Lecture 7: Optimal Smoothing

Simo Särkkä

Department of Biomedical Engineering and Computational Science Aalto University

May 5, 2010

Contents

- What is Optimal Smoothing?
- Bayesian Optimal Smoothing Equations
- Rauch-Tung-Striebel Smoother
- Gaussian Approximation Based Smoothing
- Particle Smoothing
- 6 Summary and Demonstration

Filtering, Prediction and Smoothing

Types of Smoothing Problems

- Fixed-interval smoothing: estimate states on interval [0, T] given measurements on the same interval.
- Fixed-point smoothing: estimate state at a fixed point of time in the past.
- Fixed-lag smoothing: estimate state at a fixed delay in the past.
- Here we shall only consider fixed-interval smoothing, the others can be quite easily derived from it.

Examples of Smoothing Problems

- Given all the radar measurements of a rocket (or missile) trajectory, what was the exact place of launch?
- Estimate the whole trajectory of a car based on GPS measurements to calibrate the inertial navigation system accurately.
- What was the history of chemical/combustion/other process given a batch of measurements from it?
- Remove noise from audio signal by using smoother to estimate the true audio signal under the noise.
- Smoothing solution also arises in EM algorithm for estimating the parameters of a state space model.

Optimal Smoothing Algorithms

- Linear Gaussian models
 - Rauch-Tung-Striebel smoother (RTSS).
 - Two-filter smoother.
- Non-linear Gaussian models
 - Extended Rauch-Tung-Striebel smoother (ERTSS).
 - Unscented Rauch-Tung-Striebel smoother (URTSS).
 - Statistically linearized Rauch-Tung-Striebel smoother (URTSS).
 - Two-filter versions of the above.
- Non-linear non-Gaussian models
 - Sequential importance resampling based smoother.
 - Rao-Blackwellized particle smoothers.
 - Grid based smoother.

Problem Formulation

Probabilistic state space model:

measurement model:
$$\mathbf{y}_k \sim p(\mathbf{y}_k \,|\, \mathbf{x}_k)$$

dynamic model: $\mathbf{x}_k \sim p(\mathbf{x}_k \,|\, \mathbf{x}_{k-1})$

- Assume that the filtering distributions $p(\mathbf{x}_k | \mathbf{y}_{1:k})$ have already beed computed for all k = 0, ..., T.
- We want recursive equations of computing the smoothing distribution for all k < T:

$$p(\mathbf{x}_{k} | \mathbf{y}_{1:T}).$$

 The recursion will go backwards in time, because on the last step, the filtering and smoothing distributions coincide:

$$p(\mathbf{x}_T | \mathbf{y}_{1:T}).$$

Derivation of Formal Smoothing Equations [1/2]

The key: due to the Markov properties of state we have:

$$p(\mathbf{x}_{k} | \mathbf{x}_{k+1}, \mathbf{y}_{1:T}) = p(\mathbf{x}_{k} | \mathbf{x}_{k+1}, \mathbf{y}_{1:k})$$

Thus we get:

$$\rho(\mathbf{x}_{k} | \mathbf{x}_{k+1}, \mathbf{y}_{1:T}) = \rho(\mathbf{x}_{k} | \mathbf{x}_{k+1}, \mathbf{y}_{1:k})
= \frac{\rho(\mathbf{x}_{k}, \mathbf{x}_{k+1} | \mathbf{y}_{1:k})}{\rho(\mathbf{x}_{k+1} | \mathbf{y}_{1:k})}
= \frac{\rho(\mathbf{x}_{k+1} | \mathbf{x}_{k}, \mathbf{y}_{1:k}) \rho(\mathbf{x}_{k} | \mathbf{y}_{1:k})}{\rho(\mathbf{x}_{k+1} | \mathbf{y}_{1:k})}
= \frac{\rho(\mathbf{x}_{k+1} | \mathbf{x}_{k}) \rho(\mathbf{x}_{k} | \mathbf{y}_{1:k})}{\rho(\mathbf{x}_{k+1} | \mathbf{y}_{1:k})}.$$

Derivation of Formal Smoothing Equations [2/2]

