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Probabilistics State Space Models: General Model

General probabilistic state space model:

measurement model: yk ∼ p(yk |xk )

dynamic model: xk ∼ p(xk |xk−1)

xk = (xk1, . . . , xkn) is the state and yk = (yk1, . . . , ykm) is

the measurement.

Has the form of hidden Markov model (HMM):

observed: y1 y2 y3 y4

hidden: x1 x2 x3 x4 . . .
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Probabilistics State Space Models: Example

Example (Gaussian random walk)

Gaussian random walk model can be written as

xk = xk−1 + wk−1, wk−1 ∼ N(0, q)

yk = xk + ek , ek ∼ N(0, r),

where xk is the hidden state and yk is the measurement. In

terms of probability densities the model can be written as

p(xk | xk−1) =
1

√

2πq
exp

(

− 1

2q
(xk − xk−1)

2

)

p(yk | xk ) =
1√
2πr

exp

(

− 1

2r
(yk − xk )2

)

which is a discrete-time state space model.
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Probabilistics State Space Models: Example (cont.)

Example (Gaussian random walk (cont.))
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Probabilistics State Space Models: Further Examples

Linear Gauss-Markov model:

xk = Ak−1 xk−1 + qk

yk = Hk xk + rk ,

Gaussian driven non-linear model:

xk = f(xk−1, qk )

yk = h(xk , rk ).

Hierarchical and/or non-Gaussian models

qk ∼ Dirichlet(qk |α)

xk = f(xk−1, qk )

σ2
k ∼ InvGamma(σ2

k |σ2
k−1, γ)

rk ∼ N(0, σ2
k I)

yk = h(xk , rk ).
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Probabilistics State Space Models: Markov and

Independence Assumptions

The dynamic model p(xk |xk−1) is Markovian:

1 Future xk is independent of the past given the present (here

“present” is xk−1):

p(xk | x1:k−1, y1:k−1) = p(xk | xk−1).

2 Past xk−1 is independent of the future given the present

(here “present” is xk ):

p(xk−1 | xk :T , yk :T ) = p(xk−1 | xk ).

The measurements yk are conditionally independent given

xk :

p(yk |x1:k , y1:k−1) = p(yk |xk ).
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Bayesian Optimal Filter: Principle

Bayesian optimal filter computes the distribution

p(xk |y1:k )

Given the following:
1 Prior distribution p(x0).
2 State space model:

xk ∼ p(xk | xk−1)

yk ∼ p(yk | xk ),

3 Measurement sequence y1:k = y1, . . . , yk .

Computation is based on recursion rule for incorporation of

the new measurement yk into the posterior:

p(xk−1 |y1:k−1) −→ p(xk |y1:k )
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Bayesian Optimal Filter: Derivation of Prediction Step

Assume that we know the posterior distribution of previous

time step:

p(xk−1 |y1:k−1).

The joint distribution of xk , xk−1 given y1:k−1 can be

computed as (recall the Markov property):

p(xk , xk−1 |y1:k−1) = p(xk |xk−1, y1:k−1) p(xk−1 |y1:k−1)

= p(xk |xk−1) p(xk−1 |y1:k−1),

Integrating over xk−1 gives the Chapman-Kolmogorov

equation

p(xk |y1:k−1) =

∫

p(xk |xk−1) p(xk−1 |y1:k−1) dxk−1.

This is the prediction step of the optimal filter.
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Bayesian Optimal Filter: Derivation of Update Step

Now we have:
1 Prior distribution from the Chapman-Kolmogorov equation

p(xk | y1:k−1)

2 Measurement likelihood from the state space model:

p(yk | xk )

The posterior distribution can be computed by the Bayes’

rule (recall the conditional independence of

measurements):

p(xk |y1:k ) =
1

Zk
p(yk |xk , y1:k−1) p(xk |y1:k−1)

=
1

Zk

p(yk |xk ) p(xk |y1:k−1)

This is the update step of the optimal filter.
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Bayesian Optimal Filter: Formal Equations

Optimal filter

Initialization: The recursion starts from the prior distribution

p(x0).

