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EKF Filtering Model

Basic EKF filtering model is of the form:

xk = f(xk−1) + qk−1

yk = h(xk) + rk ,

xk ∈ R
n is the state

yk ∈ R
m is the measurement

qk−1 ∼ N(0, Qk−1) is the Gaussian process noise

rk ∼ N(0, Rk ) is the Gaussian measurement noise

f(·) is the dynamic model function

h(·) is the measurement model function.
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Bayesian Optimal Filtering Equations

The EKF model is clearly a special case of probabilistic

state space models with

p(xk |xk−1) = N(xk | f(xk−1), Qk−1)

p(yk |xk ) = N(yk |h(xk ), Rk )

Recall the formal optimal filtering solution:

p(xk |y1:k−1) =

∫

p(xk |xk−1) p(xk−1 |y1:k−1) dxk−1

p(xk |y1:k) =
1

Zk
p(yk |xk ) p(xk |y1:k−1)

No closed form solution for non-linear f and h.
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The Idea of Extended Kalman Filter

In EKF, the non-linear functions are linearized as follows:

f(x) ≈ f(m) + Fx(m) (x − m)

h(x) ≈ h(m) + Hx(m) (x − m)

where x ∼ N(m, P), and Fx, Hx are the Jacobian matrices

of f, h, respectively.

Only the first terms in linearization contribute to the

approximate means of the functions f and h.

The second term has zero mean and defines the

approximate covariances of the functions.

Let’s take a closer look at transformations of this kind.
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Linear Approximations of Non-Linear Transforms [1/4]

Consider the transformation of x into y:

x ∼ N(m, P)

y = g(x).

The probability density of y is now non-Gaussian:

p(y) = |J(y)| N(g−1(y) |m, P),

Taylor series expansion of g on mean m:

g(x) = g(m + δx) = g(m) + Gx(m) δx

+
∑

i

1

2
δxT G

(i)
xx(m) δx ei + . . .

where δx = x − m.
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Linear Approximations of Non-Linear Transforms [2/4]

First order, that is, linear approximation:

g(x) ≈ g(m) + Gx(m) δx

Taking expectations on both sides gives approximation of

the mean:

E[g(x)] ≈ g(m)

For covariance we get the approximation:

Cov[g(x)] = E
[

(g(x) − E[g(x)]) (g(x) − E[g(x)])T
]

≈ E
[

(g(x) − g(m)) (g(x) − g(m))T
]

≈ Gx(m) P GT
x (m)
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Linear Approximations of Non-Linear Transforms [3/4]

In EKF we will need the joint covariance of x and g(x) + q,

where q ∼ N(0, Q).

Consider the pair of transformations

x ∼ N(m, P)

q ∼ N(0, Q)

y1 = x

y2 = g(x) + q.

Keeping q fixed and applying the linear approximation

gives

E

[(
x

g(x) + q

) ∣
∣
∣ q

]

≈

(
m

g(m) + q

)

Cov

[(
x

g(x) + q

) ∣
∣
∣ q

]

≈

(
P P GT

x (m)

Gx(m) P Gx(m) P GT
x (m)

)
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Linear Approximations of Non-Linear Transforms [4/4]

Taking expectation w.r.t. random variable q just adds Q to

the lower right block of covariance, thus we get:

Linear Approximation of Non-Linear Transform

The linear Gaussian approximation to the joint distribution of x

and y = g(x) + q, where x ∼ N(m, P) and q ∼ N(0, Q) is

(
x

y

)

∼ N

((
m

µL

)

,

(
P CL

CT
L SL

))

,

where

µL = g(m)

SL = Gx(m) P GT
x (m) + Q

CL = P GT
x (m).
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Derivation of EKF [1/4]

Assume that the filtering distribution of previous step is

Gaussian

p(xk−1 |y1:k−1) ≈ N(xk−1 |mk−1, Pk−1)

The joint distribution of xk−1 and xk = f(xk−1) + qk−1 is

non-Gaussian, but can be approximated linearly as

p(xk−1, xk , |y1:k−1) ≈ N

([
xk−1

xk

] ∣
∣
∣ m′, P′

)

,

where

m′ =

(
mk−1

f(mk−1)

)

P′ =

(
Pk−1 Pk−1 FT

x (mk−1)

Fx(mk−1) Pk−1 Fx (mk−1) Pk−1 FT
x (mk−1) + Qk−1

)

.
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Derivation of EKF [2/4]

Recall that if x and y have the joint Gaussian probability

density
(

x

y

)

∼ N

((
a

b

)

,

(
A C

CT B

))

,

then

y ∼ N(b, B)

