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Chapter 1

Introduction

1.1 Why Bayesian Approach?

The mathematical treatment of the models and algorithms in this document is
Bayesian, which means that all the results are treated as being approximations
to certain probability distributions or their parameters. Probability distributions
are used for modeling both the uncertainties in the models and for modeling the
physical randomness. The theory of non-linear optimal filtering is formulated in
terms of Bayesian inference and both the classical and recent filtering algorithms
are derived using the same Bayesian notation and formalism.

The reason for selecting the Bayesian approach is more a practical engineering
than a philosophical decision. It simply is easier to develop a consistent, practically
applicable theory of recursive inference under Bayesian philosophythan under,
for example, least squares or maximum likelihood philosophy. Another useful
consequence of selecting the Bayesian approach is that least squares, maximum
likelihood and many other philosophically different results can be obtained asspe-
cial cases or re-interpretations of the Bayesian results. Of course, quite often the
same thing applies also other way around.

Modeling uncertainty as randomness is a very “engineering” way of modeling
the world. It is exactly the approach also chosen in statistical physics as well as
in financial analysis. Also the Bayesian approach to optimal filtering is far from
new (see, e.g., Ho and Lee, 1964; Lee, 1964; Jazwinski, 1966; Stratonovich, 1968;
Jazwinski, 1970), because the theory already existed at the same time the seminal
article of Kalman (1960b) was published. The Kalman filter was derived from the
least squares point of view, but the non-linear filtering theory has beenBayesian
from the beginning (see, e.g., Jazwinski, 1970).

One should not take the Bayesian way of modeling unknown parameters as
random variables too literally. It does not imply that one believes that there really
is something random in the parameters - it is just a convenient way of representing
uncertainty under the same formalism that is used for representing randomness.
Also random or stochastic processes appearing in the mathematical models are



2 Introduction

not necessarily really random in physical sense, but instead, the randomness is
just a mathematical trick for taking into account the uncertainty in a dynamic
phenomenon.

But it does not matter if the randomness is interpreted as physical randomness
or as a representation of uncertainty, as long as the randomness based models suc-
ceed in modeling the real world. In the above engineering philosophy the contro-
versy between so called “frequentists” and “Bayesians” is simply silly – it is quite
much equivalent to the unnecessary controversy about interpretationsof quantum
mechanics, that is, whether, for example, the Copenhagen interpretation or several
worlds implementation is the correct one. The philosophical interpretation does
not matter as long as we get meaningful predictions from the theory.

1.2 What is Optimal Filtering?

Optimal filtering refers to the methodology that can be used for estimating the
state of a time-varying system, which is indirectly observed through noisy mea-
surements. Thestateof the system refers to the collection of dynamic variables
such as position, velocities and accelerations or orientation and rotational motion
parameters, which describe the physical state of the system. Thenoisein the mea-
surements refers to a noise in the sense that the measurements are uncertain, that is,
even if we knew the true system state the measurements would not be deterministic
functions of the state, but would have certain distribution of possible values. The
time evolution of the state is modeled as a dynamic system, which is perturbed
by a certainprocess noise. This noise is used for modeling the uncertainties in
the system dynamics and in most cases the system is not truly stochastic, but the
stochasticity is only used for representing the model uncertainties.

1.2.1 Applications of Optimal Filtering

Phenomena, which can be modeled as time varying systems of the above type are
very common in engineering applications. These kind of models can be found,for
example, in navigation, aerospace engineering, space engineering, remote surveil-
lance, telecommunications, physics, audio signal processing, control engineering,
finance and several other fields. Examples of such applications are the following:

• Global positioning system (GPS)(Kaplan, 1996) is a widely used satellite
navigation system, where the GPS receiver unit measures arrival times of
signals from several GPS satellites and computes its position based on these
measurements. The GPS receiver typically uses an extended Kalman filter
or some other optimal filtering algorithm for computing the position and
velocity such that the measurements and the assumed dynamics (laws of
physics) are taken into account. Also the ephemeris information, which is
the satellite reference information transmitted from the satellites to the GPS
receivers is typically generated using optimal filters.
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Figure 1.1: In GPS system, the measurements are time delays of satellitesignals
and the optimal filter (e.g., EKF) computes the position and the accurate time.

• Target tracking(Bar-Shalom et al., 2001) refers to the methodology, where
a set of sensors such as active or passive radars, radio frequency sensors,
acoustic arrays, infrared sensors and other types of sensors are used for
determining the position and velocity of a remote target. When this tracking
is done continuously, the dynamics of the target and measurements from the
different sensors are most naturally combined using an optimal filter. The
target in this (single) target tracking case can be, for example, a robot, a
satellite, a car or an airplane.

Sensor

angle

target

Figure 1.2: In target tracking, a sensor generates measurements (e.g.,angle mea-
surements) of the target, and the purpose is to determine thetarget trajectory.

• Multiple target tracking(Bar-Shalom and Li, 1995; Blackman and Popoli,
1999; Stone et al., 1999) systems are used for remote surveillance in the
cases, where there are multiple targets moving at the same time in the same
geographical area. This arises the concept of data association (whichmea-
surement was from which target?) and the problem of estimating the number
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of targets. Multiple target tracking systems are typically used in remote
surveillance for military purposes, but possible civil applications are, for
example, monitoring of car tunnels, automatic alarm systems and people
tracking in buildings.

Sensor 1

Sensor 2

Sensor 3

angle 1

angle 4

angle 3

angle 2

angle 5

angle 6

target 2

target 1

Figure 1.3: In multiple target target tracking the data association problem has
to be solved, which means that it is impossible to know without any additional
information, which target produced which measurement.

• Inertial navigation(Titterton and Weston, 1997; Grewal et al., 2001) uses
inertial sensors such as accelerometers and gyroscopes for computingthe
position and velocity of a device such as a car, an airplane or a missile.
When the inaccuracies in sensor measurements are taken into account the
natural way of computing the estimates is by using an optimal filter. Also
in sensor calibration, which is typically done in time varying environment
optimal filters are often applied.

• Integrated inertial navigation(Grewal et al., 2001; Bar-Shalom et al., 2001)
combines the good sides of unbiased but inaccurate sensors, such as altime-
ters and landmark trackers, and biased but locally accurate inertial sensors.
Combining of these different sources of information is most naturally per-
formed using an optimal filter such as the extended Kalman filter. This kind
of approach was used, for example, in the guidance system of Apollo 11
lunar module (Eagle), which landed on the moon in 1969.

• GPS/INS navigation(Grewal et al., 2001; Bar-Shalom et al., 2001) is a form
of integrated inertial navigation, where the inertial sensors are combined
with a GPS receiver unit. In GPS/INS navigation system the short term
fluctuations of the GPS can be compensated with the inertial sensors and
the inertial sensor biases can be compensated with the GPS receiver. An
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additional advantage of this approach is that it is possible to temporarily
switch to pure inertial navigation, when the GPS receiver is unable to com-
pute its position (i.e., has no fix) for some reason. This happens, for example,
indoors, in tunnels and in other cases when there is no direct line-of-sight
between the GPS receiver and the satellites.

• Spread of infectious diseases(Anderson and May, 1991) can often be mod-
eled as differential equations for the number of susceptible, infected andre-
covered/dead individuals. When uncertainties are induced into the dynamic
equations, and when the measurements are not perfect, the estimation of the
spread of the disease can be formulated as an optimal filtering problem.

• Biological processes(Murray, 1993) such as population growth, predator-
pray models and several other dynamic processes in biology can also be
modeled as (stochastic) differential equations. The estimation of the states
of these processes from inaccurate measurements can be formulated as an
optimal filtering problem.

• Telecommunicationsis also a field where optimal filters are traditionally
used. For example, optimal receivers, signal detectors and phase locked
loops can be interpreted to contain optimal filters (Van Trees, 1968, 1971)
as components. Also the celebrated Viterbi algorithm (Viterbi, 1967) can be
interpreted as a combination of optimal filtering and optimal smoothing of
the underlying hidden Markov model.

• Audio signal processingapplications such as audio restoration (Godsill and
Rayner, 1998) and audio signal enhancement (Fong et al., 2002) often use
TVAR (time varying autoregressive) models as the underlying audio signal
models. These kind of models can be efficiently estimated using optimal
filters and smoothers.

• Stochastic optimal control(Maybeck, 1982b; Stengel, 1994) considers con-
trol of time varying stochastic systems. Stochastic controllers can typically
be found in, for example, airplanes, cars and rockets. The optimality, in
addition to the statistical optimality, means that control signal is constructed
to minimize a performance cost, such as expected time to reach a predefined
state, the amount of fuel consumed or average distance from a desired po-
sition trajectory. Optimal filters are typically used for estimating the states
of the stochastic system and a deterministic optimal controller is constructed
independently from the filter such that it uses the estimate of the filter as
the known state. In theory, the optimal controller and optimal filter are not
completely decoupled and the problem of constructing optimal stochastic
controllers is far more challenging than constructing optimal filters and (de-
terministic) optimal controllers separately.
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• Learning systemsor adaptive systems can often be mathematically formu-
lated in terms of optimal filters. The theory of stochastic differential equa-
tions has close relationship with Bayesian non-parametric modeling, ma-
chine learning and neural network modeling (MacKay, 1998; Bishop, 1995).
Methods, which are similar to the data association methods in multiple target
tracking are also applicable to on-line adaptive classification (Andrieu et al.,
2002).

• Physical systemswhich are time varying and measured through unideal sen-
sors can sometimes be formulated as stochastic state space models, and the
time evolution of the system can be estimated using optimal filters (Kaipio
and Somersalo, 2005). In Vauhkonen (1997) and more recently, for example,
in Pikkarainen (2005) optimal filtering is applied to Electrical Impedance
Tomography (EIT) problem in time varying setting.

1.2.2 Origins of Bayesian Optimal Filtering

The roots of Bayesian analysis of time dependent behavior are in the optimallinear
filtering. The idea of constructing mathematically optimal recursive estimators was
first presented for linear systems due to their mathematical simplicity and the most
natural optimality criterion in both mathematical and modeling point of view was
the least squares optimality. For linear systems the optimal Bayesian solution (with
MMSE utility) coincides with the least squares solution, that is, the optimal least
squares solution is exactly the posterior mean.

The history of optimal filtering starts from theWiener filter(Wiener, 1950),
which is a spectral domain solution to the problem of least squares optimal filtering
of stationary Gaussian signals. The Wiener filter is still important in communi-
cation applications (Proakis, 2001), digital signal processing (Hayes,1996) and
image processing (Rafael C. Gonzalez, 2008). The disadvantages ofthe Wiener
filter are that it can only be applied to stationary signals and that the construction
of a Wiener filter is often mathematically demanding and these mathematics cannot
be avoided (i.e., made transparent). Due to the demanding mathematics the Wiener
filter can only be applied to simple low dimensional filtering problems.

The success of optimal linear filtering in engineering applications is mostly due
to the seminal article of Kalman (1960b), which describes the recursive solution to
the optimal discrete-time (sampled) linear filtering problem. The reason to the
success is that theKalman filtercan be understood and applied with very much
lighter mathematical machinery than the Wiener filter. Also, despite its mathemat-
ical simplicity, the Kalman filter (or actually the Kalman-Bucy filter; Kalman and
Bucy, 1961) contains the Wiener filter as its limiting special case.

