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Linearization Based Gaussian Approximation

@ Problem: Determine the mean and covariance of y:

X ~N(p,0?)
y = sin(x)
@ Linearization based approximation:
o asin(u)
Y—S'”(M)JFT(X p) =+

which gives

Ely] ~ E[sin(u) + cos(u)(x — )] = sin(p)
Covly] ~ E[(sin(y) + cos(u)(x — ) — sin(u))?] = cos?(u) o°.
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Principle of Unscented Transform [1/3]

@ Form 3 sigma points as follows:

Xo=p
Xi=p+o
XZZ/L—O'.

@ We may now select some weights Wy, Wy, W, such that
the original mean and (co)variance can be always
recovered by

MZZW/'X/'
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Principle of Unscented Transform [2/3]

@ Use the same formula for approximating the distribution of
y = sin(x) as follows:

py =Y W sin(X))
1
oy =Y Wi(sin(X)) — uy)?.
1
@ For vectors x ~ N(m, P) the generalization of standard
deviation ¢ is the Cholesky factor L = +/P:
P=LL"
@ The sigma points can be formed using columns of L (here
c is a suitable positive constant):
Xo=m
Xi=m+clL;
X,H_,' =m-cl;

Simo Sarkka Lecture 5: UKF and GGF



Principle of Unscented Transform [3/3]

@ For transformation y = g(x) the approximation is:
Hy = Z Vvlg(xl)
i
Ty = Wi(g(Xi) — ) (9(X)) — )"
i

@ Joint distribution of x and y = g(x) + q is then given as

= (g00+a) 9] = ZW<9(X) ()
Cov Kg(x;(+ q> ‘ q]

X m) (X; —m)’ (X; —m) (g(Xi) — py)
NZ < = py) Xi =m)7 (9(Xi) — py) (9(X)) — uy)>
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Unscented Transform Approximation of Non-Linear
Transforms [1/3]

Unscented transform

The unscented transform approximation to the joint distribution
of x and y = g(x) + g where x ~ N(m,P) and q ~ N(0,Q) is

) (%) (e <)

The sub-matrices are formed as follows:
@ Form the matrix of sigma points X as

X=[m - ml+VatA[0 VP —VP.

[continues in the next slide. . . ]

4
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Unscented Transform Approximation of Non-Linear
Transforms [2/3]

Unscented transform (cont.)

@ Propagate the sigma points through g(-):
Yi=9(X;)), i=1...2n+1,

@ The sub-matrices are then given as:
Hu= Z W/(—”? Yi
i
Su=Y W (Yi—py)(Yi—py) +Q
i

Cu=> WO X —m)(Y;—uy),
i

4
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Unscented Transform Approximation of Non-Linear
Transforms [3/3]

Unscented transform (cont.)

@ \is a scaling parameter defined as A = o2 (n+ k) — n.
9@ « and x determine the spread of the sigma points.
o Weights W™ and W'® are given as follows:

W™ = A/(n+ )

WS = A/(n+ )+ (1 - a? + )
W™ =1/{2(n+\)}, i=1,...,2n
W =1/{2(n+A)}, i=1,....2n,

@ (3 can be used for incorporating prior information on the
(non-Gaussian) distribution of x.

4
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Linearization/UT Example

o u“‘f\:'-m%:".ﬂ‘i'n:a'.";., e

d

% =exp(—y1), y1(0) = x4
dy: 1

d—t2 = —EYS’ ¥2(0) = X
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Linearization Approximation
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UT Approximation

Simo Sarkka



Unscented Kalman Filter (UKF): Derivation [1/4]

@ Assume that the filtering distribution of previous step is
Gaussian
P(Xk—1 [ Y1:k—1) = N(Xk—1 | My_1,Px_1)

@ The joint distribution of x,_1 and xx = f(Xx_1) + qx_1 can
be approximated with UT as Gaussian

~ Xk—1 m; Py Pl
p(xk—hxka |y1:k—1) ~N <|: Xj :| ‘ <m/2> ) <(P/12)T P/22 )

@ Form the sigma points X; of x,_1 ~ N(mk_J,Pk_1) and
compute the transformed sigma points as X; = f(X;).
@ The expected values can now be expressed as:

!
my = Mmy_4
I (m) .
m; = Z W7 Xi
i
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Unscented Kalman Filter (UKF): Derivation [2/4]

@ The blocks of covariance can be expressed as:
Py = Pk
2 —ZW” X; —my_y) (X; — my)”

P2 = Z W 2) (Xi —mp)T + Q4

@ The prediction mean and covariance of x, are then m5, and
P,,, and thus we get

m = > WX,
i
P; — Z VVI(f% ()A(, — m;) ()A(, — m;)T + Qg_1

i
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Unscented Kalman Filter (UKF): Derivation [3/4]

@ For the joint distribution of xx and yx = h(xx) + r¢ we
similarly get

~ Xk my PY,  Pi,
p(xk’yka ‘y1:k—1) ~ N <|:yk:| ‘ <m/2/> ) <(P/1/2)T P/2/2 )

o If X;” are the sigma points of x, ~ N(m,,P,’) and
Y; =1f(X;), we get:

mj =m,
mg =3 WY,
i

P/, = Z WX —mp) (Vi —m3)T

22—ZW1(Y m3) (Y, —mj)" + Ry
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Unscented Kalman Filter (UKF): Derivation [4/4]

