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EKF Filtering Model

Basic EKF filtering model is of the form:

Xk = f(Xk—1) + Qk_1
Yk = h(Xg) + 1,

9 x4 € R"is the state

@ Yy, € R™is the measurement

@ gx_1 ~ N(0,Qk_1) is the Gaussian process noise
@ rx ~ N(0, Rg) is the Gaussian measurement noise
@ f(-) is the dynamic model function

@ h(-) is the measurement model function.
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Bayesian Optimal Filtering Equations

@ The EKF model is clearly a special case of probabilistic
state space models with

P(Xk | Xk—1) = N(Xk | f(Xk_1), Qk_1)
P(Yk | Xk) = N(Yk | h(Xk), Rk)

@ Recall the formal optimal filtering solution:

P(Xk | Y1:k—1) = /P(Xklxk—1)P(Xk—1 | Y1:k—1) dXk_1
1
P(Xk |Y1:k) = ZP(Vk | Xk) P(Xk | Y1:k—1)

@ No closed form solution for non-linear f and h.

Simo Sarkka Lecture 4: EKF and SLF



The Idea of Extended Kalman Filter

@ In EKF, the non-linear functions are linearized as follows:

f(x) ~ f(m) + Fx(m) (x — m)

h(x) = h(m) + Hy(m) (x — m)
where x ~ N(m,P), and Fyx, Hy are the Jacobian matrices
of f, h, respectively.

@ Only the first terms in linearization contribute to the
approximate means of the functions f and h.

@ The second term has zero mean and defines the
approximate covariances of the functions.

@ Let’s take a closer look at transformations of this kind.
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Linear Approximations of Non-Linear Transforms [1/4]

@ Consider the transformation of x into y:
X ~ N(m,P)
y =g(x).

@ The probability density of y is now non-Gaussian:

p(y) = 1(y)l N(g~"(y) | m,P),
@ Taylor series expansion of g on mean m:
g(x) = g(m + 6x) = g(m) + Gix(m) ox

+ Z 6xTG(') (m)éxe; +

where ix = X — m.
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Linear Approximations of Non-Linear Transforms [2/4]

@ First order, that is, linear approximation:
g(x) ~ g(m) + Gx(m) 6x

@ Taking expectations on both sides gives approximation of
the mean:

Elg(x)] ~ g(m)
@ For covariance we get the approximation:
Covlg(x)] = E [ (g(x) — Elg(x)]) (9(x) - Elg(x)])’ |

~E [(g(x) —g(m)) (9(x) — g(m))r]
~ Gx(m)P G (m)
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Linear Approximations of Non-Linear Transforms [3/4]

@ In EKF we will need the joint covariance of x and g(x) + q,
where g ~ N(0, Q).
@ Consider the pair of transformations
X ~ N(m,P)
q-~ N(ov Q)
Yi=X
y2 =4g(X)+q.
@ Keeping q fixed and applying the linear approximation
gives

: Kg(x;(+ q> ‘q] ~ (g(m';]+ q)

Cov [(g(x;(+ q) ‘Q] & <GX(I:n)P Gx(l:nc)ig(Gn?(m)>
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Linear Approximations of Non-Linear Transforms [4/4]

@ Taking expectation w.r.t. random variable q just adds Q to
the lower right block of covariance, thus we get:

Linear Approximation of Non-Linear Transform

The linear Gaussian approximation to the joint distribution of x
andy = g(x) + g, where x ~ N(m,P) and g ~ N(0, Q) is

()~ (GR)- (et 1))

where
pp =g(m)
S. = Gx(m)PG](m) +Q
C.=PG/(m).
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Derivation of EKF [1/4]

@ Assume that the filtering distribution of previous step is
Gaussian

P(Xk—1|Y1:k-1) = N(Xk_1 [ mMy_1,Px_1)

@ The joint distribution of x,x_1 and x, = f(Xx_1) + qQx_1 is
non-Gaussian, but can be approximated linearly as

Xk—
P13 [yace) = N ([ )

p_ < P Pi_1 Fr(my_1) ) ‘
Fr(Mk_1)Pr—1 Fx(My_1)Px_1 FT(Mk_1) + Qx_1
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Derivation of EKF [2/4]