In the early stages of its history, the Kalman filter was soon discovered to
belong to the class of Bayesian estimators (Ho and Lee, 1964; Lee, 1964; Jazwin-
ski, 1966, 1970). An interesting historical detail is that while Kalman and Bucy
were formulating the linear theory in the United States, Stratonovich was doing the
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pioneering work on the probabilistic (Bayesian) approach in Russia (Stratonovich,
1968; Jazwinski, 1970).

As discussed in the book of West and Harrison (1997), in the sixties, Kalman
filter like recursive estimators were also used in the Bayesian community and it is
not clear whether the theory of Kalman filtering or the theory ofdynamic linear
models(DLM) was the first. Although these theories were originally derived from
slightly different starting points, they are equivalent. Because of Kalman filter’s
useful connection to the theory and history of stochastic optimal control, thisdoc-
ument approaches the Bayesian filtering problem from the Kalman filtering point
of view.

Although the original derivation of theKalman filterwas based on the least
squares approach, the same equations can be derived from the pure probabilistic
Bayesian analysis. The Bayesian analysis of Kalman filtering is well covered in the
classical book of Jazwinski (1970) and more recently in the book of Bar-Shalom
et al. (2001). Kalman filtering, mostly because of its least squares interpretation,
has widely been used in stochastic optimal control. A practical reason to this is
that the inventor of the Kalman filter, Rudolph E. Kalman, has also made several
contributions (Kalman, 1960a) to the theory oflinear quadratic Gaussian(LQG)
regulators, which are fundamental tools of stochastic optimal control (Stengel,
1994; Maybeck, 1982b).

1.2.3 Optimal Filtering and Smoothing as Bayesian Inference

Optimal Bayesian filtering (see, e.g. Jazwinski, 1970; Bar-Shalom et al., 2001;
Doucet et al., 2001; Ristic et al., 2004) considers statistical inversion problems,
where the unknown quantity is a vector valued time series(x1,x2, . . .) which is
observed through noisy measurements(y1,y2, . . .) as illustrated in the Figure 1.4.
An example of this kind of time series is shown in the Figure 1.5. The process
shown is actually a discrete-time noisy resonator with a known angular velocity.
The statexk = (xk ẋk)

T is two dimensional and consists of the position of the res-
onatorxk and its time derivativėxk. The measurementsyk are scalar observations
of the resonator position (signal) and they are corrupted by measurementnoise.

observed: y1 y2 y3 y4

hidden: x1 x2 x3 x4 . . .

Figure 1.4: In discrete-time filtering a sequence of hidden statesxk is indirectly observed
through noisy measurementsyk.

The purpose of thestatistical inversionat hand is to estimate the hidden states
{x1, . . . ,xT } given the observed measurements{y1, . . . ,yT }, which means that
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Figure 1.5: An example of time series, which models a discrete-time resonator. The actual
resonator state (signal) is hidden and only observed through the noisy measurements.

in the Bayesian sense (Bernardo and Smith, 1994; Gelman et al., 1995) all we have
to do is to compute the joint posterior distribution of all the states given all the
measurements. This can be done by straightforward application of the Bayes’ rule:

p(x1, . . . ,xT |y1, . . . ,yT ) =
p(y1, . . . ,yT |x1, . . . ,xT ) p(x1, . . . ,xT )

p(y1, . . . ,yT )
, (1.1)

where

• p(x1, . . . ,xT ), is the prior defined by the dynamic model,

• p(y1, . . . ,yT |x1, . . . ,xT ) is the likelihood model for the measurements,

• p(y1, . . . ,yT ) is the normalization constant defined as

p(y1, . . . ,yT ) =

∫

p(y1, . . . ,yT |x1, . . . ,xT ) p(x1, . . . ,xT ) d(x1, . . . ,xT ).

(1.2)

Unfortunately, this full posterior formulation has the serious disadvantagethat each
time we obtain a new measurement, the full posterior distribution would have to
be recomputed. This is particularly a problem in dynamic estimation (which is ex-
actly the problem we are solving here!), because there measurements aretypically
obtained one at a time and we would want to compute the best possible estimate
after each measurement. When number of time steps increases, the dimensionality
of the full posterior distribution also increases, which means that the computational
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complexity of a single time step increases. Thus after a sufficient number of time
steps the computations will become intractable, independently of available compu-
tational resources. Without additional information or harsh approximations, there
is no way of getting over this problem in the full posterior computation.

However, the above problem only arises when we want to compute thefull
posterior distribution of the states at each time step. If we are willing to relax
this a bit and be satisfied with selected marginal distributions of the states, the
computations become order of magnitude lighter. In order to achieve this, we also
need to restrict the class of dynamic models into probabilistic Markov sequences,
which as a restriction sounds more restrictive than it really is. The model for the
states and measurements will be assumed to be of the following type:

• Initial distribution specifies theprior distributionp(x0) of the hidden state
x0 at initial time stepk = 0.

• Dynamic modelmodels the system dynamics and its uncertainties as aMarkov
sequence, defined in terms of the transition distributionp(xk |xk−1).

• Measurement modelmodels how the measurementyk depends on the cur-
rent statexk. This dependence is modeled by specifying the distribution of
the measurement given the statep(yk |xk).

Because computing the full joint distribution of the states at all time steps is com-
putationally very inefficient and unnecessary in real-time applications, inoptimal
(Bayesian) filteringthe following marginal distributions are considered instead:

• Filtering distributionsare the marginal distributions ofthe current statexk

giventhe previous measurements{y1, . . . ,yk}:

p(xk |y1, . . . ,yk), k = 1, . . . , T. (1.3)

• Prediction distributionsare the marginal distributions of the future states,n
steps after the current time step:

p(xk+n |y1, . . . ,yk), k = 1, . . . , T, n = 1, 2, . . . , (1.4)

• Smoothing distributionsare the marginal distributions of the statesxk given
a certain interval{y1, . . . ,yT } of measurements withT > k:

p(xk |y1, . . . ,yT ), k = 1, . . . , T. (1.5)

1.2.4 Algorithms for Optimal Filtering and Smoothing

There exists a few classes of filtering and smoothing problems which have closed
form solutions:
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Figure 1.6: State estimation problems can be divided into optimal prediction, filtering
and smoothing depending on the time span of measurements available with respect to the
estimated state time span.
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Figure 1.7: The result of computing the filtering distributions for the discrete-time res-
onator model. Theestimatesare the posterior means of the filtering distributions and the
quantiles are the 95% quantiles of the filtering distributions.

• Kalman filter (KF) is a closed form solution to the discrete linear filtering
problem. Due to linear Gaussian model assumptions the posterior distribu-
tion is exactly Gaussian and no numerical approximations are needed.

• Rauch-Tung-Striebel smoother(RTSS) is the corresponding closed form smoother
to linear Gaussian state space models.



1.2 What is Optimal Filtering? 11

0 2 4 6 8 10 12 14 16

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time

Signal
Measurement
95% Quantile
Smoother Estimate

Figure 1.8: The result of computing the smoothing distributions for thediscrete-time
resonator model. Theestimatesare the posterior means of the smoothing distributions
and the quantiles are the 95% quantiles of the smoothing distributions. The smoothing
distributions are actually the marginal distributions of the full state posterior distribution.

• Grid filters and smoothers, are solutions to Markov models with finite state
spaces.

But because the Bayesian optimal filtering and smoothing equations are generally
computationally intractable, many kinds of numerical approximation methods have
been developed:

• Extended Kalman filter(EKF) approximates the non-linear and non-Gaussian
measurement and dynamic models by linearization, that is, by forming a
Taylor series expansion on the nominal (or Maximum a Posteriori, MAP)
solution. This results in Gaussian approximation to the filtering distribution.

• Extended Rauch-Tung-Striebel smoother(ERTSS) is the approximate non-
linear smoothing algorithm corresponding to EKF.

• Unscented Kalman filter(UKF) approximates the propagation of densities
through the non-linearities of measurement and noise processes byunscented
transform. This also results in Gaussian approximation.

• Unscented Rauch-Tung-Striebel smoother(URTSS) is the approximate non-
linear smoothing algorithm corresponding to UKF.

• Sequential Monte Carlo methodsor particle filters and smoothersrepresent
the posterior distribution a as weighted set of Monte Carlo samples.
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• Unscented particle filter(UPF) andlocal linearizationbased methods use
UKFs and EKFs, respectively, for approximating the importance distribu-
tions in sequential importance sampling.

• Rao-Blackwellized particle filters and smoothersuse closed form integration
(e.g., Kalman filters and RTS smoothers) for some of the state variables and
Monte Carlo integration for others.

• Interacting multiple models(IMM), and othermultiple modelmethods ap-
proximate the posterior distributions with mixture Gaussian approximations.

• Grid based methodsapproximate the distribution as a discrete distribution
defined in a finite grid.

• Other methodsalso exists, for example, based on series expansions, describ-
ing functions, basis function expansions, exponential family of distributions,
variational Bayesian methods, batch Monte Carlo (e.g., MCMC), Galerkin
approximations etc.



Chapter 2

From Bayesian Inference to
Bayesian Optimal Filtering

2.1 Bayesian Inference

This section provides a brief presentation of the philosophical and mathematical
foundations of Bayesian inference. The connections to the classical statistical
inference are also briefly discussed.

2.1.1 Philosophy of Bayesian Inference

The purpose of Bayesian inference (Bernardo and Smith, 1994; Gelmanet al.,
1995) is to provide a mathematical machinery that can be used for modeling sys-
tems, where the uncertainties of the system are taken into account and the decisions
are made according to rational principles. The tools of this machinery are the
probability distributions and the rules of probability calculus.

If we compare the so called frequentist philosophy of statistical analysis to
Bayesian inference the difference is that in Bayesian inference the probability of an
event does not mean the proportion of the event in an infinite number of trials, but
the uncertainty of the event in a single trial. Because models in Bayesian inference
are formulated in terms of probability distributions, the probability axioms and
computation rules of the probability theory (see, e.g., Shiryaev, 1996) alsoapply
in the Bayesian inference.

2.1.2 Connection to Maximum Likelihood Estimation

Consider a situation, where we know the conditional distributionp(yk |θ) of con-
ditionally independent random variables (measurements)y1, . . . ,yn, but the pa-
rameterθ ∈ R

d is unknown. The classical statistical method for estimating the
parameter is themaximum likelihood method(Milton and Arnold, 1995), where
we maximize the joint probability of the measurements, also called the likelihood
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function
L(θ) =

∏

k

p(yk |θ). (2.1)

The maximum of the likelihood function with respect toθ gives themaximum
likelihood estimate(ML-estimate)

θ̂ = arg max
θ

L(θ). (2.2)

The difference between the Bayesian inference and the maximum likelihood method
is that the starting point of Bayesian inference is to formally consider the parameter
θ as a random variable. Then the posterior distribution of the parameterθ can be
computed by using theBayes’ rule

p(θ |y1, . . . ,yn) =
p(y1, . . . ,yn |θ) p(θ)

p(y1, . . . ,yn)
, (2.3)

wherep(θ) is the prior distribution, which models the prior beliefs of the parameter
before we have seen any data andp(y1, . . . ,yn) is a normalization term, which is
independent of the parameterθ. Often this normalization constant is left out and if
the measurementsy1, . . . ,yn are conditionally independent givenθ, the posterior
distribution of the parameter can be written as

p(θ |y1, . . . ,yn) ∝ p(θ)
∏

k

p(yk |θ). (2.4)

Because we are dealing with a distribution, we might now choose the most probable
value of the random variable (MAP-estimate), which is given by the maximum of
the posterior distribution. However, better estimate in mean squared sense is the
posterior mean of the parameter (MMSE-estimate). There are an infinite number
of other ways of choosing the point estimate from the distribution and the bestway
depends on the assumed loss function (or utility function). The ML-estimate can
be considered as a MAP-estimate with uniform prior on the parameterθ.