Prediction: by the Chapman-Kolmogorov equation

p(xk |y1:k−1) =

∫

p(xk |xk−1) p(xk−1 |y1:k−1) dxk−1.

Update: by the Bayes’ rule

p(xk |y1:k ) =
1

Zk
p(yk |xk ) p(xk |y1:k−1),

The normalization constant Zk = p(yk |y1:k−1) is given as

Zk =

∫

p(yk |xk ) p(xk |y1:k−1) dxk .
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Bayesian Optimal Filter: Graphical Explanation

previous

current

dynamics

On prediction step the

distribution of previous

step is propagated

through the dynamics.

lhood
prior

Prior distribution from

prediction and the

likelihood of

measurement.

posterior

The posterior

distribution after

combining the prior

and likelihood by

Bayes’ rule.
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Kalman Filter: Model

Gaussian driven linear model, i.e., Gauss-Markov model:

xk = Ak−1 xk−1 + qk

yk = Hk xk + rk ,

qk ∼ N(0, Qk ) white process noise.

rk ∼ N(0, Rk ) white measurement noise.

Ak−1 is the transition matrix of the dynamic model.

Hk is the measurement model matrix.

In probabilistic terms the model is

p(xk |xk−1) = N(xk |Ak−1 xk−1, Qk )

p(yk |xk ) = N(yk |Hk xk , Rk ).
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Kalman Filter: Derivation Preliminaries

Gaussian probability density

N(x |m, P) =
1

(2 π)n/2 |P|1/2
exp

(

−1

2
(x − m)T P−1 (x − m)

)

,

Let x and y have the Gaussian densities

p(x) = N(x |m, P), p(y |x) = N(y |H x, R),

Then the joint and marginal distributions are

(
x

y

)

∼ N

((
m

H m

)

,

(
P P HT

H P H P HT + R

))

y ∼ N(H m, H P HT + R).
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Kalman Filter: Derivation Preliminaries (cont.)

If the random variables x and y have the joint Gaussian

probability density

(
x

y

)

∼ N

((
a

b

)

,

(
A C

CT B

))

,

Then the marginal and conditional densities of x and y are

given as follows:

x ∼ N(a, A)

y ∼ N(b, B)

x |y ∼ N(a + C B−1 (y − b), A − C B−1CT )

y |x ∼ N(b + CT A−1 (x − a), B − CT A−1 C).
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Kalman Filter: Derivation of Prediction Step

Assume that the posterior distribution of previous step is

Gaussian

p(xk−1 |y1:k−1) = N(xk−1 |mk−1, Pk−1).

The Chapman-Kolmogorov equation now gives

p(xk |y1:k−1) =

∫

p(xk |xk−1) p(xk−1 |y1:k−1) dxk−1

=

∫

N(xk |Ak−1 xk−1, Qk ) N(xk−1 |mk−1, Pk−1).

Using the Gaussian distributions computation rules from

previous slides, we get the prediction step

p(xk |y1:k−1) = N(xk |Ak−1 mk−1, Ak−1 Pk−1 AT
k−1, Qk )
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Kalman Filter: Derivation of Update Step

The joint distribution of yk and xk is

p(xk , yk |y1:k−1) = p(yk |xk ) p(xk |y1:k−1)

= N

([
xk

yk

] ∣
∣
∣ m′′, P′′

)

,

where

m′′ =

(
m−

k

Hk m−

k

)

P′′ =

(
P−

k P−

k HT
k

Hk P−

k Hk P−

k HT
k + Rk

)

.
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Kalman Filter: Derivation of Update Step (cont.)

The conditional distribution of xk given yk is then given as

p(xk |yk , y1:k−1) = p(xk |y1:k)

= N(xk |mk , Pk ),

where

Sk = Hk P−

k HT
k + Rk

Kk = P−

k HT
k S−1

k

mk = m−

k + Kk [yk − Hk m−

k ]

Pk = P−

k − Kk Sk KT
k .
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Kalman Filter: Equations

Kalman Filter

Initialization: x0 ∼ N(m0, P0)

Prediction step:

m−

k = Ak−1 mk−1

P−

k = Ak−1 Pk−1 AT
k−1 + Qk−1.

