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Linearization Based Gaussian Approximation

Problem: Determine the mean and covariance of y :

x ∼ N(µ, σ2)

y = sin(x)

Linearization based approximation:

y = sin(µ) +
∂ sin(µ)

∂µ
(x − µ) + . . .

which gives

E[y ] ≈ E[sin(µ) + cos(µ)(x − µ)] = sin(µ)

Cov[y ] ≈ E[(sin(µ) + cos(µ)(x − µ) − sin(µ))2] = cos2(µ)σ2.
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Principle of Unscented Transform [1/3]

Form 3 sigma points as follows:

X0 = µ

X1 = µ + σ

X2 = µ − σ.

We may now select some weights W0, W1, W2 such that

the original mean and (co)variance can be always

recovered by

µ =
∑

i

Wi xi

σ2 =
∑

i

Wi (Xi − µ)2.
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Principle of Unscented Transform [2/3]

Use the same formula for approximating the distribution of

y = sin(x) as follows:

µy =
∑

i

Wi sin(Xi)

σ2
y =

∑

i

Wi (sin(Xi) − µy )2.

For vectors x ∼ N(m, P) the generalization of standard

deviation σ is the Cholesky factor L =
√

P:

P = L LT .

The sigma points can be formed using columns of L (here

c is a suitable positive constant):

X0 = m

Xi = m + c Li

Xn+i = m − c Li
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Principle of Unscented Transform [3/3]

For transformation y = g(x) the approximation is:

µy =
∑

i

Wi g(Xi)

Σy =
∑

i

Wi (g(Xi) − µy ) (g(Xi) − µy )T .

Joint distribution of x and y = g(x) + q is then given as

E

[(
x

g(x) + q

) ∣
∣
∣ q

]

≈
∑

i

Wi

(
Xi

g(Xi)

)

=

(
m

µy

)

Cov

[(
x

g(x) + q

) ∣
∣
∣ q

]

≈
∑

i

Wi

(
(Xi − m) (Xi − m)T (Xi − m) (g(Xi) − µy )T

(g(Xi) − µy ) (Xi − m)T (g(Xi) − µy ) (g(Xi) − µy )T

)
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Unscented Transform Approximation of Non-Linear

Transforms [1/3]

Unscented transform

The unscented transform approximation to the joint distribution

of x and y = g(x) + q where x ∼ N(m, P) and q ∼ N(0, Q) is

(
x

y

)

∼ N

((
m

µU

)

,

(
P CU

CT
U SU

))

,

The sub-matrices are formed as follows:

1 Form the matrix of sigma points X as

X =
[
m · · · m

]
+

√
n + λ

[

0
√

P −
√

P
]
,

[continues in the next slide. . . ]
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Unscented Transform Approximation of Non-Linear

Transforms [2/3]

Unscented transform (cont.)

2 Propagate the sigma points through g(·):

Yi = g(Xi), i = 1 . . . 2n + 1,

3 The sub-matrices are then given as:

µU =
∑

i

W
(m)
i−1 Yi

SU =
∑

i

W
(c)
i−1 (Yi − µU) (Yi − µU)T + Q

CU =
∑

i

W
(c)
i−1 (Xi − m) (Yi − µU)T ,
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Unscented Transform Approximation of Non-Linear

Transforms [3/3]

Unscented transform (cont.)

λ is a scaling parameter defined as λ = α2 (n + κ) − n.

α and κ determine the spread of the sigma points.

Weights W
(m)
i and W

(c)
i are given as follows:

W
(m)
0 = λ/(n + λ)

W
(c)
0 = λ/(n + λ) + (1 − α2 + β)

W
(m)
i = 1/{2(n + λ)}, i = 1, . . . , 2n

W
(c)
i = 1/{2(n + λ)}, i = 1, . . . , 2n,

β can be used for incorporating prior information on the

(non-Gaussian) distribution of x.
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Linearization/UT Example

=⇒

(
x1

x2

)

∼ N

((
0

0

)

,

(
2 −2

−2 3

))
dy1

dt
= exp(−y1), y1(0) = x1

dy2

dt
= −1

2
y3

2 , y2(0) = x2
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Linearization Approximation

=⇒
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UT Approximation

=⇒
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Unscented Kalman Filter (UKF): Derivation [1/4]

Assume that the filtering distribution of previous step is

Gaussian

p(xk−1 |y1:k−1) ≈ N(xk−1 |mk−1, Pk−1)

The joint distribution of xk−1 and xk = f(xk−1) + qk−1 can

be approximated with UT as Gaussian

p(xk−1, xk , |y1:k−1) ≈ N

([
xk−1

xk

] ∣
∣
∣

(
m′

1

m′

2

)

,

(
P′

11 P′

12

(P′

12)
T P′

22

))

,

Form the sigma points Xi of xk−1 ∼ N(mk−1, Pk−1) and

compute the transformed sigma points as X̂i = f(Xi).