One can also interpret Bayesian inference as a convenient method for includ-
ing regularization terms into maximum likelihood estimation. The basic ML-
framework does not have a self-consistent method for including regularization
terms or prior information into statistical models. However, this regularization in-
terpretation of Bayesian inference is not entirely right, because Bayesian inference
is much more than this.

2.1.3 The Building Blocks of Bayesian Models

The basic blocks of a Bayesian model are theprior model containing the pre-
liminary information on the parameter and thelikelihood modeldetermining the
stochastic mapping from the parameter to the measurements. Using the com-
bination rules, namely the Bayes’ rule, it is possible to infer an estimate of the
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parameters from the measurements. The distribution of the parameters, whichis
conditional to the observed measurements is called theposterior distributionand it
is the distribution representing the state of knowledge about the parameters when
all the information in the observed measurements and the model is used.Predictive
posterior distributionis the distribution of the new (not yet observed) measure-
ments when all the information in the observed measurements and the model is
used.

• Prior model
The prior information consists of subjective experience based beliefs onthe
possible and impossible parameter values and their relative likelihoods be-
fore anything has been observed. The prior distribution is a mathematical
representation of this information:

p(θ) = Information on parameterθ before seeing any observations. (2.5)

The lack of prior information can be expressed by using a non-informative
prior. The non-informative prior distribution can be selected in various dif-
ferent ways (Gelman et al., 1995).

• Likelihood model
Between the true parameters and the measurements there often is a causal,
but inaccurate or noisy relationship. This relationship is mathematically
modeled using the likelihood distribution:

p(y |θ) = Distribution of observationy given the parametersθ. (2.6)

• Posterior distribution
Posterior distribution is the conditional distribution of the parameters, and
it represents the information we have after the measurementy has been
obtained. It can be computed by using the Bayes’ rule:

p(θ |y) =
p(y |θ) p(θ)

p(y)
∝ p(y |θ) p(θ), (2.7)

where the normalization constant is given as

p(y) =

∫

Rd

p(y |θ) p(θ) dθ. (2.8)

In the case of multiple measurementsy1, . . . ,yn, if the measurements are
conditionally independent the joint likelihood of all measurements is the
product of individual measurements and the posterior distribution is

p(θ |y1, . . . ,yn) ∝ p(θ)
∏

k

p(yk |θ), (2.9)

where the normalization term can be computed by integrating the right hand
side overθ. If the random variable is discrete the integration reduces to
summation.
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• Predictive posterior distribution
The predictive posterior distribution is the distribution of new measurements
yn+1:

p(yn+1 |y1, . . . ,yn) =

∫

Rd

p(yn+1 |θ) p(θ |y1, . . . ,yn) dθ. (2.10)

After obtaining the measurementsy1, . . . ,yn the predictive posterior distri-
bution can be used for computing the probability distribution forn + 1:th
measurement, which has not been observed yet.

In the case of tracking, we could imagine that the parameter is the sequence of
dynamic states of a target, where the state contains the position and velocity. Or
in the continuous-discrete setting the parameter would be an infinite-dimensional
random function describing the trajectory of the target at a given time interval. In
both cases the measurements could be, for example, noisy distance and direction
measurements produced by a radar.

2.1.4 Bayesian Point Estimates

The distributions as such have no use in applications, but also in Bayesian compu-
tations finite dimensional summaries (point estimates) are needed. This selection
of a point from space based on observed values of random variablesis a statisti-
cal decision, and therefore this selection procedure is most naturally formulated
in terms ofstatistical decision theory(Berger, 1985; Bernardo and Smith, 1994;
Raiffa and Schlaifer, 2000).

Definition 2.1 (Loss Function). A loss functionL(θ,a) is a scalar valued function,
which determines the loss of taking theactiona, when the true parameter value
is θ. The action (or control) is the statistical decision to be made based on the
currently available information.

Instead of loss functions it is also possible to work with utility functionsU(θ,a),
which determine the reward from taking the actiona with parameter valuesθ.
Loss functions can be converted to utility functions and vice versa by defining
U(θ,a) = −L(θ,a).

If the value of parameterθ is not known, but the knowledge on the parameter
can be expressed in terms of the posterior distributionp(θ |y1, . . . ,yn), then the
natural choice is the action, which gives theminimum (maximum) of the expected
loss (utility)(Berger, 1985):

E[L(θ,a) |y1, . . . ,yn] =

∫

Rd

L(θ,a) p(θ |y1, . . . ,yn) dθ. (2.11)

Commonly used loss functions are the following:
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• Quadratic error loss: If the loss function is quadratic

L(θ,a) = (θ − a)T (θ − a), (2.12)

then the optimal choiceao is theposterior meanof the distribution ofθ:

ao =

∫

Rd

θ p(θ |y1, . . . ,yn) dθ. (2.13)

This posterior mean based estimate is often called theminimum mean squar-
ed error (MMSE)estimate of the parameterθ. The quadratic loss is the most
commonly used loss function, because it is easy to handle mathematically
and because in the case of Gaussian posterior distribution the MAP estimate
and the median coincide with the posterior mean.

• Absolute error loss: The loss function of the form

L(θ,a) =
∑

i

|θi − ai|, (2.14)

is called an absolute error loss and in this case the optimal choice is the
medianof the distribution (i.e., medians of the marginal distributions in
multidimensional case).

• 0-1 loss: If the loss function is of the form

L(θ,a) =

{

1 , if θ = a

0 , if θ 6= a
(2.15)

then the optimal choice is the maximum of the posterior distribution, that is,
themaximum a posterior (MAP)estimate of the parameter.

2.1.5 Numerical Methods

In principle, Bayesian inference provides the equations for computing theposte-
rior distributions and point estimates for any model once the model specification
has been set up. However, the practical problem is that computation of theinte-
grals involved in the equations can rarely be performed analytically and numerical
methods are needed. Here we shall briefly describe numerical methods, which are
also applicable in higher dimensional problems: Gaussian approximations, multi-
dimensional quadratures, Monte Carlo methods, and importance sampling.

• Very common types of approximations areGaussian approximations(Gel-
man et al., 1995), where the posterior distribution is approximated with a
Gaussian distribution

p(θ |y1, . . . ,yn) ≈ N(θ |m,P). (2.16)

The meanm and covarianceP of the Gaussian approximation can be either
computed by matching the first two moments of the posterior distribution, or
by using the maximum of the distribution as the mean estimate and approxi-
mating the covariance with the curvature of the posterior on the mode.
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• Multi-dimensional quadrature or cubature methodssuch as Gauss-Hermite
quadrature can also be often used if the dimensionality of the integral is mod-
erate. In those methods the idea is to deterministically form a representative
set of sample pointsΘ = {θ(i) | i = 1, . . . , N} (sometimes calledsigma
points) and form the approximation of the integral as weighted average:

E[g(θ) |y1, . . . ,yn] ≈
N
∑

i=1

W (i) g(θ(i)), (2.17)

where the numerical values of the weightsW (i) are determined by the al-
gorithm. The sample points and weights can be selected, for example, to
give exact answers for polynomials up to certain degree or to account for the
moments up to certain degree.

• In directMonte Carlo methodsa set ofN samples from the posterior distri-
bution is randomly drawn

θ(i) ∼ p(θ |y1, . . . ,yn), i = 1, . . . , N, (2.18)

and expectation of any functiong(·) can be then approximated as the sample
average

E[g(θ) |y1, . . . ,yn] ≈ 1

N

∑

i

g(θ(i)). (2.19)

Another interpretation of this is that Monte Carlo methods form an approxi-
mation of the posterior density of the form

p(θ |y1, . . . ,yn) ≈ 1

N

N
∑

i=1

δ(x− x(i)), (2.20)

whereδ(·) is the Dirac delta function. The convergence of Monte Carlo
approximation is guaranteed by thecentral limit theorem (CLT)(see, e.g.,
Liu, 2001) and the error term is, at least in theory, independent of the dimen-
sionality ofθ.

• Efficient methods for generating non-independent Monte Carlo samples are
the Markov chain Monte Carlo(MCMC) methods (see, e.g., Gilks et al.,
1996). In MCMC methods, a Markov chain is constructed such that it has the
target distribution as its stationary distribution. By simulating the Markov
chain, samples from the target distribution can be generated.

• Importance sampling(see, e.g., Liu, 2001) is a simple algorithm for gener-
ating weightedsamples from the target distribution. The difference to the
direct Monte Carlo sampling and to MCMC is that each of the particles
contains a weight, which corrects the difference between the actual target
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distribution and the approximation obtained from an importance distribution
π(·).
Importance sampling estimate can be formed by drawingN samples from
the importance distribution

θ(i) ∼ π(θ |y1, . . . ,yn), i = 1, . . . , N. (2.21)

The importance weightsare then computed as

w(i) =
p(θ(i) |y1, . . . ,yn)

π(θ(i) |y1, . . . ,yn)
, (2.22)

and the expectation of any functiong(·) can be then approximated as

E[g(θ) |y1, . . . ,yn] ≈
∑N

i=1 w(i) g(θ(i))
∑N

i=1 w(i)
. (2.23)

2.2 Batch and Recursive Estimation

In order to understand the meaning and applicability of optimal filtering and its
relationship with recursive estimation, it is useful to go through an example, where
we solve a simple and familiar linear regression problem in a recursive manner.
After that we shall generalize this concept to include a dynamic model in order to
illustrate the differences in dynamic and batch estimation.

2.2.1 Batch Linear Regression

Consider the linear regression model

yk = θ1 + θ2 tk + ǫk, (2.24)

where we assume that the measurement noise is zero mean Gaussian with a given
varianceǫk ∼ N(0, σ2) and the prior distribution for parameters is Gaussian with
know mean and covarianceθ ∼ N(m0,P0). In the classical linear regression
problem we want to estimate the parametersθ = (θ1 θ2)

T from a set of measure-
ment dataD = {(y1, t1), ..., (yK , tK)}. The measurement data and the true linear
function used in simulation are illustrated in Figure 2.1.