• Assuming that the smoothing distribution of the next step $p(\mathbf{x}_{k+1} | \mathbf{y}_{1:T})$ is available, we get

$$\rho(\mathbf{x}_{k}, \mathbf{x}_{k+1} | \mathbf{y}_{1:T}) = \rho(\mathbf{x}_{k} | \mathbf{x}_{k+1}, \mathbf{y}_{1:T}) \rho(\mathbf{x}_{k+1} | \mathbf{y}_{1:T})
= \rho(\mathbf{x}_{k} | \mathbf{x}_{k+1}, \mathbf{y}_{1:k}) \rho(\mathbf{x}_{k+1} | \mathbf{y}_{1:T})
= \frac{\rho(\mathbf{x}_{k+1} | \mathbf{x}_{k}) \rho(\mathbf{x}_{k} | \mathbf{y}_{1:k}) \rho(\mathbf{x}_{k+1} | \mathbf{y}_{1:T})}{\rho(\mathbf{x}_{k+1} | \mathbf{y}_{1:k})}$$

Integrating over x_{k+1} gives

$$\rho(\mathbf{x}_{k} \mid \mathbf{y}_{1:T}) = \rho(\mathbf{x}_{k} \mid \mathbf{y}_{1:k}) \int \left[\frac{\rho(\mathbf{x}_{k+1} \mid \mathbf{x}_{k}) \, \rho(\mathbf{x}_{k+1} \mid \mathbf{y}_{1:T})}{\rho(\mathbf{x}_{k+1} \mid \mathbf{y}_{1:k})} \right] d\mathbf{x}_{k+1}$$

Bayesian Optimal Smoothing Equations

Bayesian Optimal Smoothing Equations

The Bayesian optimal smoothing equations consist of prediction step and backward update step:

$$\begin{aligned} \rho(\mathbf{x}_{k+1} \mid \mathbf{y}_{1:k}) &= \int \rho(\mathbf{x}_{k+1} \mid \mathbf{x}_{k}) \, \rho(\mathbf{x}_{k} \mid \mathbf{y}_{1:k}) \, \mathrm{d}\mathbf{x}_{k} \\ \rho(\mathbf{x}_{k} \mid \mathbf{y}_{1:T}) &= \rho(\mathbf{x}_{k} \mid \mathbf{y}_{1:k}) \int \left[\frac{\rho(\mathbf{x}_{k+1} \mid \mathbf{x}_{k}) \, \rho(\mathbf{x}_{k+1} \mid \mathbf{y}_{1:T})}{\rho(\mathbf{x}_{k+1} \mid \mathbf{y}_{1:k})} \right] \mathrm{d}\mathbf{x}_{k+1} \end{aligned}$$

The recursion is started from the filtering (and smoothing) distribution of the last time step $p(\mathbf{x}_T | \mathbf{y}_{1:T})$.

Linear-Gaussian Smoothing Problem

Gaussian driven linear model, i.e., Gauss-Markov model:

$$\mathbf{x}_k = \mathbf{A}_{k-1} \, \mathbf{x}_{k-1} + \mathbf{q}_{k-1}$$

$$\mathbf{y}_k = \mathbf{H}_k \, \mathbf{x}_k + \mathbf{r}_k,$$

In probabilistic terms the model is

$$p(\mathbf{x}_k \mid \mathbf{x}_{k-1}) = N(\mathbf{x}_k \mid \mathbf{A}_{k-1} \mathbf{x}_{k-1}, \mathbf{Q}_{k-1})$$
$$p(\mathbf{y}_k \mid \mathbf{x}_k) = N(\mathbf{y}_k \mid \mathbf{H}_k \mathbf{x}_k, \mathbf{R}_k).$$

 Kalman filter can be used for computing all the Gaussian filtering distributions:

$$p(\mathbf{x}_k | \mathbf{y}_{1:k}) = N(\mathbf{x}_k | \mathbf{m}_k, \mathbf{P}_k).$$

Derivation of Rauch-Tung-Striebel Smoother [1/4]

