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Batch Linear Regression [1/2]
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@ Consider the linear regression model
Yk = ar + ag by + ek,
with e ~ N(0,0?) and a = (a1, az) ~ N(mg, P).
@ In probabilistic notation this is:
Py |a) = N(yk | Hxa, 0%)
p(a) = N(a|mo, Po),
where H, = (1 ).

Simo Sarkka Lecture 2: From Linear Regression to Kalman Filter and Beyond



Batch Linear Regression [2/2]

@ The Bayesian batch solution by the Bayes’ rule:

N
p@alyin) < p@@) [ | p(vx |a)
k=1

N
= N(a|mg,Po) ] N(v« [Hka,0?).
k=1

@ The posterior is Gaussian
p(alyi.n) = N(@|my, Py).

@ The mean and covariance are given as

-1
my = [Pg‘ ;] HTH] [1 HTy+P51m0]

02 o2
1 -1
Py = [Pg‘ + HTH] ,

o2
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Recursive Linear Regression [1/3]

@ Assume that we have already computed the posterior
distribution, which is conditioned on the measurement up
tok —1:

p(alyr1.k—1) = N(@|my_1,Px_1).

@ Assume that we get the kth measurement yj. Using the
equations from the previous slide we get

p(@lyi.k) < p(yk|a) p(@l ysk—1)
o< N(a [ myg, Py).

@ The mean and covariance are given as
;1 T
my = P 1—|— H Hy Hkyk+P _1Mk—4

1 —1
P, = |:Pk11 ar Hka:| .
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Recursive Linear Regression [2/3]

@ By the matrix inversion lemma (or Woodbury identity):
=9
Pi = Pi1 — Pi_tH] [HePH] + 02| HiPiy.

@ Now the equations for the mean and covariance reduce to
Sk = HkPk_1H[ I 0‘2
Kk = Px_1H[ S,
my = my_ 1 + Kg[yk — Hemg_4]
Px = Pu_y — Kk SkK].

@ Computing these for k = 0,..., N gives exactly the linear
regression solution — but without a matrix inversion!

@ A special case of Kalman filter.
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Recursive Linear Regression [3/3]

Convergence of the recursive solution to the batch solution — on
the last step the solutions are exactly equal:
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Batch vs. Recursive Estimation [1/2]

General batch solution:
@ Specify the measurement model:

p(yi:n|0) = HP Yk |6).

@ Specify the prior distribution p(8).
@ Compute posterior distribution by the Bayes’ rule:

pP(0y1.n) = %P(O) Hp(yk |6).
k

@ Compute point estimates, moments, predictive quantities
etc. from the posterior distribution.
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Batch vs. Recursive Estimation [2/2]

General recursive solution:
@ Specify the measurement likelihood p(y | 8).
@ Specify the prior distribution p(8).
@ Process measurementsyq,...,yy one at a time, starting
from the prior:

p(o]ys) = Zl1p(y1 16)p(6)

p(0y1.2) = lep(vZ |0)p(0]Yy1)

’
p(0|y1:n) = Z—NP(VN |0)p(0|Y1.n-1)

@ The posterior at the last step is the same as the batch
solution.
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Advantages of Recursive Solution

@ The recursive solution can be considered as the online
learning solution to the Bayesian learning problem.

@ Batch Bayesian inference is a special case of recursive
Bayesian inference.

@ The parameter can be modeled to change between the
measurement steps = basis of filtering theory.
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Drift Model for Linear Regression [1/3]

@ Let assume Gaussian random walk between the
measurements in the linear regression model:

p(¥k | ak) = N(yx | Hk ax, 0°)
p(ax |ak—1) = N(ax |axk—1,Q)
p(ag) = N(ap | mg, Po).

@ Again, assume that we already know
p(ak—1|Y1:k—1) = N(@k—1 [Mk_1,Px_1).