In compact probabilistic notation the linear regression model can be written as

p(yk |θ) = N(yk |Hk θ, σ2)

p(θ) = N(θ |m0,P0).
(2.25)

where we have introduced the matrixHk = (1 tk) andN(·) denotes the Gaus-
sian probability density function (see, Appendix A.1). The likelihood ofyk is, of
course, conditional on the regressorstk also (or equivalentlyHk), but we will not
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Figure 2.1: The underlying truth and the measurement data in the simple linear regression
problem.

denote this dependence explicitly to simplify the notation and from now on this
dependence is assumed to be understood from the context.

Thebatch solutionto this linear regression problem can be obtained by straight-
forward application of the Bayes’ rule:

p(θ | y1:k) ∝ p(θ)
∏

k

p(yk |θ)

= N(θ |m0,P0)
∏

k

N(yk |Hk θ, σ2).

Also in the posterior distribution above, we assume the conditioning ontk and
Hk, but will not denote it explicitly. Thus the posterior distribution is denoted
to be conditional ony1:k = {y1, . . . , yk}, and not on the data setD containing
the regressor valuestk also. The reason for this simplification is that the simplified
notation will also work in more general filtering problems, where there is no natural
way of defining the associated regressor variables.

Because the prior and likelihood are Gaussian, the posterior distribution will
also be Gaussian:

p(θ | y1:k) = N(θ |mK ,PK). (2.26)

The mean and covariance can be obtained by completing the quadratic form inthe
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exponent, which gives:

mK =

[

P−1
0 +

1

σ2
HTH

]−1 [ 1

σ2
HTy + P−1

0 m0

]

PK =

[

P−1
0 +

1

σ2
HTH

]−1

,

(2.27)

whereHk = (1 tk) and

H =







H1
...

HK






=







1 t1
...

...
1 tK






, y =







y1
...

yK






. (2.28)

Figure 2.2 shows the result of batch linear regression, where the posterior mean
parameter values are used as the linear regression parameters.
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Figure 2.2: The result of simple linear regression with a slight regularization prior used
for the regression parameters. For simplicity, the variance was assumed to be known.

2.2.2 Recursive Linear Regression

Recursive solutionto the regression problem (2.25) can be obtained by assuming
that we already have obtained posterior distribution conditioned on the previous
measurements1, . . . , k − 1:

p(θ | y1:k−1) = N(θ |mk−1,Pk−1).
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Now assume that we have obtained a new measurementyk and we want to compute
the posterior distribution ofθ given the old measurementsy1:k−1 and the new
measurementyk. According to the model specification the new measurement has
the likelihood

p(yk |θ) = N(yk |Hk θ, σ2).

Using the batch version equations such that we interpret the previous posterior as
the prior, we can calculate the distribution

p(θ | y1:k) ∝ p(yk |θ) p(θ | y1:k−1)

∝ N(θ |mk,Pk),
(2.29)

where the Gaussian distribution parameters are

mk =

[

P−1
k−1 +

1

σ2
HT

k Hk

]−1 [ 1

σ2
HT

k yk + P−1
k−1mk−1

]

Pk =

[

P−1
k−1 +

1

σ2
HT

k Hk

]−1

.

(2.30)

By using the matrix inversion lemma, the covariance calculation can be written as

Pk = Pk−1 −Pk−1H
T
k

[

HkPk−1H
T
k + σ2

]−1
HkPk−1.

By introducing temporary variablesSk andKk the calculation of mean and covari-
ance can be written in form

Sk = HkPk−1H
T
k + σ2

Kk = Pk−1H
T
k S−1

k

mk = mk−1 + Kk[yk −Hkmk−1]

Pk = Pk−1 −KkSkK
T
k .

(2.31)

Note thatSk = HkPk−1H
T
k +σ2 is a scalar, because measurements are scalar and

thus no matrix inversion is required.
The equations above actually are special cases of the Kalman filter update

equations. Only the update part of the equations is required, because theesti-
mated parameters are assumed to be constant, that is, there is no a priori stochastic
dynamics model for the parametersθ. Figure 2.3 illustrates the convergence of the
means and variances of parameters during the recursive estimation.

2.2.3 Batch vs. Recursive Estimation

In this section we shall generalize the recursion idea used in the previous section to
general probabilistic models. The underlying idea is simply that at each measure-
ment we treat the posterior distribution of previous time step as the prior for the
current time step. This way we can compute the same solution in recursive manner
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that we would obtain by direct application of Bayesian rule to the whole (batch)
data set.

Thebatch Bayesian solutionto a statistical estimation problem can be formu-
lated as follows:

1. Specify the likelihood model of measurementsp(yk |θ) given the parameter
θ. Typically the measurementsyk are assumed to be conditionally indepen-
dent such that

p(y1:K |θ) =
∏

k

p(yk |θ).

2. The prior information about the parameterθ is encoded into the prior distri-
butionp(θ).

3. The observed data set isD = {(t1,y1), . . . , (tK ,yK)}, or if we drop the
explicit conditioning totk, the data isD = y1:K .

4. The batch Bayesian solution to the statistical estimation problem can be
computed by applying the Bayes’ rule

p(θ |y1:K) =
1

Z
p(θ)

∏

k

p(yk |θ).

For example, the batch solution of the above kind to the linear regression problem
(2.25) was given by Equations (2.26) and (2.27).

Therecursive Bayesian solutionto the above statistical estimation problem can
be formulated as follows:

1. The distribution of measurements is again modeled by the likelihood func-
tion p(yk |θ) and the measurements are assumed to be conditionally inde-
pendent.

2. In the beginning of estimation (i.e, at step 0), all the information about the
parameterθ we have, is the prior distributionp(θ).

3. The measurements are assumed to be obtained one at a time, firsty1, theny2

and so on. At each step we use the posterior distribution from the previous
time step as the current prior distribution:

p(θ |y1) =
1

Z1
p(y1 |θ)p(θ)

p(θ |y1:2) =
1

Z2
p(y2 |θ)p(θ |y1)

p(θ |y1:3) =
1

Z3
p(y3 |θ)p(θ |y1:2)

...

p(θ |y1:K) =
1

ZK
p(yK |θ)p(θ |y1:K−1).
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It is easy to show that the posterior distribution at the final step above is
exactly the posterior distribution obtained by the batch solution. Also, re-
ordering of measurements does not change the final solution.

For example, the Equations (2.29) and (2.30) give the one step update rulefor the
linear regression problem in Equation (2.25).

The recursive formulation of Bayesian estimation has many useful properties:

• The recursive solution can be considered as theonline learningsolution to
the Bayesian learning problem. That is, the information on the parameters is
updated in online manner using new pieces of information as they arrive.

• Because each step in the recursive estimation is a full Bayesian update step,
batchBayesian inference is aspecial case of recursiveBayesian inference.

• Due to the sequential nature of estimation we can also model the effect of
time to parameters. That is, we can build model to what happens to the
parameterθ between the measurements – this is actually thebasis of filtering
theory, where time behavior is modeled by assuming the parameter to be a
time-dependent stochastic processθ(t).

2.3 Towards Bayesian Filtering

Now that we are able to solve the static linear regression problem in recursive
manner, we can proceed towards Bayesian filtering by allowing the parameters
change between the measurements. By generalizing this idea, we encounterthe
Kalman filter, which is the workhorse of dynamic estimation.

2.3.1 Drift Model for Linear Regression

Assume that we have similar linear regression model as in Equation (2.25), but the
parameterθ is allowed to performGaussian random walkbetween the measure-
ments:

p(yk |θk) = N(yk |Hk θk, σ
2)

p(θk |θk−1) = N(θk |θk−1,Q)

p(θ0) = N(θ0 |m0,P0),

(2.32)

whereQ is the covariance of the random walk. Now, given the distribution

p(θk−1 | y1:k−1) = N(θk−1 |mk−1,Pk−1),

the joint distribution ofθk andθk−1 is1

p(θk, θk−1 | y1:k−1) = p(θk |θk−1) p(θk−1 | y1:k−1).

1Note that this formula is correct only for Markovian dynamic models, where
p(θk | θk−1, y1:k−1) = p(θk | θk−1).
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The distribution ofθk given the measurement history up to time stepk − 1 can be
calculated by integrating overθk−1

p(θk | y1:k−1) =

∫

p(θk |θk−1) p(θk−1 | y1:k−1) dθk−1.

This relationship is sometimes called theChapman-Kolmogorov equation. Because
p(θk |θk−1) andp(θk−1 | y1:k−1) are Gaussian, the result of the marginalization is
Gaussian:

p(θk | y1:k−1) = N(θk |m−
k ,P−

k ),

where

m−
k = mk−1

P−
k = Pk−1 + Q.

By using this as the prior distribution for the measurement likelihoodp(yk |θk) we
get the parameters of the posterior distribution

p(θk | y1:k) = N(θk |mk,Pk),

which are given by equations (2.31), whenmk−1 andPk−1 are replaced bym−
k

andP−
k :

Sk = HkP
−
k HT

k + σ2

Kk = P−
k HT

k S−1
k

mk = m−
k + Kk[yk −Hkm

−
k ]

Pk = P−
k −KkSkK

T
k .

(2.33)

This recursive computational algorithm for the time-varying linear regression weights
is again a special case of the Kalman filter algorithm. Figure 2.4 shows the result of
recursive estimation of sine signal assuming a small diagonal Gaussian drift model
for the parameters.

At this point we shall change from theregression notationused so far intostate
space model notation, which is commonly used in Kalman filtering and related
dynamic estimation literature. Because this notation easily causes confusion to
people who have got used to regression notation, this point is emphasized:

• In state space notationx means the unknown state of the system, that is, the
vector ofunknown parameters in the system. It is not the regressor, covariate
or input variable of the system.

• For example, the time-varying linear regression model with drift presented
in this section can be transformed into more standardstate space model
notationby replacing the variableθk = (θ1,k θ2,k)

T with the variablexk =
(x1,k x2,k)

T :

p(yk |xk) = N(yk |Hk xk, σ
2)

p(xk |xk−1) = N(xk |xk−1,Q)

p(x0) = N(x0 |m0,P0).

(2.34)
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2.3.2 Kalman Filter

The linear model with drift in the previous section had the disadvantage that the
covariatestk occurred explicitly in the model specification. The problem with
this is that when we get more and more measurements, the parametertk grows
without a bound. Thus the conditioning of the problem also gets worse in time.
For practical reasons it also would be desirable to have time-invariant model, that
is, a model which is not dependent on the absolute time, but only on the relative
positions of states and measurements in time.

The alternative state space formulation of the linear model with drift, without
using explicit covariates can be done as follows. Let’s denote time difference
between consecutive times as∆tk−1 = tk − tk−1. The idea is that if the under-
lying phenomenon (signal, state, parameter)xk was exactly linear, the difference
between adjacent time points could be written exactly as

xk − xk−1 = ẋ∆tk−1 (2.35)

whereẋ is the derivative, which is constant in the exactly linear case. The diver-
gence from the exactly linear function can be modeled by assuming that the above
equation does not hold exactly, but there is a small noise term on the right hand
side. The derivative can also be assumed to perform small random walk and thus
not be exactly constant. This model can be written as follows:

x1,k = x1,k−1 + ∆tk−1x2,k−1 + w1

x2,k = x2,k + w2

yk = x1,k + e,

(2.36)

where the signal is the first components of the statex1,k and the derivative is the
secondx2,k. The noises aree ∼ N(0, σ2), (w1; w2) ∼ N(0,Q). The model can
also be written in form

p(yk |xk) = N(yk |Hxk, σ
2)

p(xk |xk−1) = N(xk |Ak−1 xk−1,Q),
(2.37)

where

Ak−1 =

(

1 ∆tk−1

0 1

)

, H =
(

1 0
)

.