By the Gaussian distribution computation rules we get

$$\begin{split} \rho(\mathbf{x}_{k}, \mathbf{x}_{k+1} \mid \mathbf{y}_{1:k}) &= \rho(\mathbf{x}_{k+1} \mid \mathbf{x}_{k}) \, \rho(\mathbf{x}_{k} \mid \mathbf{y}_{1:k}) \\ &= \mathsf{N}(\mathbf{x}_{k+1} \mid \mathbf{A}_{k} \, \mathbf{x}_{k}, \mathbf{Q}_{k}) \, \, \mathsf{N}(\mathbf{x}_{k} \mid \mathbf{m}_{k}, \mathbf{P}_{k}) \\ &= \mathsf{N}\left(\begin{bmatrix} \mathbf{x}_{k} \\ \mathbf{x}_{k+1} \end{bmatrix} \mid \mathbf{m}_{1}, \mathbf{P}_{1}\right), \end{split}$$

$$\mathbf{m}_1 = \begin{pmatrix} \mathbf{m}_k \\ \mathbf{A}_k \, \mathbf{m}_k \end{pmatrix}, \qquad \mathbf{P}_1 = \begin{pmatrix} \mathbf{P}_k & \mathbf{P}_k \, \mathbf{A}_k^T \\ \mathbf{A}_k \, \mathbf{P}_k & \mathbf{A}_k \, \mathbf{P}_k \, \mathbf{A}_k^T + \mathbf{Q}_k \end{pmatrix}.$$

Derivation of Rauch-Tung-Striebel Smoother [2/4]

By conditiong rule of Gaussian distribution we get

$$\rho(\mathbf{x}_{k} | \mathbf{x}_{k+1}, \mathbf{y}_{1:T}) = \rho(\mathbf{x}_{k} | \mathbf{x}_{k+1}, \mathbf{y}_{1:k})
= N(\mathbf{x}_{k} | \mathbf{m}_{2}, \mathbf{P}_{2}),$$

$$\begin{aligned} \mathbf{C}_k &= \mathbf{P}_k \, \mathbf{A}_k^T \, (\mathbf{A}_k \, \mathbf{P}_k \, \mathbf{A}_k^T + \mathbf{Q}_k)^{-1} \\ \mathbf{m}_2 &= \mathbf{m}_k + \mathbf{C}_k \, (\mathbf{x}_{k+1} - \mathbf{A}_k \, \mathbf{m}_k) \\ \mathbf{P}_2 &= \mathbf{P}_k - \mathbf{C}_k \, (\mathbf{A}_k \, \mathbf{P}_k \, \mathbf{A}_k^T + \mathbf{Q}_k) \, \mathbf{C}_k^T. \end{aligned}$$

Derivation of Rauch-Tung-Striebel Smoother [3/4]

• The joint distribution of \mathbf{x}_k and \mathbf{x}_{k+1} given all the data is

$$\begin{split} \rho(\mathbf{x}_{k+1}, \mathbf{x}_{k} \,|\, \mathbf{y}_{1:T}) &= \rho(\mathbf{x}_{k} \,|\, \mathbf{x}_{k+1}, \mathbf{y}_{1:T}) \, \rho(\mathbf{x}_{k+1} \,|\, \mathbf{y}_{1:T}) \\ &= N(\mathbf{x}_{k} \,|\, \mathbf{m}_{2}, \mathbf{P}_{2}) \, N(\mathbf{x}_{k+1} \,|\, \mathbf{m}_{k+1}^{s}, \mathbf{P}_{k+1}^{s}) \\ &= N\left(\begin{bmatrix} \mathbf{x}_{k+1} \\ \mathbf{x}_{k} \end{bmatrix} \,\Big|\, \mathbf{m}_{3}, \mathbf{P}_{3}\right) \end{split}$$

$$\begin{split} \mathbf{m}_3 &= \begin{pmatrix} \mathbf{m}_{k+1}^s \\ \mathbf{m}_k + \mathbf{C}_k \left(\mathbf{m}_{k+1}^s - \mathbf{A}_k \, \mathbf{m}_k \right) \end{pmatrix} \\ \mathbf{P}_3 &= \begin{pmatrix} \mathbf{P}_{k+1}^s & \mathbf{P}_{k+1}^s \, \mathbf{C}_k^T \\ \mathbf{C}_k \, \mathbf{P}_{k+1}^s & \mathbf{C}_k \, \mathbf{P}_{k+1}^s \, \mathbf{C}_k^T + \mathbf{P}_2 \end{pmatrix}. \end{split}$$

Derivation of Rauch-Tung-Striebel Smoother [4/4]