@ The joint distribution of ax and a,_1 is (due to Markovianity
of dynamics!):

p(ak, ak—1 | y1:k—1) = p(ak |ak—1) p(ak—1 | y1:k—1)-
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Drift Model for Linear Regression [2/3]

@ Integrating over a,_1 gives:

p(ax| yi1:k—1) = /P(ak\ak—ﬂp(akq | Y1:k—1) dak_1.

@ This equation for Markov processes is called the
Chapman-Kolmogorov equation.

@ Because the distributions are Gaussian, the result is

Gaussian
p(ak | y1.k—1) = N(ax [m,,P,),
where
m, =mg_q
P, =P« +Q
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Drift Model for Linear Regression [3/3]

@ As in the pure recursive estimation, we get

p(alyi:k) < p(yx |a)p@@l ys:k—1)
oc N(a|mg, Pyg).

@ After applying the matrix inversion lemma, mean and
covariance can be written as
Sk = HkP H] + o2
Ki =P, H[S,'
my = m; + Kk[yk — Hkm;]
Py = P, — Kk SkK/.

@ Again, we have derived a special case of the Kalman filter.

@ The batch version of this solution would be much more
complicated.
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State Space Notation

@ In the previous section we formulated the model as
p(ax|ax—1) = N(ax |ax_1,Q)
P(vk |ak) = N(y« | Hk ax, 0?)

@ But in Kalman filtering and control theory the vector of
parameters ay is usually called “state” and denoted as X.

@ More standard state space notation:
P(Xk [ Xk—1) = N(Xx | Xk—1,Q)
P(Yk | Xk) = N(¥k | Hk Xk, 0%)
@ Or equivalently

Xk =Xk—1+4q
Yk =HgXg +r,

where g ~ N(0,Q), r ~ N(0, o2).
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Kalman Filter [1/2]

@ The canonical Kalman filtering model is
P(Xk | Xk—1) = N(Xx | Ak—1 Xk—1, Qx_1)
P(Yk | Xk) = N(Yk | Hk Xk, R).
@ More often, this model can be seen in the form

Xk = Ak_1 Xk—1 + Ok—1
Yk = Hp Xp + 1.

@ The Kalman filter actually calculates the following
distributions:

P(Xk | Y1:k-1) = N(Xx[m,,P,)
P(Xk | Y1:k) = N(Xx | Mg, Pk).
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Kalman Filter [2/2]

@ Prediction step of the Kalman filter:
m, = Ax_1my_4
P =A 1Pt Al + Q.
@ Update step of the Kalman filter:
Sk = H P, H] + Ry
K¢ =P, H]S,'
my =m, + Ky [yx —Hem,]
Py =P, — K SkKJ.

@ These equations will be derived from the general Bayesian
filtering equations in the next lecture.
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Probabilistic Non-Linear Filtering [1/2]

@ Generic discrete-time state space models
Xk = f(Xk—1, k)
Yk = h(X, rx).

@ Generic Markov models

Vi ~ P(Yk | Xk)
Xk ~ P(Xk | Xk—1).
@ Approximation methods: Extended Kalman filters (EKF),

Unscented Kalman filters (UKF), sequential Monte Carlo
(SMC) filters a’ka particle filters.
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Probabilistic Non-Linear Filtering [2/2]

@ In continuous-discrete filtering models, dynamics are
modeled in continuous time, measurements at discrete
time steps.

@ The continuous time versions of Markov models are called
as stochastic differential equations:

ax
dt
where w(t) is a continuous time Gaussian white noise
process.
@ Approximation methods: Extended Kalman filters,

Unscented Kalman filters, sequential Monte Carlo, particle
filters.

— f(x, ) + w(t)
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@ Linear regression problem can be solved as batch problem
or recursively — the latter solution is a special case of
Kalman filter.

@ A generic Bayesian estimation problem can also be solved
as batch problem or recursively.
o If we let the linear regression parameter change between

the measurements, we get a simple linear state space
model — again solvable with Kalman filtering model.

@ By generalizing this idea and the solution we get the
Kalman filter algorithm.

@ By further generalizing to non-Gaussian models results in
a generic probabilistic state space model.
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Demonstration

Batch and recursive linear regression.
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