With suitableQ this model is actually equivalent to model (2.32), but in this for-
mulation we explicitly estimate the state of the signal (point on the regression line)
instead of the linear regression parameters.

We could now explicitly derive the recursion equations in the same manner as
we did in the previous sections. However, we can also use theKalman filter, which
is a readily derived recursive solution to generic linear Gaussian models of the form

p(yk |xk) = N(yk |Hk xk,Rk)

p(xk |xk−1) = N(xk |Ak−1 xk−1,Qk−1).
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Our alternative linear regression model in Equation (2.36) can be seen to be a
special case of these models. The Kalman filter equations are often expressed as
prediction and update steps as follows:

1. Prediction step:

m−
k = Ak−1 mk−1

P−
k = Ak−1 Pk−1 AT

k−1 + Qk−1.

2. Update step:

Sk = Hk P−
k HT

k + Rk

Kk = P−
k HT

k S−1
k

mk = m−
k + Kk [yk −Hk m−

k ]

Pk = P−
k −Kk Sk KT

k .

The result of tracking the sine signal with Kalman filter is shown in Figure 2.5. All
the mean and covariance calculation equations given in this document so farhave
been special cases of the above equations, including the batch solution to the scalar
measurement case (which is a one-step solution). The Kalman filter recursively
computes the mean and covariance of the posterior distributions of the form

p(xk |y1, . . . ,yk) = N(xk |mk,Pk).

Note that the estimates ofxk derived from this distribution are non-anticipative in
the sense that they are only conditional to measurements obtained before and at the
time stepk. However, after we have obtained measurementsy1, . . . ,yk, we could
compute estimates ofxk−1,xk−2, . . ., which are also conditional to the measure-
ments after the corresponding state time steps. Because more measurements and
more information is available for the estimator, these estimates can be expected to
be more accurate than the non-anticipative measurements computed by the filter.

The above mentioned problem of computing estimates of state by condition-
ing not only to previous measurements, but also to future measurements is called
optimal smoothingas already mentioned in Section 1.2.3. The optimal smoothing
solution to the linear Gaussian state space models is given by theRauch-Tung-
Striebel smoother. The full Bayesian theory of optimal smoothing as well as the
related algorithms will be presented in Chapter 4.

It is also possible to predict the time behavior of the state in the future that we
have not yet measured. This procedure is calledoptimal prediction. Because op-
timal prediction can always be done by iterating the prediction step of the optimal
filter, no specialized algorithms are needed for this.

The non-linear generalizations of optimal prediction, filtering and smoothing
can be obtained by replacing the Gaussian distributions and linear functionsin
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model (2.37) with non-Gaussian and non-linear ones. The Bayesian dynamic es-
timation theory described in this document can be applied to generic non-linear
filtering models of the following form:

yk ∼ p(yk |xk)

xk ∼ p(xk |xk−1).

To understand the generality of this model is it useful to note that if we dropped
the time-dependence from the state we would get the model

yk ∼ p(yk |x)

x ∼ p(x).

Becausex denotes an arbitrary set of parameters or hyper-parameters of the sys-
tem, all static Bayesian models are special cases of this model. Thus in dynamic
estimation context we extend the static models by allowing a Markov model for
the time-behavior of the (hyper)parameters.

The Markovianity also is less of a restriction than it sounds, because whatwe
have is a vector valued Markov process, not a scalar one. The reader may recall
from the elementary calculus that differential equations of an arbitrary order can
be always transformed into vector valued differential equations of the first order.
In analogous manner, Markov processes of an arbitrary order can be transformed
into vector valued first order Markov processes.
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Figure 2.3: (a) Convergence of the recursive linear regression means. The final value is
exactly the same as that was obtained with batch linear regression. Note that time has been
scaled to1 at k = K. (b) Convergence of the variances plotted on logarithmic scale. As
can be seen, every measurement brings more information and the uncertainty decreases
monotonically. The final values are the same as the variancesobtained from the batch
solution.
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Figure 2.4: Example of tracking sine signal with linear model with drift, where the pa-
rameters are allowed to vary according to Gaussian random walk model.
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Figure 2.5: Example of tracking sine signal with locally linear state space model. The
result differs a bit from the random walk parameter model, because of slightly different
choice of process noise. It could be made equivalent if desired.



Chapter 3

Optimal Filtering

In this chapter we first present the classical formulation of the discrete-timeop-
timal filtering as recursive Bayesian inference. Then the classical Kalmanfilters,
extended Kalman filters and statistical linearization based filters are presented in
terms of the general theory. In addition to the classical algorithms the unscented
Kalman filter and general assumed density filters are also presented. Sequential im-
portance resampling based particle filtering, as well as Rao-Blackwellized particle
filtering are also covered.

3.1 Formal Filtering Equations and Exact Solutions

3.1.1 Discrete-Time Probabilistic State Space Models

Before going into the practical non-linear filtering algorithms, in the next sections
the theory of probabilistic (Bayesian) filtering is presented. The Kalman filtering
equations, which are the closed form solutions to the linear Gaussian discrete-time
optimal filtering problem, are also derived.

Definition 3.1 (Discrete-time state space model). Discrete-time state space model
is a recursively defined probabilistic model of the form

xk ∼ p(xk |xk−1)

yk ∼ p(yk |xk),
(3.1)

where

• xk ∈ R
n is thestateof the system on the time stepk.

• yk ∈ R
m is the measurement on the time stepk.

• p(xk |xk−1) is thedynamic model, which models the stochastic dynamics
of the system. The dynamic model can be a probability density, a counting
measure or combination of them depending on if the statexk is continuous,
discrete or hybrid.



32 Optimal Filtering

• p(yk |xk) is themeasurement model, which models the distribution of the
measurements given the state.

The model is assumed to be Markovian, which means that it has the following
two properties:

Property 3.1 (Markov property of states).

States{xk : k = 1, 2, . . .} form a Markov sequence (or Markov chain if the state
is discrete). This Markov property means thatxk (and actually the whole future
xk+1,xk+2, . . .) givenxk−1 is independent from anything that has happened in the
past:

p(xk |x1:k−1,y1:k−1) = p(xk |xk−1). (3.2)

Also the past is independent of the future given the present:

p(xk−1 |xk:T ,yk:T ) = p(xk−1 |xk). (3.3)

Property 3.2 (Conditional independence of measurements).

The measurementyk given the statexk is conditionally independent from the mea-
surement and state histories:

p(yk |x1:k,y1:k−1) = p(yk |xk). (3.4)

As simple example of a Markovian sequence is the Gaussian random walk.
When this is combined with noisy measurements, we obtain an example of a prob-
abilistic state space model:

Example 3.1(Gaussian random walk). Gaussian random walk model can be writ-
ten as

xk = xk−1 + wk−1, wk−1 ∼ N(0, q)

yk = xk + ek, ek ∼ N(0, r),
(3.5)

wherexk is the hidden state andyk is the measurement. In terms of probability
densities the model can be written as

p(xk |xk−1) = N(xk |xk−1, q)

=
1√
2πq

exp

(

− 1

2q
(xk − xk−1)

2

)

p(yk |xk) = N(yk |xk, r)

=
1√
2πr

exp

(

− 1

2r
(yk − xk)

2

)

(3.6)

which is a discrete-time state space model.
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The filtering model (3.1) actually states that the joint prior distribution of the
states(x0, . . . ,xT ) and the joint likelihood of the measurements(y0, . . . ,yT ) are,
respectively

p(x0, . . . ,xT ) = p(x0)
T
∏

k=1

p(xk |xk−1) (3.7)

p(y1, . . . ,yT |x0, . . . ,xT ) =

T
∏

k=1

p(yk |xk). (3.8)

In principle, for givenT we could simply compute the posterior distribution of the
states by the Bayes rule:

p(x0, . . . ,xT |y1, . . . ,yT ) =
p(y1, . . . ,yT |x0, . . . ,xT ) p(x0, . . . ,xT )

p(y1, . . . ,yT )

∝ p(y1, . . . ,yT |x0, . . . ,xT ) p(x0, . . . ,xT ).

(3.9)

However, this kind of explicit usage of the full Bayes’ rule is not feasiblein real
time applications, because the amount of computations per time step increases
when new observations arrive. Thus, this way we could only work with small data
sets, because if the amount of data is not bounded (as in real time sensoring appli-
cations), then at some point of time the computations would become intractable.
To cope with real time data we need to have an algorithm which does constant
amount of computations per time step.

As discussed in Section 1.2.3,filtering distributions, prediction distributions
andsmoothing distributionscan be computed recursively such that only constant
amount of computations is done on each time step. For this reason we shall notcon-
sider the full posterior computation at all, but concentrate to the above-mentioned
distributions instead. In this chapter, we shall mainly consider computation of the
filtering and prediction distributions, and algorithms for computing the smoothing
distributions will be considered in the next chapter.

3.1.2 Optimal Filtering Equations

The purpose ofoptimal filteringis to compute themarginal posterior distribution
of the statexk on the time stepk given the history of the measurements up to the
time stepk

p(xk |y1:k). (3.10)

The fundamental equations of the Bayesian filtering theory are given by the fol-
lowing theorem:

Theorem 3.1(Bayesian optimal filtering equations). The recursive equations for
computing thepredicted distributionp(xk |y1:k−1) and thefiltering distribution
p(xk |y1:k) on the time stepk are given by the followingBayesian filtering equa-
tions:
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• Initialization. The recursion starts from the prior distributionp(x0).

• Prediction.The predictive distribution of the statexk on time stepk given
the dynamic model can be computed by the Chapman-Kolmogorov equation

p(xk |y1:k−1) =

∫

p(xk |xk−1) p(xk−1 |y1:k−1) dxk−1. (3.11)

• Update.Given the measurementyk on time stepk the posterior distribution
of the statexk can be computed by the Bayes’ rule

p(xk |y1:k) =
1

Zk
p(yk |xk) p(xk |y1:k−1), (3.12)

where the normalization constantZk is given as

Zk =

∫

p(yk |xk) p(xk |y1:k−1) dxk. (3.13)

If some of the components of the state are discrete, the corresponding integrals are
replaced with summations.

previous

current

dynamics

Figure 3.1: Visualization of the prediction step: the prediction propagates the state
distribution of the previous measurement step through the dynamic model such that the
uncertainties (stochastic terms) in the dynamic model are taken into account.