• The marginal mean and covariance are thus given as

$$\begin{aligned} \mathbf{m}_k^s &= \mathbf{m}_k + \mathbf{C}_k \left(\mathbf{m}_{k+1}^s - \mathbf{A}_k \, \mathbf{m}_k \right) \\ \mathbf{P}_k^s &= \mathbf{P}_k + \mathbf{C}_k \left(\mathbf{P}_{k+1}^s - \mathbf{A}_k \, \mathbf{P}_k \, \mathbf{A}_k^T - \mathbf{Q}_k \right) \mathbf{C}_k^T. \end{aligned}$$

 The smoothing distribution is then Gaussian with the above mean and covariance:

$$p(\mathbf{x}_k \mid \mathbf{y}_{1:T}) = \mathsf{N}(\mathbf{x}_k \mid \mathbf{m}_k^s, \mathbf{P}_k^s),$$

Rauch-Tung-Striebel Smoother

Rauch-Tung-Striebel Smoother

Backward recursion equations for the smoothed means \mathbf{m}_k^s and covariances \mathbf{P}_k^s :

$$\begin{aligned} \mathbf{m}_{k+1}^{-} &= \mathbf{A}_{k} \, \mathbf{m}_{k} \\ \mathbf{P}_{k+1}^{-} &= \mathbf{A}_{k} \, \mathbf{P}_{k} \, \mathbf{A}_{k}^{T} + \mathbf{Q}_{k} \\ \mathbf{C}_{k} &= \mathbf{P}_{k} \, \mathbf{A}_{k}^{T} \, [\mathbf{P}_{k+1}^{-}]^{-1} \\ \mathbf{m}_{k}^{s} &= \mathbf{m}_{k} + \mathbf{C}_{k} \, [\mathbf{m}_{k+1}^{s} - \mathbf{m}_{k+1}^{-}] \\ \mathbf{P}_{k}^{s} &= \mathbf{P}_{k} + \mathbf{C}_{k} \, [\mathbf{P}_{k+1}^{s} - \mathbf{P}_{k+1}^{-}] \, \mathbf{C}_{k}^{T}, \end{aligned}$$

- \mathbf{m}_k and \mathbf{P}_k are the mean and covariance computed by the Kalman filter.
- The recursion is started from the last time step T, with $\mathbf{m}_{T}^{s} = \mathbf{m}_{T}$ and $\mathbf{P}_{T}^{s} = \mathbf{P}_{T}$.

RTS Smoother: Car Tracking Example

The dynamic model of the car tracking model from the first & third lectures was:

$$\begin{pmatrix} x_k \\ y_k \\ \dot{x}_k \\ \dot{y}_k \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\mathbf{A}} \begin{pmatrix} x_{k-1} \\ y_{k-1} \\ \dot{x}_{k-1} \\ \dot{y}_{k-1} \end{pmatrix} + \mathbf{q}_{k-1}$$

where \mathbf{q}_k is zero mean with a covariance matrix \mathbf{Q} .

$$\mathbf{Q} = egin{pmatrix} q_1^c \, \Delta t^3 / 3 & 0 & q_1^c \, \Delta t^2 / 2 & 0 \ 0 & q_2^c \, \Delta t^3 / 3 & 0 & q_2^c \, \Delta t^2 / 2 \ q_1^c \, \Delta t^2 / 2 & 0 & q_1^c \, \Delta t & 0 \ 0 & q_2^c \, \Delta t^2 / 2 & 0 & q_2^c \, \Delta t \end{pmatrix}$$

Non-Linear Smoothing Problem

Non-linear Gaussian state space model:

$$\mathbf{x}_k = \mathbf{f}(\mathbf{x}_{k-1}) + \mathbf{q}_{k-1}$$

 $\mathbf{y}_k = \mathbf{h}(\mathbf{x}_k) + \mathbf{r}_k$

 We want to compute Gaussian approximations to the smoothing distributions:

$$p(\mathbf{x}_k \mid \mathbf{y}_{1:T}) \approx N(\mathbf{x}_k \mid \mathbf{m}_k^s, \mathbf{P}_k^s).$$

