
Lecture 2: From Linear Regression to Kalman

Filter and Beyond

Simo Särkkä

Department of Biomedical Engineering and Computational Science
Aalto University

March 24, 2010

Simo Särkkä Lecture 2: From Linear Regression to Kalman Filter and Beyond



Contents

1 Batch and Recursive Estimation

2 Towards Bayesian Filtering

3 Kalman Filter and General Bayesian Optimal Filter

4 Summary and Demo

Simo Särkkä Lecture 2: From Linear Regression to Kalman Filter and Beyond



Batch Linear Regression [1/2]
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Consider the linear regression model

yk = a1 + a2 tk + ǫk ,

with ǫk ∼ N(0, σ
2) and a = (a1, a2) ∼ N(m0, P0).

In probabilistic notation this is:

p(yk |a) = N(yk |Hk a, σ
2)

p(a) = N(a |m0, P0),

where Hk = (1 tk ).
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Batch Linear Regression [2/2]

The Bayesian batch solution by the Bayes’ rule:

p(a | y1:N) ∝ p(a)

N
∏

k=1

p(yk |a)

= N(a |m0, P0)

N
∏

k=1

N(yk |Hk a, σ
2).

The posterior is Gaussian

p(a | y1:N) = N(a |mN , PN).

The mean and covariance are given as

mN =

[

P−1
0 +

1

σ2
HT H

]

−1 [

1

σ2
HT y + P−1

0 m0

]

PN =

[

P−1
0 +

1

σ2
HT H

]

−1

,

where Hk = (1 tk ) and H = (H1; H2; . . . ; HN), and

y = (y1; . . . ; yN). Simo Särkkä Lecture 2: From Linear Regression to Kalman Filter and Beyond



Recursive Linear Regression [1/3]

Assume that we have already computed the posterior

distribution, which is conditioned on the measurement up

to k − 1:

p(a | y1:k−1) = N(a |mk−1, Pk−1).

Assume that we get the k th measurement yk . Using the

equations from the previous slide we get

p(a | y1:k ) ∝ p(yk |a) p(a | y1:k−1)

∝ N(a |mk , Pk ).

The mean and covariance are given as

mk =

[

P−1
k−1 +

1

σ2
HT

k Hk

]

−1 [

1

σ2
HT

k yk + P−1
k−1mk−1

]

Pk =

[

P−1
k−1 +

1

σ2
HT

k Hk

]

−1

.
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Recursive Linear Regression [2/3]

By the matrix inversion lemma (or Woodbury identity):

Pk = Pk−1 − Pk−1HT
k

[

HkPk−1HT
k + σ

2
]

−1
HkPk−1.

Now the equations for the mean and covariance reduce to

Sk = HkPk−1HT
k + σ

2

Kk = Pk−1HT
k S−1

k

mk = mk−1 + Kk [yk − Hkmk−1]

Pk = Pk−1 − KkSkKT
k .

Computing these for k = 0, . . . , N gives exactly the linear

regression solution – but without a matrix inversion!

A special case of Kalman filter.
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Recursive Linear Regression [3/3]

Convergence of the recursive solution to the batch solution – on

the last step the solutions are exactly equal:
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Batch vs. Recursive Estimation [1/2]

General batch solution:

Specify the measurement model:

p(y1:N |θ) =
∏

k

p(yk |θ).

Specify the prior distribution p(θ).

Compute posterior distribution by the Bayes’ rule:

p(θ |y1:N) =
1

Z
p(θ)

∏

k

p(yk |θ).

Compute point estimates, moments, predictive quantities

etc. from the posterior distribution.
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Batch vs. Recursive Estimation [2/2]

General recursive solution:

Specify the measurement likelihood p(yk |θ).

Specify the prior distribution p(θ).

Process measurements y1, . . . , yN one at a time, starting

from the prior:

p(θ |y1) =
1

Z1
p(y1 |θ)p(θ)

p(θ |y1:2) =
1

Z2
p(y2 |θ)p(θ |y1)

...

p(θ |y1:N) =
1

ZN
p(yN |θ)p(θ |y1:N−1).

The posterior at the last step is the same as the batch

solution.
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Advantages of Recursive Solution

The recursive solution can be considered as the online

learning solution to the Bayesian learning problem.

Batch Bayesian inference is a special case of recursive

Bayesian inference.

The parameter can be modeled to change between the

measurement steps ⇒ basis of filtering theory.
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Drift Model for Linear Regression [1/3]

Let assume Gaussian random walk between the

measurements in the linear regression model:

p(yk |ak ) = N(yk |Hk ak , σ
2)

p(ak |ak−1) = N(ak |ak−1, Q)

p(a0) = N(a0 |m0, P0).