Update step:

vk = yk − Hk m−

k

Sk = Hk P−

k HT
k + Rk

Kk = P−

k HT
k S−1

k

mk = m−

k + Kk vk

Pk = P−

k − Kk Sk KT
k .
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Kalman Filter: Properties

Kalman filter can be applied only to linear Gaussian

models, for non-linearities we need e.g. EKF or UKF.

If several conditionally independent measurements are

obtained at a single time step, update step is simply

performed for each of them separately.

⇒ If the measurement noise covariance if diagonal (as

usually is), no matrix inversion is needed at all.

The covariance equation is independent of measurements

– the gain sequence could be computed and stored offline.

If the model is time-invariant, the gain converges to a

constant Kk → K and the filter becomes stationary:

mk = (A − K H A) mk−1 + K yk
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Kalman Filter: Random Walk Example

Example (Kalman filter for Gaussian random walk)

Filtering density is Gaussian

p(xk−1 | y1:k−1) = N(xk−1 |mk−1, Pk−1).

The Kalman filter prediction and update equations are

m−

k = mk−1

P−

k = Pk−1 + q

mk = m−

k +
P−

k

P−

k + r
(yk − m−

k )

Pk = P−

k − (P−

k )2

P−

k + r
.
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Kalman Filter: Random Walk Example (cont.)

Example (Kalman filter for Gaussian random walk (cont.))
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Kalman Filter: Car Tracking Example [1/4]

The dynamic model of the car tracking model from the first

lecture can be written is discrete form as follows:







xk

yk

ẋk

ẏk







=







1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1







︸ ︷︷ ︸

A







xk−1

yk−1

ẋk−1

ẏk−1







+ qk−1

where qk is zero mean with a covariance matrix Q.

Q =







qc
1 ∆t3/3 0 qc

1 ∆t2/2 0

0 qc
2 ∆t3/3 0 qc

2 ∆t2/2

qc
1 ∆t2/2 0 qc

1 ∆t 0

0 qc
2 ∆t2/2 0 qc

2 ∆t
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Kalman Filter: Car Tracking Example [2/4]

The measurement model can be written in form

yk =

(
1 0 0 0

0 1 0 0

)

︸ ︷︷ ︸

H







xk

yk

ẋk

ẏk







+ ek ,

where ek has the covariance

R =

(
σ2 0

0 σ2

)
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Kalman Filter: Car Tracking Example [3/4]

The Kalman filter prediction equations:

m−

k =







1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1







mk−1

P−

k =







1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1







Pk−1







1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1







T

+







qc
1 ∆t3/3 0 qc

1 ∆t2/2 0

0 qc
2 ∆t3/3 0 qc

2 ∆t2/2

qc
1 ∆t2/2 0 qc

1 ∆t 0

0 qc
2 ∆t2/2 0 qc

2 ∆t
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Kalman Filter: Car Tracking Example [4/4]

The Kalman filter update equations:

Sk =

(
1 0 0 0

0 1 0 0

)

P−

k

(
1 0 0 0

0 1 0 0

)T

+

(
σ2 0

0 σ2

)

Kk = P−

k

(
1 0 0 0

0 1 0 0

)T

S−1
k

mk = m−

k + Kk

(

yk −
(

1 0 0 0

0 1 0 0

)

m−

k

)

Pk = P−

k − Kk Sk KT
k

Simo Särkkä Lecture 3: Bayesian Optimal Filtering



Summary

Probabilistic state space models are generalizations of

hidden Markov models.

Special cases of such HMMs are e.g. linear Gaussian

models, non-linear filtering models.

Bayesian optimal filtering equations form the formal

solution to general optimal filtering problem.

The optimal filtering equations consist of prediction and

update steps.

Kalman filter is the closed form filtering solution to linear

Gaussian models.
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Matlab Demo: Kalman Filter Implementation

[Kalman filter for car tracking model]
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