Extended Rauch-Tung-Striebel Smoother Derivation

• The approximate joint distribution of \mathbf{x}_k and \mathbf{x}_{k+1} is

$$p(\mathbf{x}_k, \mathbf{x}_{k+1} \mid \mathbf{y}_{1:k}) = N\left(\begin{bmatrix} \mathbf{x}_k \\ \mathbf{x}_{k+1} \end{bmatrix} \mid \mathbf{m}_1, \mathbf{P}_1\right),$$

where

$$\begin{aligned} \mathbf{m}_1 &= \begin{pmatrix} \mathbf{m}_k \\ \mathbf{f}(\mathbf{m}_k) \end{pmatrix} \\ \mathbf{P}_1 &= \begin{pmatrix} \mathbf{P}_k & \mathbf{P}_k \, \mathbf{F}_x^T(\mathbf{m}_k) \\ \mathbf{F}_x(\mathbf{m}_k) \, \mathbf{P}_k & \mathbf{F}_x(\mathbf{m}_k) \, \mathbf{P}_k \, \mathbf{F}_x^T(\mathbf{m}_k) + \mathbf{Q}_k \end{pmatrix}. \end{aligned}$$

 The rest of the derivation is analogous to the linear RTS smoother.

Extended Rauch-Tung-Striebel Smoother

Extended Rauch-Tung-Striebel Smoother

The equations for the extended RTS smoother are

$$\begin{split} \mathbf{m}_{k+1}^{-} &= \mathbf{f}(\mathbf{m}_{k}) \\ \mathbf{P}_{k+1}^{-} &= \mathbf{F}_{\mathbf{x}}(\mathbf{m}_{k}) \, \mathbf{P}_{k} \, \mathbf{F}_{\mathbf{x}}^{T}(\mathbf{m}_{k}) + \mathbf{Q}_{k} \\ \mathbf{C}_{k} &= \mathbf{P}_{k} \, \mathbf{F}_{\mathbf{x}}^{T}(\mathbf{m}_{k}) \, [\mathbf{P}_{k+1}^{-}]^{-1} \\ \mathbf{m}_{k}^{s} &= \mathbf{m}_{k} + \mathbf{C}_{k} \, [\mathbf{m}_{k+1}^{s} - \mathbf{m}_{k+1}^{-}] \\ \mathbf{P}_{k}^{s} &= \mathbf{P}_{k} + \mathbf{C}_{k} \, [\mathbf{P}_{k+1}^{s} - \mathbf{P}_{k+1}^{-}] \, \mathbf{C}_{k}^{T}, \end{split}$$

where the matrix $\mathbf{F}_{\mathbf{x}}(\mathbf{m}_k)$ is the Jacobian matrix of $\mathbf{f}(\mathbf{x})$ evaluated at \mathbf{m}_k .

Statistically Linearized Rauch-Tung-Striebel Smoother Derivation

With statistical linearization we get the approximation

$$p(\mathbf{x}_k,\mathbf{x}_{k+1}\,|\,\mathbf{y}_{1:k}) = \mathsf{N}\left(\left[\begin{matrix}\mathbf{x}_k\\\mathbf{x}_{k+1}\end{matrix}\right]\,\Big|\,\mathbf{m}_1,\mathbf{P}_1\right),$$

$$\begin{split} \boldsymbol{m}_1 &= \begin{pmatrix} \boldsymbol{m}_k \\ \boldsymbol{E}[\boldsymbol{f}(\boldsymbol{x}_k)] \end{pmatrix} \\ \boldsymbol{P}_1 &= \begin{pmatrix} \boldsymbol{P}_k & \boldsymbol{E}[\boldsymbol{f}(\boldsymbol{x}_k) \, \delta \boldsymbol{x}_k^T]^T \\ \boldsymbol{E}[\boldsymbol{f}(\boldsymbol{x}_k) \, \delta \boldsymbol{x}_k^T] & \boldsymbol{E}[\boldsymbol{f}(\boldsymbol{x}_k) \, \delta \boldsymbol{x}_k^T] \, \boldsymbol{P}_k^{-1} \, \boldsymbol{E}[\boldsymbol{f}(\boldsymbol{x}_k) \, \delta \boldsymbol{x}_k^T]^T + \boldsymbol{Q}_k \end{pmatrix}. \end{split}$$

- The expectations are taken with respect to filtering distribution of x_k.
- The derivation proceeds as with linear RTS smoother.