@ Recall that if x and y have the joint Gaussian probability

()& )

y ~ N(b,B)

then

@ Thus, the approximate predicted distribution of x, given
Yi.k—1 is Gaussian with moments

m, = f(my_+)
P = Fx(my_1)Px_1 FI(my_1) + Qx4
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Derivation of EKF [3/4]

@ The joint distribution of x, and yx = h(xy) + r is also
non-Gaussian, but by linear approximation we get

~ Xk " p
P(Xk, Yi | Y1:k-1) = N <[yk] ‘m ,P );

where
-8
h(m,)
P’ — ( P; P; HI(m;) >
Hx(m; ) Py Hx(m) P HY(m) + R
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@ Recall that if
()M (E) (e 8)):

x|y~N@+CB'(y-—b),A-CB~'C’).

then

@ Thus we get

P(Xk | Yk: Y1:k—1) = N(Xx | My, Py),
where

my = m; + P, Hy (Hx P, Hy + Ry)~'[yx — h(m,)]
Py =P, — P, Hy (Hx P, Hy + R)™" He P
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EKF Equations
Extended Kalman filter

@ Prediction:

m, = f(my_+)
Py = Fx(mi_1) Px_1 F{(my_1) + Qy_1.

o Update:
Vi =Yk —h(m,)
Sk = Hx(m; ) P, Hl (m,) + Ry
Kk = P Hy(m}) S}’
m, =m, + Ky vy
Py =P, — K SkK].
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EKF Example [1/2]

@ Pendulum with mass m = 1, pole length
L =1 and random force w(t):

a9 :
| g2 =9 sin(0) + w(t).
:'é @ In state space form:
| d( 9 \_( dojat \, (0
oo dt \d¢/dt) — \—g sin(6) w(t)

@ Assume that we measure the x-position:

Yk = sin(0()) + r,
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EKF Example [2/2]

o If we define state as x = (0, df/dt), by Euler integration
with time step At we get

X\ X} +xE_ At (0
)= L “gsind_a) * g

v~

f(xk—1)
Vi = sin(xg) +1k,
S——
h(xk—1)

@ The required Jacobian matrices are:

1 At
—gcos(x')At 1

Fx(x) = ( > . Hx(x) = (cos(x") 0)
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Advantages of EKF

@ Almost same as basic Kalman filter, easy to use.

@ Intuitive, engineering way of constructing the
approximations.

@ Works very well in practical estimation problems.
@ Computationally efficient.
@ Theoretical stability results well available.
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Limitations of EKF

@ Does not work in considerable non-linearities.
@ Only Gaussian noise processes are allowed.

@ Measurement model and dynamic model functions need to
be differentiable.

@ Computation and programming of Jacobian matrices can
be quite error prone.
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The Idea of Statistically Linearized Filter

@ In SLF, the non-linear functions are statistically linearized
as follows:

f(x) ~ bs + Af (x —m)
h(x) = by + Ay (x —m)
where x ~ N(m, P).
@ The parameters by, Af and by, A, are chosen to minimize
the mean squared errors of the form
MSEy(by, Af) = E[|[f(x) — by — Ar %)|?]
MSEp(bp, Ap) = E[||h(X) — by — Ay 6X||?]

where ix = x — m.

@ Describing functions of the non-linearities with Gaussian
input.
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Statistical Linearization of Non-Linear Transforms [1/4]

@ Again, consider the transformations
X ~ N(m,P)
y =g(x).
@ Form linear approximation to the transformation:
g(x) =~ b + Adx,

where X = X — m.

@ Instead of using the Taylor series approximation, we
minimize the mean squared error:

MSE(b, A) = E[(g(x) — b — Adx)7(g(x) — b — Adx)]
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Statistical Linearization of Non-Linear Transforms [2/4]

@ Expanding the MSE expression gives:

MSE(b,A) = E[g" (x)g(x) —29g"(x)b —2g7(x) Adx
+b"b—2b" Aox+ox” AT Aox]
—_——— N———

=0 tr{APAT}
@ Derivatives are:
OMSE(b, A
% = —2E[g(x)] +2b
OMSE(b,A)

_ T
A = —2E[g(x)ox'] +2AP
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Statistical Linearization of Non-Linear Transforms [3/4]

@ Setting derivatives with respect to b and A zero gives

b = E[g(x)]
A =E[g(x)ox"]P~",

@ Thus we get the approximations

E[g(x)] ~ E[g(x)]
Cov[g(x)] ~ E[g(x)éx"]P~" E[g(x)ox"] .

