get:

P(Xk | Xk41,Y1:7) = P(Xk [ X1, Y1:k)
_ P(Xk; Xk+1 | Y1:k)
P(Xk+1|Y1:k)
_ P(Xk41 | Xk, Y1:k) P(Xk | Y1:k)
P(Xk+1|Y1:k)
_ P(Xpr1 | X)) P(Xk | Y1:4)
P(Xk+1|Y1:k) '
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Derivation of Formal Smoothing Equations [2/2]

@ Assuming that the smoothing distribution of the next step
p(Xki1]Y1.7) is available, we get

P(Xk, Xk11 | Y1:7) = P(Xk | Xk41,¥1.7) P(Xk1 | Y1.7)
= P(Xk | Xk41,Y1:k) P(Xk41 | Y1:7)
_ P(Xk1 | Xk) P(Xk | Y1:6) P(Xkr1 1¥1:7)
P(Xk11 | Y1:4)

@ Integrating over X1 gives

P(Xk41 | Xk) P(Xk41 | Y1:7)
) oy | dx
P(Xk |Y1:7) = P( k\\h.k)/[ P(Xic+1|Y1:k) o

Simo Sarkka Lecture 7: Optimal Smoothing



Bayesian Optimal Smoothing Equations

Bayesian Optimal Smoothing Equations

The Bayesian optimal smoothing equations consist of
prediction step and backward update step:

P(Xk+1|Y1:k) = /P(Xk+1 | Xk) P(Xk | Y1:k) dXk

xk+1 ’Xk (Xk+1 ’y1:T):|
S dx
pP(Xk|Y1:7) kY1 k)/ [ P(Xict1]Y1:k) o

The recursion is started from the filtering (and smoothing)
distribution of the last time step p(x7|y1.7).
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Linear-Gaussian Smoothing Problem

@ Gaussian driven linear model, i.e., Gauss-Markov model:

Xk = Ak_1 Xk—1 + Qk—1
Vi = Hi Xp + 1y,

@ In probabilistic terms the model is

P(Xk | Xk—1) = N(Xx | Ax—1 Xk—1, Qk_1)
P(Yk | Xk) = N(Yk | Hk Xk, R).

@ Kalman filter can be used for computing all the Gaussian
filtering distributions:

P(Xk | Y1:k) = N(Xk | Mg, Pg).
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Derivation of Rauch-Tung-Striebel Smoother [1/4]

@ By the Gaussian distribution computation rules we get

P(Xk, Xk+1 | Y1:k) = P(Xk1 | Xk) P(Xk | Y1:k)
= N(Xk41 | Ak Xk, Q) N(Xx | My, Pi)

_ mg . Pk PkA](-
my = <Akmk>’ = <AkPk AP Al + Q)

Simo Sarkka Lecture 7: Optimal Smoothing



Derivation of Rauch-Tung-Striebel Smoother [2/4]

@ By conditiong rule of Gaussian distribution we get

P(Xk | Xk41,¥1:7) = P(Xk | Xk11,Y1:k)
= N(Xk | mo, Pg),

where

Ci =P Al (AcPLA] +Qf)!
my = My + Ck (X1 — Axmy)
P, = Px — Cx (AkPxA] + Q) C/.
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Derivation of Rauch-Tung-Striebel Smoother [3/4]

@ The joint distribution of x, and X1 given all the data is

P(Xk+1, Xk | V1:7) = P(Xk | X1, Y1:7) P(Xkt1 | V1:7)
= N(Xk [ M2, P2) N(Xk11 Mg, ¢, P%. )

w(f5] )

where
mg
m +1
8- <mk + Ck (mk+1 A, mk)>
p < Pi—H k+1 Ck )
C«P k+1 C«P k+1 Ck + P>
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Derivation of Rauch-Tung-Striebel Smoother [4/4]

@ The marginal mean and covariance are thus given as

mﬁ = mk+Ck(mﬁ+1 — Acmy)
s =Pk +Ck (P — AcPLA] —Qg)CL.

@ The smoothing distribution is then Gaussian with the above
mean and covariance:

p(xk ‘ y1:T) = N(xk | miv i)v
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Rauch-Tung-Striebel Smoother
Rauch-Tung-Striebel Smoother

Backward recursion equations for the smoothed means m; and
covariances Py

m, ., = Acmyg

P, =AxPcA] +Qy
Ck =Pk Al [P, ]
my = my + Cy [mi; —m; ]
Pf = P+ Ck [P, — P, 4]Cf,

@ my and P, are the mean and covariance computed by the
Kalman filter.

@ The recursion is started from the last time step T, with
m3 = mr and P$ = Pr.

4
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RTS Smoother: Car Tracking Example

The dynamic model of the car tracking model from the first &
third lectures was:

Xk 1 0 At O Xk—1
Ye | | O 1 0 At Vk—1
% | =l oo 1 o g | T
Yk 00 0 1 Yk—1
A

where q is zero mean with a covariance matrix Q.

q$ At3/3 0 q§ At2 )2 0

Q- 0 qs At3/3 0 qs At?)2
a2 0 q° At 0
0 qs At?)2 0 qs At
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Non-Linear Smoothing Problem

@ Non-linear Gaussian state space model:

Xk = f(Xk—1) + Ak—1
Yk = h(xg) +r,

@ We want to compute Gaussian approximations to the
smoothing distributions:

P(Xk | y1.7) = N(xx | mg, P}).
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Extended Rauch-Tung-Striebel Smoother Derivation