Statistically Linearized Rauch-Tung-Striebel Smoother

Statistically Linearized Rauch-Tung-Striebel Smoother

The equations for the statistically linearized RTS smoother are

$$\begin{aligned} \mathbf{m}_{k+1}^{-} &= \mathsf{E}[\mathbf{f}(\mathbf{x}_k)] \\ \mathbf{P}_{k+1}^{-} &= \mathsf{E}[\mathbf{f}(\mathbf{x}_k) \, \delta \mathbf{x}_k^T] \, \mathbf{P}_k^{-1} \, \, \mathsf{E}[\mathbf{f}(\mathbf{x}_k) \, \delta \mathbf{x}_k^T]^T + \mathbf{Q}_k \\ \mathbf{C}_k &= \mathsf{E}[\mathbf{f}(\mathbf{x}_k) \, \delta \mathbf{x}_k^T]^T [\mathbf{P}_{k+1}^{-}]^{-1} \\ \mathbf{m}_k^s &= \mathbf{m}_k + \mathbf{C}_k \, [\mathbf{m}_{k+1}^s - \mathbf{m}_{k+1}^{-}] \\ \mathbf{P}_k^s &= \mathbf{P}_k + \mathbf{C}_k \, [\mathbf{P}_{k+1}^s - \mathbf{P}_{k+1}^{-}] \, \mathbf{C}_k^T, \end{aligned}$$

where the expectations are taken with respect to the filtering distribution $\mathbf{x}_k \sim N(\mathbf{m}_k, \mathbf{P}_k)$.

Unscented Rauch-Tung-Striebel Smoother [1/2]

Unscented Rauch-Tung-Striebel Smoother

Form the matrix of sigma points:

$$\mathbf{X}_k = \begin{bmatrix} \mathbf{m}_k & \cdots & \mathbf{m}_k \end{bmatrix} + \sqrt{n+\lambda} \begin{bmatrix} \mathbf{0} & \sqrt{\mathbf{P}_k} & -\sqrt{\mathbf{P}_k} \end{bmatrix}$$
.

Propagate the sigma points through the dynamic model:

$$\hat{\mathbf{X}}_{k+1,i} = \mathbf{f}(\mathbf{X}_{k,i}), \quad i = 1 \dots 2n+1.$$

Compute the following:

$$\begin{split} \mathbf{m}_{k+1}^{-} &= \sum_{i} W_{i-1}^{(m)} \, \hat{\mathbf{X}}_{k+1,i} \\ \mathbf{P}_{k+1}^{-} &= \sum_{i} W_{i-1}^{(c)} \, (\hat{\mathbf{X}}_{k+1,i} - \mathbf{m}_{k+1}^{-}) \, (\hat{\mathbf{X}}_{k+1,i} - \mathbf{m}_{k+1}^{-})^{T} + \mathbf{Q}_{k} \\ \mathbf{D}_{k+1} &= \sum_{i} W_{i-1}^{(c)} \, (\mathbf{X}_{k,i} - \mathbf{m}_{k}) \, (\hat{\mathbf{X}}_{k+1,i} - \mathbf{m}_{k+1}^{-})^{T}. \end{split}$$

Unscented Rauch-Tung-Striebel Smoother [2/2]

Unscented Rauch-Tung-Striebel Smoother (cont.)

3 Compute the smoother gain C_k , the smoothed mean \mathbf{m}_k^s and the covariance \mathbf{P}_k^s as follows:

$$\mathbf{C}_{k} = \mathbf{D}_{k+1} [\mathbf{P}_{k+1}^{-}]^{-1}$$
 $\mathbf{m}_{k}^{s} = \mathbf{m}_{k} + \mathbf{C}_{k} (\mathbf{m}_{k+1}^{s} - \mathbf{m}_{k+1}^{-})$
 $\mathbf{P}_{k}^{s} = \mathbf{P}_{k} + \mathbf{C}_{k} (\mathbf{P}_{k+1}^{s} - \mathbf{P}_{k+1}^{-}) \mathbf{C}_{k}^{T}.$

Particle Smoothing [1/2]

- The smoothing solution can be obtained from SIR by storing the whole state histories into the particles.
- Special care is needed on the resampling step.
- The smoothed distribution approximation is then of the form

$$p(\mathbf{x}_k | \mathbf{y}_{1:T}) \approx \sum_{i=1}^N w_T^{(i)} \delta(\mathbf{x}_k - \mathbf{x}_k^{(i)}).$$

where $\mathbf{x}_k^{(i)}$ is the kth component in $\mathbf{x}_{1:T}^{(i)}$.