Again, assume that we already know

p(ak−1 | y1:k−1) = N(ak−1 |mk−1, Pk−1).

The joint distribution of ak and ak−1 is (due to Markovianity

of dynamics!):

p(ak , ak−1 | y1:k−1) = p(ak |ak−1) p(ak−1 | y1:k−1).
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Drift Model for Linear Regression [2/3]

Integrating over ak−1 gives:

p(ak | y1:k−1) =

∫

p(ak |ak−1) p(ak−1 | y1:k−1) dak−1.

This equation for Markov processes is called the

Chapman-Kolmogorov equation.

Because the distributions are Gaussian, the result is

Gaussian

p(ak | y1:k−1) = N(ak |m
−

k , P−

k ),

where

m−

k = mk−1

P−

k = Pk−1 + Q.
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Drift Model for Linear Regression [3/3]

As in the pure recursive estimation, we get

p(a | y1:k ) ∝ p(yk |a) p(a | y1:k−1)

∝ N(a |mk , Pk ).

After applying the matrix inversion lemma, mean and

covariance can be written as

Sk = HkP−

k HT
k + σ

2

Kk = P−

k HT
k S−1

k

mk = m−

k + Kk [yk − Hkm−

k ]

Pk = P−

k − KkSkKT
k .

Again, we have derived a special case of the Kalman filter.

The batch version of this solution would be much more

complicated.
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State Space Notation

In the previous section we formulated the model as

p(ak |ak−1) = N(ak |ak−1, Q)

p(yk |ak ) = N(yk |Hk ak , σ
2)

But in Kalman filtering and control theory the vector of

parameters ak is usually called “state” and denoted as xk .

More standard state space notation:

p(xk |xk−1) = N(xk |xk−1, Q)

p(yk |xk ) = N(yk |Hk xk , σ
2)

Or equivalently

xk = xk−1 + q

yk = Hk xk + r ,

where q ∼ N(0, Q), r ∼ N(0, σ
2).
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Kalman Filter [1/2]

The canonical Kalman filtering model is

p(xk |xk−1) = N(xk |Ak−1 xk−1, Qk−1)

p(yk |xk ) = N(yk |Hk xk , Rk ).

More often, this model can be seen in the form

xk = Ak−1 xk−1 + qk−1

yk = Hk xk + rk .

The Kalman filter actually calculates the following

distributions:

p(xk |y1:k−1) = N(xk |m
−

k , P−

k )

p(xk |y1:k ) = N(xk |mk , Pk ).
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Kalman Filter [2/2]

Prediction step of the Kalman filter:

m−

k = Ak−1 mk−1

P−

k = Ak−1 Pk−1 AT
k−1 + Qk−1.

Update step of the Kalman filter:

Sk = Hk P−

k HT
k + Rk

Kk = P−

k HT
k S−1

k

mk = m−

k + Kk [yk − Hk m−

k ]

Pk = P−

k − Kk Sk KT
k .

These equations will be derived from the general Bayesian

filtering equations in the next lecture.
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Probabilistic Non-Linear Filtering [1/2]

Generic discrete-time state space models

xk = f(xk−1, qk )

yk = h(xk , rk ).

Generic Markov models

yk ∼ p(yk |xk )

xk ∼ p(xk |xk−1).

Approximation methods: Extended Kalman filters (EKF),

Unscented Kalman filters (UKF), sequential Monte Carlo

(SMC) filters a’ka particle filters.
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Probabilistic Non-Linear Filtering [2/2]

In continuous-discrete filtering models, dynamics are

modeled in continuous time, measurements at discrete

time steps.

The continuous time versions of Markov models are called

as stochastic differential equations:

dx

dt
= f(x, t) + w(t)

where w(t) is a continuous time Gaussian white noise

process.

Approximation methods: Extended Kalman filters,

Unscented Kalman filters, sequential Monte Carlo, particle

filters.
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Summary

Linear regression problem can be solved as batch problem

or recursively – the latter solution is a special case of

Kalman filter.

A generic Bayesian estimation problem can also be solved

as batch problem or recursively.

If we let the linear regression parameter change between

the measurements, we get a simple linear state space

model – again solvable with Kalman filtering model.

By generalizing this idea and the solution we get the

Kalman filter algorithm.

By further generalizing to non-Gaussian models results in

a generic probabilistic state space model.
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Demonstration

Batch and recursive linear regression.
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