@ The approximate joint distribution of X, and Xx1 is

P(Xk, Xk4+1|Y1:k) =N <[ = ] ‘m1,P1>,

™= (i)

P :( Pk Py Ff(my) )
L Fx(mx)Px Fx(m) P Fl(my)+Qx )

where

@ The rest of the derivation is analogous to the linear RTS
smoother.
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Extended Rauch-Tung-Striebel Smoother

Extended Rauch-Tung-Striebel Smoother
The equations for the extended RTS smoother are

m,, = f(my)
Py, 1 = Fx(my) P« Fy (my) + Qx
Ck =Py Fy(my) [Py, ]
mi =my + Ck [mi+1 — m;+1]
i = Py + Cy [Pi+1 - P/?.H] C[,

where the matrix Fx(my) is the Jacobian matrix of f(x)
evaluated at my.
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Statistically Linearized Rauch-Tung-Striebel Smoother

Derivation

@ With statistical linearization we get the approximation
Xk
P(Xk; Xk+1 | Y1:6) = N <[x ] ‘m1,P1> 9
k+1

where

™= <E[fr?)fk)1>

P, _ P E[f(xx) 0x]]"
T <E[f(xk)5x[] E[f(x«) 6x{] Py’ E[f(xk)5x/(]T+Qk> '

@ The expectations are taken with respect to filtering
distribution of x.

@ The derivation proceeds as with linear RTS smoother.
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Statistically Linearized Rauch-Tung-Striebel Smoother

Statistically Linearized Rauch-Tung-Striebel Smoother
The equations for the statistically linearized RTS smoother are

m, ¢ = E[f(xx)]
Py, 1 = E[f(xx) ox{ 1P, E[f(x,) ox£]" + Qi
Cy = E[f(xk) %] [Py 4]
m; = my + Cx [mg ; —m, ]
i =Py + Ck [Pi+1 - P;.H] C[,
where the expectations are taken with respect to the filtering
distribution xx ~ N(my, Py).
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Unscented Rauch-Tung-Striebel Smoother [1/2]

Unscented Rauch-Tung-Striebel Smoother

@ Form the matrix of sigma points:

Xk:[mk mk]+vn+)\[0 VP —\/P_k]

@ Propagate the sigma points through the dynamic model:

Xey1i=FXk), i=1...2n+1.
@ Compute the following:
m, = Z W-(m) Xici1,i
Peit = Z W (Rys1, —my ) K, —my, )7 + Qg
Dyt = Z W) Xk — M) Riceri — M)

i
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Unscented Rauch-Tung-Striebel Smoother [2/2]

Unscented Rauch-Tung-Striebel Smoother (cont.)

© Compute the smoother gain Cy, the smoothed mean m;
and the covariance P} as follows:

Ci = Diy1 [Pyl ™
mi = mg + Cx (Mg, —m )
i = Py +Ck(Pi+1 = P;+1)C,7(-.
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Particle Smoothing [1/2]

@ The smoothing solution can be obtained from SIR by
storing the whole state histories into the particles.

@ Special care is needed on the resampling step.

@ The smoothed distribution approximation is then of the
form

P(Xk |Y1.7) Z W7'I)5(xk )

where xf(i) is the kth component in xg’:)T.
@ Unfortunately, the approximation is often quite degenerate.

@ Specialized algorithms for particle smoothing exists.
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Particle Smoothing [2/2]

@ Recall the Rao-Blackwellized particle filtering model:

Sk ~ P(Sk|Sk-1)
Xk = A(Sk—1) Xk—1 + Uk, adx ~ N(0,Q)
Yk = H(sk) Xk +rk,  rx~N(O,R)
@ The principle of Rao-Blackwellized particle smoothing is

the following:

@ During filtering store the whole sampled state and Kalman
filter histories to the particles.

@ At the smoothing step, apply Rauch-Tung-Striebel
smoothers to each of the Kalman filter histories in the
particles.

@ The smoothing distribution approximation will then be of
the form

N
P(Xk, Sk |Y1.7) ~ > w o(sk — si)) N(xie | mp ) P ().

i=1
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@ Optimal smoothing is used for computing estimates of
state trajectories given the measurements on the whole
trajectory.

@ Rauch-Tung-Striebel (RTS) smoother is the closed form
smoother for linear Gaussian models.

@ Extended, statistically linearized and unscented RTS
smoothers are the approximate nonlinear smoothers
corresponding to EKF, SLF and UKF.

@ Particle smoothing can be done by storing the whole state
histories in SIR algorithm.

@ Rao-Blackwellized particle smoother is a combination of
particle smoothing and RTS smoothing.
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Matlab Demo: Pendulum [1/2]

@ Pendulum model:

<x,1> < X} + X2 At ) < 0 >
2) =\ ,2 4 cin(y] +
Xic Xi_q — g sin(x,_q) At o

v~

f(xk—1)
Yk = sin(x,l) + I,
S——
h(x«)

@ The required Jacobian matrix for ERTSS:

1 At
Fu(x) = <—g cos(x') At 1 )
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Matlab Demo: Pendulum [2/2]

@ The required expected value for SLRTSS is

my + mo At
EIF0a] = <m2 ~ g sin(m1) exp(—Pr1/2) At)

@ And the cross term:

E[f(x) (x - m)T] = (C” C”—‘) ,

Co1 C22
where

C11 = P11 + At Py
Ci2 = P12+ At Pop
Co1 = P12 — g At cos(my) Pyy exp(—P11/2)
Cop = Pax — g At cos(my) P12 exp(—P11/2)
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