- Unfortunately, the approximation is often quite degenerate.
- Specialized algorithms for particle smoothing exists.

Particle Smoothing [2/2]

Recall the Rao-Blackwellized particle filtering model:

$$\begin{aligned} \mathbf{s}_k &\sim p(\mathbf{s}_k \,|\, \mathbf{s}_{k-1}) \\ \mathbf{x}_k &= \mathbf{A}(\mathbf{s}_{k-1}) \,\mathbf{x}_{k-1} + \mathbf{q}_k, \qquad \mathbf{q}_k \sim \mathsf{N}(\mathbf{0}, \mathbf{Q}) \\ \mathbf{y}_k &= \mathbf{H}(\mathbf{s}_k) \,\mathbf{x}_k + \mathbf{r}_k, \qquad \mathbf{r}_k \sim \mathsf{N}(\mathbf{0}, \mathbf{R}) \end{aligned}$$

- The principle of Rao-Blackwellized particle smoothing is the following:
 - During filtering store the whole sampled state and Kalman filter histories to the particles.
 - At the smoothing step, apply Rauch-Tung-Striebel smoothers to each of the Kalman filter histories in the particles.
- The smoothing distribution approximation will then be of the form

$$p(\mathbf{x}_k, \mathbf{s}_k \mid \mathbf{y}_{1:T}) \approx \sum_{i=1}^N w_T^{(i)} \, \delta(\mathbf{s}_k - \mathbf{s}_k^{(i)}) \, \, \mathsf{N}(\mathbf{x}_k \mid \mathbf{m}_k^{s,(i)}, \mathbf{P}_k^{s,(i)}).$$

Summary

- Optimal smoothing is used for computing estimates of state trajectories given the measurements on the whole trajectory.
- Rauch-Tung-Striebel (RTS) smoother is the closed form smoother for linear Gaussian models.
- Extended, statistically linearized and unscented RTS smoothers are the approximate nonlinear smoothers corresponding to EKF, SLF and UKF.
- Particle smoothing can be done by storing the whole state histories in SIR algorithm.
- Rao-Blackwellized particle smoother is a combination of particle smoothing and RTS smoothing.

Matlab Demo: Pendulum [1/2]

Pendulum model:

$$\begin{pmatrix} x_k^1 \\ x_k^2 \end{pmatrix} = \underbrace{\begin{pmatrix} x_{k-1}^1 + x_{k-1}^2 \Delta t \\ x_{k-1}^2 - g \sin(x_{k-1}^1) \Delta t \end{pmatrix}}_{\mathbf{f}(\mathbf{x}_{k-1})} + \begin{pmatrix} 0 \\ q_{k-1} \end{pmatrix}$$

$$y_k = \underbrace{\sin(x_k^1)}_{\mathbf{h}(\mathbf{x}_k)} + r_k,$$

• The required Jacobian matrix for ERTSS:

$$\mathbf{F}_{x}(\mathbf{x}) = \begin{pmatrix} 1 & \Delta t \\ -g \cos(x^{1}) \Delta t & 1 \end{pmatrix}$$

Matlab Demo: Pendulum [2/2]

The required expected value for SLRTSS is

$$\mathsf{E}[\mathbf{f}(\mathbf{x})] = \begin{pmatrix} m_1 + m_2 \,\Delta t \\ m_2 - g \, \sin(m_1) \, \exp(-P_{11}/2) \,\Delta t \end{pmatrix}$$

And the cross term:

$$\mathsf{E}[\mathbf{f}(\mathbf{x})(\mathbf{x}-\mathbf{m})^T] = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix},$$

$$c_{11} = P_{11} + \Delta t P_{12}$$
 $c_{12} = P_{12} + \Delta t P_{22}$
 $c_{21} = P_{12} - g \Delta t \cos(m_1) P_{11} \exp(-P_{11}/2)$
 $c_{22} = P_{22} - g \Delta t \cos(m_1) P_{12} \exp(-P_{11}/2)$