@)

x|y~N@+CB'(y—b),A—CB~'C’).

then

@ Thus we get the conditional mean and covariance:

my = m, + PY, (P32) " (yx —mj
P« =P, — P/, (P52) ™" (P12)".
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Unscented Kalman Filter (UKF): Algorithm [1/3]

Unscented Kalman filter: Prediction step
@ Form the matrix of sigma points:

Xt =M1 mq] +vVn+ A0 /Py —/Pr_i]-

@ Propagate the sigma points through the dynamic model:
Xei=FXk 1), i=1...2n+1.
@ Compute the predicted mean and covariance:
m =Y W Ky
i

Pr =3 W (R — mye) (Riei — my)T + Qs
i

v
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Unscented Kalman Filter (UKF): Algorithm [2/3]

Unscented Kalman filter: Update step

@ Form the matrix of sigma points:

X, =[m, - m;]+\/n+—/\{o \/E —\/E}.

@ Propagate sigma points through the measurement model:

Yii=h(X.), i=1..2n+1
© Compute the following terms:
Hk = Z W/(—n? Vi
i

Sk=)_ W (Ve — i) (Yiei — k)T + R
i

_ () ry— —\ (Y, . T
Cy = Z Wizt (X —my) (Yei — 1) -



Unscented Kalman Filter (UKF): Algorithm [3/3]

Unscented Kalman filter: Update step (cont.)

@ Compute the filter gain K, and the filtered state mean my
and covariance Py, conditional to the measurement y:
Kk = Ck S,
my = m, + Kk [yx — 1]
P« = P, — Kk SkK].
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Unscented Kalman Filter (UKF): Example

@ Recall the discretized pendulum model

5 X+ x2_ At 0
2] =2 " osinx! VAt T
Xc X1 — g sin(xy_4) qk—1

f(xk—1)
Yk = sin(x}) +rk,
——
h(xk)

@ = Matlab demonstration
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Unscented Kalman Filter (UKF): Advantages

@ No closed form derivatives or expectations needed.

@ Not a local approximation, but based on values on a larger
area.

@ Functions f and h do not need to be differentiable.

@ Theoretically, captures higher order moments of
distribution than linearization.
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Unscented Kalman Filter (UKF): Disadvantage

@ Not a truly global approximation, based on a small set of
trial points.

@ Does not work well with nearly singular covariances, i.e.,
with nearly deterministic systems.

@ Requires more computations than EKF or SLF, e.g.,
Cholesky factorizations on every step.

@ Can only be applied to models driven by Gaussian noises.
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Gaussian Moment Matching [1/2]

@ Consider the transformation of x into y:

X ~ N(m,P)
y = g(x).

@ Form Gaussian approximation to (x,y) by directly
approximating the integrals:

oy = / g(x) N(x | m, P) dx
Sy = / (9(X) — 1141) ((X) — pas)T N(X| M, P) 0Ix

Cu = [(x—m)(@(x) ~ )T N(x | m. P) .
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Gaussian Moment Matching [2/2]

Gaussian moment matching

The moment matching based Gaussian approximation to the
joint distribution of x and the transformed random variable
y = d(x) + q where x ~ N(m, P) and q ~ N(0, Q) is given as

)~ () (g s)): (1)
where

iy = / g(x) N(x|m, P) dx
Su= [ (@)~ i) @) — )" N(x|m.PYox+Q (@)

Cu = / (x —m) (@(x) — s4s)” N(x| m, P) dx.

v
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Gaussian Assumed Density Filter [1/3]

Gaussian assumed density filter prediction

m, = /f(xk_1) N(Xk—1 | My_1,Pr_1) dXg_

Py = / (F(Xk1) — M) ((x_1) —m)T

X N(Xk_1|mMg_1,Pr_1) dX_1 + Qx_1.
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Gaussian Assumed Density Filter [2/3]

Gaussian assumed density filter update

Uy = /h(xk) N(xx [m,, P, ) dXxk

Sic— [ (h(xk) — 1) (X&) — )T NOx | mi P) o+ R
Cic= [ (o~ m) (hlxe) — ) NOxe my Py) e

Kk = Ck S’

my =m, + Ky (Ve — pg)
Py =P, — K SkK].
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Gaussian Assumed Density Filter [3/3]

@ Special case of assumed density filtering (ADF).

@ Multidimensional Gauss-Hermite quadrature = Gauss
Hermite Kalman filter (GHKF).

@ Cubature integration = Cubature Kalman filter (CKF).

@ Monte Carlo integration = Monte Carlo Kalman filter
(MCKEF).

@ Gaussian process / Bayes-Hermite Kalman filter: Form
Gaussian process regression model from set of sample
points and integrate the approximation.

@ Linearization, unscented transform, central differences,
divided differences can be considered as special cases.
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@ Unscented transform (UT) approximates transformations of
Gaussian variables by propagating sigma points through
the non-linearity.

@ In UT the mean and covariance are approximated as linear
combination of the sigma points.

@ The unscented Kalman filter uses unscented transform for
computing the approximate means and covariance in
non-linear filtering problems.

@ A non-linear transformation can also be approximated with
Gaussian moment matching.

@ Gaussian assumed density filter is based on matching the
moments with numerical integration = many kinds of
Kalman filters.
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Matlab Demo

[Tracking of pendulum with EKF, SLF and UKF]
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