Thus, the approximate predicted distribution of xk given

y1:k−1 is Gaussian with moments

m−
k = f(mk−1)

P−
k = Fx(mk−1) Pk−1 FT

x (mk−1) + Qk−1
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Derivation of EKF [3/4]

The joint distribution of xk and yk = h(xk) + rk is also

non-Gaussian, but by linear approximation we get

p(xk , yk |y1:k−1) ≈ N

([
xk

yk

] ∣
∣
∣ m′′, P′′

)

,

where

m′′ =

(
m−

k

h(m−
k )

)

P′′ =

(
P−

k P−
k HT

x (m−
k )

Hx(m
−
k ) P−

k Hx(m
−
k ) P−

k HT
x (m−

k ) + Rk

)
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Derivation of EKF [4/4]

Recall that if

(
x

y

)

∼ N

((
a

b

)

,

(
A C

CT B

))

,

then

x |y ∼ N(a + C B−1 (y − b), A − C B−1CT ).

Thus we get

p(xk |yk , y1:k−1) ≈ N(xk |mk , Pk ),

where

mk = m−
k + P−

k HT
x (Hx P−

k HT
x + Rk)−1[yk − h(m−

k )]

Pk = P−
k − P−

k HT
x (Hx P−

k HT
x + Rk)−1 Hx P−

k
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EKF Equations

Extended Kalman filter

Prediction:

m−
k = f(mk−1)

P−
k = Fx(mk−1) Pk−1 FT

x (mk−1) + Qk−1.

Update:

vk = yk − h(m−
k )

Sk = Hx(m
−
k ) P−

k HT
x (m−

k ) + Rk

Kk = P−
k HT

x (m−
k ) S−1

k

mk = m−
k + Kk vk

Pk = P−
k − Kk Sk KT

k .
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EKF Example [1/2]

Pendulum with mass m = 1, pole length

L = 1 and random force w(t):

d2θ

dt2
= −g sin(θ) + w(t).

In state space form:

d

dt

(
θ

dθ/dt

)

=

(
dθ/dt

−g sin(θ)

)

+

(
0

w(t)

)

Assume that we measure the x-position:

yk = sin(θ(tk )) + rk ,
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EKF Example [2/2]

If we define state as x = (θ, dθ/dt), by Euler integration

with time step ∆t we get

(
x1

k

x2
k

)

=

(
x1

k−1 + x2
k−1 ∆t

x2
k−1 − g sin(x1

k−1)∆t

)

︸ ︷︷ ︸

f(xk−1)

+

(
0

qk−1

)

yk = sin(x1
k )

︸ ︷︷ ︸

h(xk−1)

+rk ,

The required Jacobian matrices are:

Fx(x) =

(
1 ∆t

−g cos(x1)∆t 1

)

, Hx (x) =
(
cos(x1) 0

)
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Advantages of EKF

Almost same as basic Kalman filter, easy to use.

Intuitive, engineering way of constructing the

approximations.

Works very well in practical estimation problems.

Computationally efficient.

Theoretical stability results well available.
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Limitations of EKF

Does not work in considerable non-linearities.

Only Gaussian noise processes are allowed.

Measurement model and dynamic model functions need to

be differentiable.

Computation and programming of Jacobian matrices can

be quite error prone.
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The Idea of Statistically Linearized Filter

In SLF, the non-linear functions are statistically linearized

as follows:

f(x) ≈ bf + Af (x − m)

h(x) ≈ bh + Ah (x − m)

where x ∼ N(m, P).

The parameters bf , Af and bh, Ah are chosen to minimize

the mean squared errors of the form

MSEf (bf , Af ) = E[||f(x) − bf − Af δx)||2]

MSEh(bh, Ah) = E[||h(x) − bh − Ah δx||2]

where δx = x − m.

Describing functions of the non-linearities with Gaussian

input.
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Statistical Linearization of Non-Linear Transforms [1/4]

Again, consider the transformations

x ∼ N(m, P)

y = g(x).

Form linear approximation to the transformation:

g(x) ≈ b + A δx,

where δx = x − m.

Instead of using the Taylor series approximation, we

minimize the mean squared error:

MSE(b, A) = E[(g(x) − b − A δx)T (g(x) − b − A δx)]
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Statistical Linearization of Non-Linear Transforms [2/4]

Expanding the MSE expression gives:

MSE(b, A) = E[gT (x) g(x) − 2 gT (x) b − 2 gT (x) A δx

+ bT b − 2 bT A δx
︸ ︷︷ ︸

=0

+ δxT AT A δx
︸ ︷︷ ︸

tr{A P AT }

]

Derivatives are:

∂MSE(b, A)

∂b
= −2 E[g(x)] + 2 b

∂MSE(b, A)

∂A
= −2 E[g(x) δxT ] + 2 A P
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Statistical Linearization of Non-Linear Transforms [3/4]

Setting derivatives with respect to b and A zero gives

b = E[g(x)]

A = E[g(x) δxT ] P−1.