Proof. The joint distribution ofxk andxk−1 giveny1:k−1 can be computed as

p(xk,xk−1 |y1:k−1) = p(xk |xk−1,y1:k−1) p(xk−1 |y1:k−1)

= p(xk |xk−1) p(xk−1 |y1:k−1),
(3.14)
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Figure 3.2: Visualization of the update step: (a) Prior distribution from prediction and the
likelihood of measurement just before the update step. (b) The posterior distribution after
combining the prior and likelihood by Bayes’ rule.

where the disappearance of the measurement historyy1:k−1 is due to the Markov
property of the sequence{xk, k = 1, 2, . . .}. The marginal distribution ofxk given
y1:k−1 can be obtained by integrating the distribution (3.14) overxk−1, which
gives theChapman-Kolmogorov equation

p(xk |y1:k−1) =

∫

p(xk |xk−1) p(xk−1 |y1:k−1) dxk−1. (3.15)

If xk−1 is discrete, then the above integral is replaced with sum overxk−1. The
distribution ofxk givenyk andy1:k−1, that is, giveny1:k can be computed by the
Bayes’ rule

p(xk |y1:k) =
1

Zk
p(yk |xk,y1:k−1) p(xk |y1:k−1)

=
1

Zk
p(yk |xk) p(xk |y1:k−1)

(3.16)

where the normalization constant is given by Equation (3.13). The disappearance
of the measurement historyy1:k−1 in the Equation (3.16) is due to the conditional
independence ofyk from the measurement history, givenxk.

3.1.3 Kalman Filter

The Kalman filter(Kalman, 1960b) is the closed form solution to the optimal
filtering equations of the discrete-time filtering model, where the dynamic and
measurements models are linear Gaussian:

xk = Ak−1 xk−1 + qk−1

yk = Hk xk + rk,
(3.17)
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wherexk ∈ R
n is the state,yk ∈ R

m is the measurement,qk−1 ∼ N(0,Qk−1) is
the process noise,rk ∼ N(0,Rk) is the measurement noise and the prior distribu-
tion is Gaussianx0 ∼ N(m0,P0). The matrixAk−1 is the transition matrix of the
dynamic model andHk is the measurement model matrix. In probabilistic terms
the model is

p(xk |xk−1) = N(xk |Ak−1 xk−1,Qk−1)

p(yk |xk) = N(yk |Hk xk,Rk).
(3.18)

Algorithm 3.1 (Kalman filter). The optimal filtering equations for the linear fil-
tering model(3.17)can be evaluated in closed form and the resulting distributions
are Gaussian:

p(xk |y1:k−1) = N(xk |m−
k ,P−

k )

p(xk |y1:k) = N(xk |mk,Pk)

p(yk |y1:k−1) = N(yk |Hkm
−
k ,Sk).

(3.19)

The parameters of the distributions above can be computed with the following
Kalman filterpredictionandupdate steps:

• The prediction stepis

m−
k = Ak−1 mk−1

P−
k = Ak−1 Pk−1 AT

k−1 + Qk−1.
(3.20)

• The update stepis

vk = yk −Hk m−
k

Sk = Hk P−
k HT

k + Rk

Kk = P−
k HT

k S−1
k

mk = m−
k + Kk vk

Pk = P−
k −Kk Sk KT

k .

(3.21)

The initial state has a given Gaussian prior distributionx0 ∼ N(m0,P0), which
also defined the initial mean and covariance.

The Kalman filter equations can be derived as follows:

1. By Lemma A.1 on page 81, the joint distribution ofxk and xk−1 given
y1:k−1 is

p(xk−1,xk |y1:k−1) = p(xk |xk−1) p(xk−1 |y1:k−1)

= N(xk |Ak−1 xk−1,Qk−1) N(xk−1 |mk−1,Pk−1)

= N

([

xk−1

xk

]

∣

∣

∣m
′,P′

)

,

(3.22)
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where

m′ =

(

mk−1

Ak−1 mk−1

)

, P′ =

(

Pk−1 Pk−1 AT
k−1

Ak−1 Pk−1 Ak−1 Pk−1 AT
k−1 + Qk−1

)

.

(3.23)
and the marginal distribution ofxk is by Lemma A.2

p(xk |y1:k−1) = N(xk |m−
k ,P−

k ), (3.24)

where

m−
k = Ak−1 mk−1, P−

k = Ak−1 Pk−1 AT
k−1 + Qk−1. (3.25)

2. By Lemma A.1, the joint distribution ofyk andxk is

p(xk,yk |y1:k−1) = p(yk |xk) p(xk |y1:k−1)

= N(yk |Hk xk,Rk) N(xk |m−
k ,P−

k )

= N

([

xk

yk

]

∣

∣

∣
m′′,P′′

)

,

(3.26)

where

m′′ =

(

m−
k

Hk m−
k

)

, P′′ =

(

P−
k P−

k HT
k

Hk P−
k Hk P−

k HT
k + Rk

)

. (3.27)

3. By Lemma A.2 the conditional distribution ofxk is

p(xk |yk,y1:k−1) = p(xk |y1:k)

= N(xk |mk,Pk),
(3.28)

where

mk = m−
k + P−

k HT
k (Hk P−

k HT
k + Rk)

−1[yk −Hk m−
k ]

Pk = P−
k −P−

k HT
k (Hk P−

k HT
k + Rk)

−1 Hk P−
k

(3.29)

which can be also written in form (3.21).

The functional form of the Kalman filter equations given here is not the onlypos-
sible one. In the numerical stability point of view it would be better to work with
matrix square roots of covariances instead of plain covariance matrices. The theory
and details of implementation of this kind of methods is well covered, for example,
in the book of Grewal and Andrews (2001).

Example 3.2(Kalman filter for Gaussian random walk). Assume that we are ob-
serving measurementsyk of the Gaussian random walk model given in Example 3.1
and we want to estimate the statexk on each time step. The information obtained
up to time stepk − 1 is summarized by the Gaussian filtering density

p(xk−1 | y1:k−1) = N(xk−1 |mk−1, Pk−1). (3.30)
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The Kalman filter prediction and update equations are now given as

m−
k = mk−1

P−
k = Pk−1 + q

mk = m−
k +

P−
k

P−
k + r

(yk −m−
k )

Pk = P−
k −

(P−
k )2

P−
k + r

.

(3.31)
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Figure 3.3: Simulated signal and measurements of the Kalman filtering example (Example
3.2).
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Figure 3.4: Signal, measurements and filtering estimate of the Kalman filtering example
(Example 3.2).

3.2 Gaussian Approximation Based Filtering

3.2.1 Linearization of Non-Linear Transforms

Consider the following transformation of a Gaussian random variablex into an-
other random variabley

x ∼ N(m,P)

y = g(x).
(3.32)

wherex ∈ R
n, y ∈ R

m, andg : R
n 7→ R

m is a general non-linear function.
Formally, the probability density of the random variabley is1 (see, e.g Gelman
et al., 1995)

p(y) = |J(y)| N(g−1(y) |m,P), (3.33)

where|J(y)| is the determinant of the Jacobian matrix of the inverse transform
g−1(y). However, it is not generally possible to handle this distribution directly,
because it is non-Gaussian for all but linearg.

A first order Taylor series based Gaussian approximation to the distributionof
y can be now formed as follows. If we letx = m + δx, whereδx ∼ N(0,P), we
can form Taylor series expansion of the functiong(·) as follows:

g(x) = g(m+δx) = g(m)+Gx(m) δx+
∑

i

1

2
δxT G

(i)
xx(m) δxei+. . . (3.34)

1This actually only applies to invertibleg(·), but it can be easily generalized to the non-invertible
case.
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where andGx(m) is the Jacobian matrix ofg with elements

[Gx(m)]j,j′ =
∂gj(x)

∂xj′

∣

∣

∣

∣

∣

x=m

. (3.35)

andG
(i)
xx(m) is the Hessian matrix ofgi(·) evaluated atm:

[

G
(i)
xx(m)

]

j,j′
=

∂2gi(x)

∂xj ∂xj′
,

∣

∣

∣

∣

∣

x=m

. (3.36)

ei = (0 · · · 0 1 0 · · · 0)T is a vector with 1 at positioni and other elements are
zero, that is, it is the unit vector in direction of the coordinate axisi.

The linear approximation can be obtained by approximating the function by
the first two terms in the Taylor series:

g(x) ≈ g(m) + Gx(m) δx. (3.37)

Computing the expected value w.r.t.x gives:

E[g(x)] ≈ E[g(m)] + Gx(m) δx]

= g(m) + Gx(m) E[δx]

= g(m).

(3.38)

The covariance can be then approximated as

E
[

(g(x)− E[g(x)]) (g(x)− E[g(x)])T
]

≈ E
[

(g(x)− g(m)) (g(x)− g(m))T
]

≈ E
[

(g(m) + Gx(m) δx− g(m)]) (g(m) + Gx(m) δx− g(m))T
]

= E
[

(Gx(m) δx) (Gx(m) δx)T
]

= Gx(m) E
[

δx δxT
]

GT
x (m)

= Gx(m)PGT
x (m).

(3.39)

We are also often interested in the the joint covariance between the variablesx

andy. Approximation to the joint covariance can be achieved by considering the
augmented transformation

g̃(x) =

(

x

g(x)

)

. (3.40)
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The resulting mean and covariance are:

E[g̃(x)] ≈
(

m

g(m)

)

Cov[g̃(x)] ≈
(

I

Gx(m)

)

P

(

I

Gx(m)

)T

=

(

P PGT
x (m)

Gx(m)P Gx(m)PGT
x (m)

)

.

(3.41)

In the derivation of the extended Kalman filter equations, we need a bit more
general transformation of the form

x ∼ N(m,P)

q ∼ N(0,Q)

y = g(x) + q,

(3.42)

whereq is independent ofx. The joint distribution ofx andy as defined above
is now the same as in Equations (3.41) except that the covarianceQ is added to
the lower right block of the covariance matrix ofg̃(·). Thus we get the following
algorithm:

Algorithm 3.2 (Linear approximation of additive transform). The linear approxi-
mation based Gaussian approximation to the joint distribution ofx and the trans-
formed random variabley = g(x) + q wherex ∼ N(m,P) andq ∼ N(0,Q) is
given as

(

x

y

)

∼ N

((

m

µL

)

,

(

P CL

CT
L SL

))

, (3.43)

where

µL = g(m)

SL = Gx(m)PGT
x (m) + Q

CL = PGT
x (m),

(3.44)

andGx(m) is the Jacobian matrix ofg with respect tox, evaluated atx = m

with elements

[Gx(m)]j,j′ =
∂gj(x)

∂xj′

∣

∣

∣

∣

∣

x=m

. (3.45)

Furthermore, in filtering models where the process noise is not additive, we
often need to approximate transformations of the form

x ∼ N(m,P)

q ∼ N(0,Q)

y = g(x,q).