@ The mean is exact, but the covariance is approximation.
@ The expectations have to be calculated in closed form!
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Statistical Linearization of Non-Linear Transforms [4/4]

Statistical linearization

The statistically linearized Gaussian approximation to the joint
distribution of x and y = g(x) + q where x ~ N(m, P) and
q ~ N(0,Q) is given as

()~ () (& <)),

ps = E[g(x)]
Ss=E[g(x)ox"]P~! E[g(x)ox"]" + Q
Cs = E[g(x)ox"]".

where
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Statistically Linearized Filter [1/2]

@ The statistically linearized filter (SLF) can be derived in the
same manner as EKF.

@ Statistical linearization is used instead of Taylor series
based linearization.

@ Requires closed form computation of the following
expectations for arbitrary x ~ N(m, P):

E[f(x)]
E[f(x) ox"]
E[h(x)]
E[h(x)ox],

where ix = x — m.
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Statistically Linearized Filter [2/2]

Statistically linearized filter

@ Prediction (expectations w.r.t. X, ~ N(my_1,Px_1)):

m; = E[f(xk_1)]
Py = E[f(xx_1) 0x]_{ 1P, E[f(xk_1)0x]_{]" + Qx_1,

@ Update (expectations w.r.t. X, ~ N(m,, P, )):

Vi = Yk — E[h(x4)]

Sk = E[h(xx) ox¢] (P )" E[h(xx) 5x{]” + Ry
Kk = E[h(xx) ox/]" S,

my = m, + Kgvg

P« = P, — Kk SkK].

4
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Statistically Linearized Filter: Example [1/2]

@ Recall the discretized pendulum model

SN X+ X2 At 0
2] =2 " osinx! VAt T
X X1 — g sin(xy_4) qk—1

v~

f(xk—1)
Yk = sin(x}) +r,
——

h(xk_1)

@ If x ~ N(m, P), by brute-force calculation we get

my + mo At
E[f(X)] = <m2 —g Sin(f;"h) exzp(_Pﬂ/z)At)

E[h(x)] = sin(my) exp(—P11/2)
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Statistically Linearized Filter: Example [2/2]

@ The required cross-correlation for prediction step is

Effo) (x - m)"] = (1 92)),

where

Ci1 = Py + At Py
Ci2 = Pi2 + At Py
Co1 = P1a — g At cos(my) Py exp(—P11/2)
Co2 = Pay — g At cos(my) Pr2 exp(—Pi1/2)

@ The required term for update step is
Pi1 exp(—P11/2)
Elh(x) (X — m T — COS(m1) 11
(GO )] <cos(m1)P12 exp(—P11/2)

Simo Sarkka Lecture 4: EKF and SLF



Advantages of SLF

@ Global approximation, linearization is based on a range of
function values.

@ Often more accurate and more robust than EKF.

@ No differentiability or continuity requirements for
measurement and dynamic models.

@ Jacobian matrices do not need to be computed.
@ Often computationally efficient.
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Limitations of SLF

@ Works only with Gaussian noise terms.

@ Expected values of the non-linear functions have to be
computed in closed form.

@ Computation of expected values is hard and error prone.

o If the expected values cannot be computed in closed form,
there is not much we can do.
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@ EKF and SLF can be applied to filtering models of the form

X = F(Xk_1) + Q1
Yk = h(xg) +r,

@ EKF is based on Taylor series expansions of the non-linear
functions f and h.

o Advantages: Simple, intuitive, computationally efficient
o Disadvantages: Local approximation, differentiability
requirements, only for Gaussian noises.

@ SLF is based on statistical linearization of the
non-linearities:

o Advantages: Global approximation, no differentiability
requirements, computationally efficient

o Disadvantages: Closed form computation of expectations,
only for Gaussian noises.
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