Thus we get the approximations

E[g(x)] ≈ E[g(x)]

Cov[g(x)] ≈ E[g(x) δxT ] P−1 E[g(x) δxT ]T .

The mean is exact, but the covariance is approximation.

The expectations have to be calculated in closed form!
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Statistical Linearization of Non-Linear Transforms [4/4]

Statistical linearization

The statistically linearized Gaussian approximation to the joint

distribution of x and y = g(x) + q where x ∼ N(m, P) and

q ∼ N(0, Q) is given as

(
x

y

)

∼ N

((
m

µS

)

,

(
P CS

CT
S SS

))

,

where

µS = E[g(x)]

SS = E[g(x) δxT ] P−1 E[g(x) δxT ]T + Q

CS = E[g(x) δxT ]T .
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Statistically Linearized Filter [1/2]

The statistically linearized filter (SLF) can be derived in the

same manner as EKF.

Statistical linearization is used instead of Taylor series

based linearization.

Requires closed form computation of the following

expectations for arbitrary x ∼ N(m, P):

E[f(x)]

E[f(x) δxT ]

E[h(x)]

E[h(x) δxT ],

where δx = x − m.
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Statistically Linearized Filter [2/2]

Statistically linearized filter

Prediction (expectations w.r.t. xk ∼ N(mk−1, Pk−1)):

m−
k = E[f(xk−1)]

P−
k = E[f(xk−1) δxT

k−1] P−1
k−1 E[f(xk−1) δxT

k−1]
T + Qk−1,

Update (expectations w.r.t. xk ∼ N(m−
k , P−

k )):

vk = yk − E[h(xk )]

Sk = E[h(xk) δxT
k ] (P−

k )−1 E[h(xk ) δxT
k ]T + Rk

Kk = E[h(xk) δxT
k ]T S−1

k

mk = m−
k + Kk vk

Pk = P−
k − Kk Sk KT

k .
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Statistically Linearized Filter: Example [1/2]

Recall the discretized pendulum model

(
x1

k

x2
k

)

=

(
x1

k−1 + x2
k−1 ∆t

x2
k−1 − g sin(x1

k−1)∆t

)

︸ ︷︷ ︸

f(xk−1)

+

(
0

qk−1

)

yk = sin(x1
k )

︸ ︷︷ ︸

h(xk−1)

+rk ,

If x ∼ N(m, P), by brute-force calculation we get

E[f(x)] =

(
m1 + m2 ∆t

m2 − g sin(m1) exp(−P11/2)∆t

)

E[h(x)] = sin(m1) exp(−P11/2)
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Statistically Linearized Filter: Example [2/2]

The required cross-correlation for prediction step is

E[f(x) (x − m)T ] =

(
c11 c12

c21 c22

)

,

where

c11 = P11 + ∆t P12

c12 = P12 + ∆t P22

c21 = P12 − g ∆t cos(m1) P11 exp(−P11/2)

c22 = P22 − g ∆t cos(m1) P12 exp(−P11/2)

The required term for update step is

E[h(x) (x − m)T ] =

(
cos(m1) P11 exp(−P11/2)
cos(m1) P12 exp(−P11/2)

)
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Advantages of SLF

Global approximation, linearization is based on a range of

function values.

Often more accurate and more robust than EKF.

No differentiability or continuity requirements for

measurement and dynamic models.

Jacobian matrices do not need to be computed.

Often computationally efficient.
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Limitations of SLF

Works only with Gaussian noise terms.

Expected values of the non-linear functions have to be

computed in closed form.

Computation of expected values is hard and error prone.

If the expected values cannot be computed in closed form,

there is not much we can do.

Simo Särkkä Lecture 4: EKF and SLF



Summary

EKF and SLF can be applied to filtering models of the form

xk = f(xk−1) + qk−1

yk = h(xk) + rk ,

EKF is based on Taylor series expansions of the non-linear

functions f and h.

Advantages: Simple, intuitive, computationally efficient

Disadvantages: Local approximation, differentiability

requirements, only for Gaussian noises.

SLF is based on statistical linearization of the
non-linearities:

Advantages: Global approximation, no differentiability
requirements, computationally efficient

Disadvantages: Closed form computation of expectations,

only for Gaussian noises.
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