(3.46)
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wherex andq are uncorrelated random variables. The mean and covariance can be
now computed by substituting the augmented vector(x,q) to the vectorx in Equa-
tion (3.41). The joint Jacobian matrix can be then written asGx,q = (Gx Gq).
HereGq is the Jacobian matrix ofg(·) with respect toq and both the Jacobian
matrices are evaluated atx = m,q = 0. The approximations to the mean and
covariance of the augmented transform as in Equation (3.41) are then given as

E[g̃(x,q)] ≈ g(m,0)

Cov[g̃(x,q)] ≈
(

I 0

Gx(m) Gq(m)

)(

P 0

0 Q

)T (
I 0

Gx(m) Gq()

)T

=

(

P PGT
x (m)

Gx(m)P Gx(m)PGT
x (m) + Gq(m)QGT

q (m)

)

(3.47)

The approximation above can be formulated as the following algorithm:

Algorithm 3.3 (Linear approximation of non-additive transform). The linear ap-
proximation based Gaussian approximation to the joint distribution ofx and the
transformed random variabley = g(x,q) whenx ∼ N(m,P) andq ∼ N(0,Q)
is given as

(

x

y

)

∼ N

((

m

µL

)

,

(

P CL

CT
L SL

))

, (3.48)

where

µL = g(m)

SL = Gx(m)PGT
x (m) + Gq(m)QGT

q (m)

CL = PGT
x (m),

(3.49)

andGx(m) is the Jacobian matrix ofg with respect tox, evaluated atx = m,q =
0 with elements

[Gx(m)]j,j′ =
∂gj(x,q)

∂xj′

∣

∣

∣

∣

∣

x=m,q=0

. (3.50)

andGq(m) is the corresponding Jacobian matrix with respect toq:

[Gq(m)]j,j′ =
∂gj(x,q)

∂qj′

∣

∣

∣

∣

∣

x=m,q=0

. (3.51)

3.2.2 Extended Kalman Filter

The extended Kalman filter (EKF) (see, e.g., Jazwinski, 1970; Maybeck,1982a;
Bar-Shalom et al., 2001; Grewal and Andrews, 2001) is an extension of the Kalman
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filter to non-linear optimal filtering problems. If process and measurement noises
can be assumed to be additive, the EKF model can be written as

xk = f(xk−1) + qk−1

yk = h(xk) + rk,
(3.52)

wherexk ∈ R
n is the state,yk ∈ R

m is the measurement,qk−1 ∼ N(0,Qk−1)
is the Gaussian process noise,rk ∼ N(0,Rk) is the Gaussian measurement noise,
f(·) is the dynamic model function andh(·) is the measurement model function.
The functionsf andh can also depend on the step numberk, but for notational
convenience, this dependence has not been explicitly denoted.

The idea of extended Kalman filter is to form Gaussian approximations

p(xk |y1:k) ≈ N(xk |mk,Pk), (3.53)

to the filtering densities. In EKF this is done by utilizing linear approximations to
the non-linearities and the result is

Algorithm 3.4 (Extended Kalman filter I). The prediction and update steps of the
first order additive noise extended Kalman filter are:

• Prediction:

m−
k = f(mk−1)

P−
k = Fx(mk−1)Pk−1 FT

x (mk−1) + Qk−1.
(3.54)

• Update:

vk = yk − h(m−
k )

Sk = Hx(m−
k )P−

k HT
x (m−

k ) + Rk

Kk = P−
k HT

x (m−
k )S−1

k

mk = m−
k + Kk vk

Pk = P−
k −Kk Sk KT

k .

(3.55)

These filtering equations can be derived by repeating the same steps as in
derivation of the Kalman filter in Section 3.1.3 and by applying Taylor series
approximations on appropriate steps:

1. The joint distribution ofxk and xk−1 is non-Gaussian, but we can form
Gaussian approximation to it by applying the approximation Algorithm 3.2
to the function

f(xk−1) + qk−1, (3.56)

which results in the Gaussian approximation

p(xk−1,xk, |y1:k−1) ≈ N

([

xk−1

xk

]

∣

∣

∣m
′,P′

)

, (3.57)
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where

m′ =

(

mk−1

f(mk−1)

)

P′ =

(

Pk−1 Pk−1 FT
x

Fx Pk−1 Fx Pk−1 FT
x + Qk−1

)

,

(3.58)

and the Jacobian matrixFx of f(x) is evaluated atx = mk−1. The marginal
mean and covariance ofxk are thus

m−
k = f(mk−1)

P−
k = Fx Pk−1 FT

x + Qk−1.
(3.59)

2. The joint distribution ofyk andxk is also non-Gaussian, but we can again
approximate it by applying the Algorithm 3.2 to the function

h(xk) + rk. (3.60)

We get the approximation

p(xk,yk |y1:k−1) ≈ N

([

xk

yk

]

∣

∣

∣m
′′,P′′

)

, (3.61)

where

m′′ =

(

m−
k

h(m−
k )

)

, P′′ =

(

P−
k P−

k HT
x

Hx P−
k Hx P−

k HT
x + Rk

)

, (3.62)

and the Jacobian matrixHx of h(x) is evaluated atx = m−
k .

3. By Lemma A.2 the conditional distribution ofxk is approximately

p(xk |yk,y1:k−1) ≈ N(xk |mk,Pk), (3.63)

where

mk = m−
k + P−

k HT
x (Hx P−

k HT
x + Rk)

−1[yk − h(m−
k )]

Pk = P−
k −P−

k HT
x (Hx P−

k HT
x + Rk)

−1 Hx P−
k

(3.64)

A more general EKF filtering model can be written as

xk = f(xk−1,qk−1)

yk = h(xk, rk),
(3.65)

whereqk−1 ∼ N(0,Qk−1) and rk ∼ N(0,Rk) are the Gaussian process and
measurement noises, respectively. Again, the functionsf andh can also depend on
the step numberk.
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Algorithm 3.5 (Extended Kalman filter II). The prediction and update steps of the
(first order) extended Kalman filter (EKF) are:

• Prediction:

m−
k = f(mk−1,0)

P−
k = Fx(mk−1)Pk−1 FT

x (mk−1) + Fq(mk−1)Qk−1 FT
q (mk−1).

(3.66)

• Update:

vk = yk − h(m−
k ,0)

Sk = Hx(m−
k )P−

k HT
x (m−

k ) + Hr(m
−
k )Rk HT

r (m−
k )

Kk = P−
k HT

x (m−
k )S−1

k

mk = m−
k + Kk vk

Pk = P−
k −Kk Sk KT

k .

(3.67)

where the matricesFx(m), Fq(m), Hx(m), andHr(m), are the Jacobian ma-
trices off andh with respect to state and noise, with elements

[Fx(m)]j,j′ =
∂fj(x,q)

∂xj′

∣

∣

∣

∣

∣

x=m,q=0

(3.68)

[Fq(m)]j,j′ =
∂fj(x,q)

∂qj′

∣

∣

∣

∣

∣

x=m,q=0

(3.69)

[Hx(m)]j,j′ =
∂hj(x, r)

∂xj′

∣

∣

∣

∣

∣

x=m,r=0

(3.70)

[Hr(m)]j,j′ =
∂hj(x, r)

∂rj′

∣

∣

∣

∣

∣

x=m,r=0

. (3.71)

These filtering equations can be derived by repeating the same steps as in the
derivation of the extended Kalman filter above, but instead of using the Algorithm
3.2, we use the Algorithm 3.3 for computing the approximations.

In so called second order EKF the non-linearity is approximated by retaining
second order terms in Taylor series expansion. The derivation and the resulting
equations are straightforward, but due to their complicated appearance,they are
not presented here. The equations can be found, or example, in the book of Bar-
Shalom et al. (2001).

The advantage of EKF over the other non-linear filtering methods is its relative
simplicity compared to its performance. Linearization is very common engineering
way of constructing approximations to non-linear systems and thus it is very easy
to understand and apply. A disadvantage of it is that because it is based on a
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local linear approximation, it will not work in problems with considerable non-
linearities. Also the filtering model is restricted in the sense that only Gaussian
noise processes are allowed and thus the model cannot contain, for example, dis-
crete valued random variables. The Gaussian restriction also prevents handling of
hierarchical models or other models where significantly non-Gaussian distribution
models would be needed.

The EKF is also the only filtering algorithm presented in this document, which
formally requires the measurement model and dynamic model functions to be dif-
ferentiable. This as such might be a restriction, but in some cases it might alsobe
simply impossible to compute the required Jacobian matrices, which renders the
usage of EKF impossible. And even when the Jacobian matrices exist and could
be computed, the actual computation and programming of Jacobian matrices can
be quite error prone and hard to debug.

3.2.3 Statistical Linearization of Non-Linear Transforms

In statistically linearized filter (Gelb, 1974) the Taylor series approximation used in
the EKF is replaced by statistical linearization. Recall the transformation problem
considered in Section 3.2.1, which was stated as

x ∼ N(m,P)

y = g(x).

In statistical linearization we form a linear approximation to the transformation as
follows:

g(x) ≈ b + A δx, (3.72)

whereδx = x−m, such that the mean squared error is minimized:

MSE(b,A) = E[(g(x)− b−A δx)T (g(x)− b−A δx)]. (3.73)

Setting derivatives with respect tob andA zero gives

b = E[g(x)]

A = E[g(x) δxT ]P−1.
(3.74)

In this approximation of transformg(x), b is now exactly the mean and the ap-
proximate covariance is given as

E[(g(x)− E[g(x)]) (g(x)− E[g(x)])T ]

≈ APAT

= E[g(x) δxT ]P−1 E[g(x) δxT ]T .

(3.75)
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We may now apply this approximation to the augmented functiong̃(x) = (x;g(x))
in Equation (3.40) of Section 3.2.1, where we get the approximation

E[g̃(x)] ≈
(

m

E[g(x)]

)

Cov[g̃(x)] ≈
(

P E[g(x) δx]T

E[g(x) δxT ] E[g(x) δxT ]P−1 E[g(x) δxT ]T

) (3.76)

We now get the following algorithm corresponding to Algorithm 3.2 in Section
3.2.1:

Algorithm 3.6 (Statistically linearized approximation of additive transform). The
statistical linearization based Gaussian approximation to the joint distribution of
x and the transformed random variabley = g(x) + q wherex ∼ N(m,P) and
q ∼ N(0,Q) is given as

(

x

y

)

∼ N

((

m

µS

)

,

(

P CS

CT
S SS

))

, (3.77)

where

µS = E[g(x)]

SS = E[g(x) δxT ]P−1 E[g(x) δxT ]T + Q

CS = E[g(x) δxT ]T .

(3.78)

The expectations are taken with respect to the distribution ofx.

Applying the same approximation with(x,q) in place ofx we obtain the
following mean and covariance:

E[g̃(x,q)] ≈
(

m

E[g(x,q)]

)

Cov[g̃(x,q)] ≈





P E[g(x,q) δxT ]T

E[g(x,q) δxT ] E[g(x) δxT ]P−1 E[g(x) δxT ]T

+ E[g(x)qT ]Q−1 E[g(x)qT ]T





(3.79)

Thus we get the following algorithm for non-additive transform as in Algorithm
3.3:

Algorithm 3.7 (Statistically linearized approximation of non-additive transform).
The statistical linearization based Gaussian approximation to the joint distribution
of x and the transformed random variabley = g(x,q) whenx ∼ N(m,P) and
q ∼ N(0,Q) is given as

(

x

y

)

∼ N

((

m

µS

)

,

(

P CS

CT
S SS

))

, (3.80)



48 Optimal Filtering

where

µS = E[g(x,q)]

SS = E[g(x) δxT ]P−1 E[g(x) δxT ]T + E[g(x)qT ]Q−1 E[g(x)qT ]T

CS = E[g(x,q) δxT ]T .

(3.81)

The expectations are taken with respect to variablesx andq.