The expected values can now be expressed as:

m′

1 = mk−1

m′

2 =
∑

i

W
(m)
i−1 X̂i
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Unscented Kalman Filter (UKF): Derivation [2/4]

The blocks of covariance can be expressed as:

P′

11 = Pk−1

P′

12 =
∑

i

W
(c)
i−1(Xi − mk−1) (X̂i − m′

2)
T

P′

22 =
∑

i

W
(c)
i−1(X̂i − m′

2) (X̂i − m′

2)
T + Qk−1

The prediction mean and covariance of xk are then m′

2 and

P′

22, and thus we get

m−

k =
∑

i

W
(m)
i−1 X̂i

P−

k =
∑

i

W
(c)
i−1(X̂i − m−

k ) (X̂i − m−

k )T + Qk−1
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Unscented Kalman Filter (UKF): Derivation [3/4]

For the joint distribution of xk and yk = h(xk) + rk we

similarly get

p(xk , yk , |y1:k−1) ≈ N

([
xk

yk

] ∣
∣
∣

(
m′′

1

m′′

2

)

,

(
P′′

11 P′′

12

(P′′

12)
T P′′

22

))

,

If X−

i are the sigma points of xk ∼ N(m−

k , P−

k ) and

Ŷi = f(X−

i ), we get:

m′′

1 = m−

k

m′′

2 =
∑

i

W
(m)
i−1 Ŷi

P′′

11 = P−

k

P′′

12 =
∑

i

W
(c)
i−1(X

−

i − m−

k ) (Ŷi − m′′

2)
T

P′′

22 =
∑

i

W
(c)
i−1(Ŷi − m′′

2) (Ŷi − m′′

2)
T + Rk
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Unscented Kalman Filter (UKF): Derivation [4/4]

Recall that if
(

x

y

)

∼ N

((
a

b

)

,

(
A C

CT B

))

,

then

x |y ∼ N(a + C B−1 (y − b), A − C B−1CT ).

Thus we get the conditional mean and covariance:

mk = m−

k + P′′

12 (P′′

22)
−1(yk − m′′

2)

Pk = P−

k − P′′

12 (P′′

22)
−1 (P′′

12)
T .
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Unscented Kalman Filter (UKF): Algorithm [1/3]

Unscented Kalman filter: Prediction step

1 Form the matrix of sigma points:

Xk−1 =
[
mk−1 · · · mk−1

]
+

√
n + λ

[
0

√
Pk−1 −

√
Pk−1

]
.

2 Propagate the sigma points through the dynamic model:

X̂k ,i = f(Xk−1,i), i = 1 . . . 2n + 1.

3 Compute the predicted mean and covariance:

m−

k =
∑

i

W
(m)
i−1 X̂k ,i

P−

k =
∑

i

W
(c)
i−1 (X̂k ,i − m−

k ) (X̂k ,i − m−

k )T + Qk−1.
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Unscented Kalman Filter (UKF): Algorithm [2/3]

Unscented Kalman filter: Update step

1 Form the matrix of sigma points:

X−

k =
[
m−

k · · · m−

k

]
+

√
n + λ

[

0
√

P−

k −
√

P−

k

]

.

2 Propagate sigma points through the measurement model:

Ŷk ,i = h(X−

k ,i), i = 1 . . . 2n + 1.

3 Compute the following terms:

µk =
∑

i

W
(m)
i−1 Ŷk ,i

Sk =
∑

i

W
(c)
i−1 (Ŷk ,i − µk ) (Ŷk ,i − µk )T + Rk

Ck =
∑

i

W
(c)
i−1 (X−

k ,i − m−

k ) (Ŷk ,i − µk )T .
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Unscented Kalman Filter (UKF): Algorithm [3/3]

Unscented Kalman filter: Update step (cont.)

4 Compute the filter gain Kk and the filtered state mean mk

and covariance Pk , conditional to the measurement yk :

Kk = Ck S−1
k

mk = m−

k + Kk [yk − µk ]

Pk = P−

k − Kk Sk KT
k .
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Unscented Kalman Filter (UKF): Example

Recall the discretized pendulum model

(
x1

k

x2
k

)

=

(
x1

k−1 + x2
k−1 ∆t

x2
k−1 − g sin(x1

k−1)∆t

)

︸ ︷︷ ︸

f(xk−1)

+

(
0

qk−1

)

yk = sin(x1
k )

︸ ︷︷ ︸

h(xk)

+rk ,

⇒ Matlab demonstration
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Unscented Kalman Filter (UKF): Advantages

No closed form derivatives or expectations needed.

Not a local approximation, but based on values on a larger

area.

Functions f and h do not need to be differentiable.

Theoretically, captures higher order moments of

distribution than linearization.
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Unscented Kalman Filter (UKF): Disadvantage

Not a truly global approximation, based on a small set of

trial points.

Does not work well with nearly singular covariances, i.e.,

with nearly deterministic systems.

Requires more computations than EKF or SLF, e.g.,

Cholesky factorizations on every step.

Can only be applied to models driven by Gaussian noises.
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Gaussian Moment Matching [1/2]

Consider the transformation of x into y:

x ∼ N(m, P)

y = g(x).

Form Gaussian approximation to (x, y) by directly

approximating the integrals:

µM =

∫

g(x) N(x |m, P) dx

SM =

∫

(g(x) − µM) (g(x) − µM)T N(x |m, P) dx

CM =

∫

(x − m) (g(x) − µM)T N(x |m, P) dx.
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Gaussian Moment Matching [2/2]

Gaussian moment matching

The moment matching based Gaussian approximation to the

joint distribution of x and the transformed random variable

y = g(x) + q where x ∼ N(m, P) and q ∼ N(0, Q) is given as

(
x

y

)

∼ N

((
m

µM

)

,

(
P CM

CT
M SM

))

, (1)

where

µM =

∫

g(x) N(x |m, P) dx

SM =

∫

(g(x) − µM) (g(x) − µM)T N(x |m, P) dx + Q

CM =

∫

(x − m) (g(x) − µM)T N(x |m, P) dx.

(2)
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Gaussian Assumed Density Filter [1/3]

Gaussian assumed density filter prediction

m−

k =

∫

f(xk−1) N(xk−1 |mk−1, Pk−1) dxk−1

P−

k =

∫

(f(xk−1) − m−

k ) (f(xk−1) − m−

k )T

× N(xk−1 |mk−1, Pk−1) dxk−1 + Qk−1.
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Gaussian Assumed Density Filter [2/3]

Gaussian assumed density filter update

µk =

∫

h(xk) N(xk |m−

k , P−

k ) dxk

Sk =

∫

(h(xk ) − µk ) (h(xk ) − µk )T N(xk |m−

k , P−

k ) dxk + Rk

Ck =

∫

(xk − m−) (h(xk ) − µk )T N(xk |m−

k , P−

k ) dxk

Kk = Ck S−1
k

mk = m−

k + Kk (yk − µk )

Pk = P−

k − Kk Sk KT
k .
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Gaussian Assumed Density Filter [3/3]

Special case of assumed density filtering (ADF).

Multidimensional Gauss-Hermite quadrature ⇒ Gauss

Hermite Kalman filter (GHKF).

Cubature integration ⇒ Cubature Kalman filter (CKF).

Monte Carlo integration ⇒ Monte Carlo Kalman filter

(MCKF).

Gaussian process / Bayes-Hermite Kalman filter: Form

Gaussian process regression model from set of sample

points and integrate the approximation.

Linearization, unscented transform, central differences,

divided differences can be considered as special cases.
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Summary

Unscented transform (UT) approximates transformations of

Gaussian variables by propagating sigma points through

the non-linearity.

In UT the mean and covariance are approximated as linear

combination of the sigma points.

The unscented Kalman filter uses unscented transform for

computing the approximate means and covariance in

non-linear filtering problems.

A non-linear transformation can also be approximated with

Gaussian moment matching.

Gaussian assumed density filter is based on matching the

moments with numerical integration ⇒ many kinds of

Kalman filters.
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Matlab Demo

[Tracking of pendulum with EKF, SLF and UKF]
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