3.2.4 Statistically Linearized Filter

Statistically linearized filter (SLF) (Gelb, 1974) or quasi-linear filter (Stengel, 1994)
is a Gaussian approximation based filter, which can be applied to the same kind of
models as EKF, that is, to models of the form (3.52) or (3.65). The filter is similar
to EKF, but the difference is that statistical linearization algorithms 3.6 and 3.7 are
used instead of the Taylor series approximations.

Algorithm 3.8 (Statistically linearized filter I). The prediction and update steps of
the additive noise statistically linearized (Kalman) filter are:

• Prediction:

m−
k = E[f(xk−1)]

P−
k = E[f(xk−1) δxT

k−1]P
−1
k−1 E[f(xk−1) δxT

k−1]
T + Qk−1,

(3.82)

whereδxk−1 = xk−1 −mk−1 and the expectations are taken with respect
to the variablexk−1 ∼ N(mk−1,Pk−1).

• Update:

vk = yk − E[h(xk)]

Sk = E[h(xk) δxT
k ] (P−

k )−1 E[h(xk) δxT
k ]T + Rk

Kk = E[h(xk) δxT
k ]T S−1

k

mk = m−
k + Kk vk

Pk = P−
k −Kk Sk KT

k .

(3.83)

where the expectations are taken with respect to the variablexk ∼ N(m−
k ,P−

k ).

Algorithm 3.9 (Statistically linearized filter II). The prediction and update steps
of the non-additive statistically linearized (Kalman) filter are:

• Prediction:

m−
k = E[f(xk−1,qk−1)]

P−
k = E[f(xk−1,qk−1) δxT

k−1]P
−1
k−1 E[f(xk−1,qk−1) δxT

k−1]
T

+ E[f(xk−1,qk−1)q
T
k−1]Q

−1
k−1 E[f(xk−1,qk−1)q

T
k−1]

T ,

(3.84)

whereδxk−1 = xk−1 −mk−1 and the expectations are taken with respect
to the variablesxk−1 ∼ N(mk−1,Pk−1) andqk−1 ∼ N(0,Qk−1).
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• Update:

vk = yk − E[h(xk, rk)]

Sk = E[h(xk, rk) δxT
k ] (P−

k )−1 E[h(xk, rk) δxT
k ]T

+ E[h(xk, rk) r
T
k ]R−1

k E[h(xk, rk) r
T
k ]T

Kk = E[h(xk, rk) δxT
k ]T S−1

k

mk = m−
k + Kk vk

Pk = P−
k −Kk Sk KT

k .

(3.85)

where the expectations are taken with respect to variablesxk ∼ N(m−
k ,P−

k )
andrk ∼ N(0,Rk).

Both the filters above can be derived by following the derivation of the EKFin
Section 3.2.2 and by utilizing the statistical linearization approximations instead of
linear approximations on appropriate steps.

The advantage of SLF over EKF is that it is more global approximation than
EKF, because the linearization is not only based on the local region around the
mean but on a whole range of function values. The non-linearities also do not
have to be differentiable nor do we need to derive their Jacobian matrices.The
clear disadvantage is that the certain expected values of the non-linear functions
have to be computed in closed form. Naturally, it is not possible for all functions.
Fortunately, the expected values involved are of such type that one is likelyto find
many of them tabulated in older physics and control engineering books.

3.2.5 Unscented Transform

Theunscented transform(UT) (Julier and Uhlmann, 1995; Julier et al., 2000) is a
relatively recent numerical method, which can be also used for approximating the
joint distribution of random variablesx andy defined as

x ∼ N(m,P)

y = g(x).

However, the philosophy in UT differs from the linearization and statistical lin-
earization in the sense that it tries to directly approximate the mean and covariance
of the target distribution instead of trying to approximate the non-linear function
(Julier and Uhlmann, 1995).

The idea of UT is to form a fixed number of deterministically chosen sigma-
points, which capture the mean and covariance of the original distribution ofx

exactly. These sigma-points are then propagated through the non-linearityand
the mean and covariance of the transformed variable are estimated from them.
Note that although the unscented transform resembles Monte Carlo estimation the
approaches are significantly different, because in UT the sigma points areselected
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(a) Original (b) Transformed

Figure 3.5: Example of applying a non-linear transformation to a randomvariable on the
left, which results in the random variable on the right.

(a) Original (b) Transformed

Figure 3.6: Illustration of linearization based (EKF) approximation to the transformation
in Figure 3.5. The Gaussian approximation is formed by calculating the curvature at the
mean, which results in bad approximation further from the mean. The true distribution is
presented by the blue dotted line and the red solid line is theapproximation.
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(a) Original (b) Transformed

Figure 3.7: Illustration of unscented transform based (UKF) approximation to the trans-
formation in Figure 3.5. The Gaussian approximation is formed by propagating the sigma
points through the non-linearity and the mean and covariance are estimated from the
transformed sigma points. The true distribution is presented by the blue dotted line and
the red solid line is the approximation.

deterministically (Julier and Uhlmann, 2004). The difference between linearap-
proximation and UT is illustrated in Figures 3.5, 3.6 and 3.7.

Theunscented transformforms the Gaussian approximation with the following
procedure:

1. Form the matrix of sigma pointsX as

X =
[

m · · · m
]

+
√

n + λ
[

0
√

P −
√

P
]

,

whereλ is a scaling parameter, which is defined in terms of algorithm pa-
rametersα andκ as follows:

λ = α2 (n + κ)− n. (3.86)

The parametersα andκ determine the spread of the sigma points around the
mean (Wan and Van der Merwe, 2001). The matrix square root denotes a

matrix such that
√

P
√

P
T

= P. The sigma points are the columns of the
sigma point matrix.

2. Propagate the sigma points through the non-linear functiong(·):

Yi = g(Xi), i = 1 . . . 2n + 1,

whereXi andYi denote theith columns of matricesX andY, respectively.

3. Estimates of the mean and covariance of the transformed variable can be
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computed from the sigma points as follows:

E[g(x)] ≈
∑

i

W
(m)
i−1 Yi

Cov[g(x)] ≈
∑

i

W
(c)
i−1 (Yi − µ) (Yi − µ)T

(3.87)

where the constant weightsW (m)
i andW

(c)
i are given as follows (Wan and

Van der Merwe, 2001):

W
(m)
0 = λ/(n + λ)

W
(c)
0 = λ/(n + λ) + (1− α2 + β)

W
(m)
i = 1/{2(n + λ)}, i = 1, . . . , 2n

W
(c)
i = 1/{2(n + λ)}, i = 1, . . . , 2n,

(3.88)

andβ is an additional algorithm parameter, which can be used for incorporat-
ing prior information on the (non-Gaussian) distribution ofx (Wan and Van
der Merwe, 2001). Note that the indexing starts from zero, because originally
the sigma points were numbered starting from zero instead of starting from
one as we do here.

If we apply the unscented transform to the augmented functiong̃(x) = (x,g(x)),
we simply get the set of sigma points, where the sigma pointsXi andYi have
been concatenated to the same vectors. Thus, also forming approximation to joint
distributionx andg(x) + q is straightforward and the result is:

Algorithm 3.10 (Unscented approximation of additive transform). The unscented
transform approximation based Gaussian approximation to the joint distribution
of x and the transformed random variabley = g(x)+q wherex ∼ N(m,P) and
q ∼ N(0,Q) is given as

(

x

y

)

∼ N

((

m

µU

)

,

(

P CU

CT
U SU

))

, (3.89)

where the submatrices can be computed as follows:

1. Form the matrix of sigma pointsX as

X =
[

m · · · m
]

+
√

n + λ
[

0
√

P −
√

P
]

,

where the parameters are as defined above.

2. Propagate the sigma points through the non-linear functiong(·):

Yi = g(Xi), i = 1 . . . 2n + 1,

whereXi andYi denote theith columns of matricesX andY, respectively.
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3. The submatrices are then given as:

µU =
∑

i

W
(m)
i−1 Yi

SU =
∑

i

W
(c)
i−1 (Yi − µU ) (Yi − µU )T + Q

CU =
∑

i

W
(c)
i−1 (Xi −m) (Yi − µU )T ,

(3.90)

where the constant weightsW (m)
i andW

(c)
i were defined above.

The unscented transform approximation to a transformation of the formy =
g(x,q) can be derived by considering the augmented random variablex̃ = (x,q)
as the input variable. The resulting algorithm is:

Algorithm 3.11 (Unscented approximation of non-additive transform). The un-
scented transform based Gaussian approximation to the joint distribution ofx

and the transformed random variabley = g(x,q) whenx ∼ N(m,P) and
q ∼ N(0,Q) is given as

(

x

y

)

∼ N

((

m

µU

)

,

(

P CU

CT
U SU

))

, (3.91)

where the submatrices can be computed as follows. Let the dimensionalities of x

andq benx andnq, respectively, and letn = nx + nq.

1. Form the matrix of sigma points of the augmented random variablex̃ =
(x,q)

X̃ =
(

m̃ · · · m̃
)

+
√

n + λ
(

0
√

P̃ −
√

P̃

)

.

where

m̃ =

(

m

0

)

P̃ =

(

P 0

0 Q

)

.

2. Propagate the sigma points through the function:

Ỹi = g(X̃x
i , X̃q

i ), i = 1 . . . 2n + 1,

whereX̃x
i and X̃

q
i denote the parts of the augmented sigma pointi, which

correspond tox andq, respectively.

3. Compute the predicted meanµU , the predicted covarianceSU and the cross-
covarianceCU :

µU =
∑

i

W
(m)
i−1 Ỹi

SU =
∑

i

W
(c)
i−1 (Ỹi − µU ) (Ỹi − µU )T

CU =
∑

i

W
(c)
i−1 (X̃x

i −m) (Ỹi − µU )T ,
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where the definitions of the weightsW
(m)
i andW

(c)
i are as above.

3.2.6 Unscented Kalman Filter

Theunscented Kalman filter(UKF) (Julier et al., 1995; Julier and Uhlmann, 2004;
Wan and Van der Merwe, 2001) is an optimal filtering algorithm that utilizes the
unscented transform and can be used for approximating the filtering distribution of
models having the same form as with EKF and SLF, that is, models of the form
(3.52) or (3.65). As EKF and SLF, UKF forms a Gaussian approximation to the
filtering distribution:

p(xk | y1, . . . ,yk) ≈ N(xk |mk,Pk), (3.92)

wheremk andPk are the mean and covariance computed by the algorithm.

Algorithm 3.12 (unscented Kalman filter). In the additive form unscented Kalman
filter (UKF) algorithm, which can be applied to additive models of the form(3.52),
the following operations are performed on each measurement stepk = 1, 2, 3, . . .:

1. Prediction step:

(a) Form the matrix of sigma points:

Xk−1 =
[

mk−1 · · · mk−1

]

+
√

n + λ
[

0
√

Pk−1 −
√

Pk−1

]

.

(3.93)

(b) Propagate the sigma points through the dynamic model:

X̂k,i = f(Xk−1,i), i = 1 . . . 2n + 1. (3.94)

(c) Compute the predicted meanm−
k and the predicted covarianceP−

k :

m−
k =

∑

i

W
(m)
i−1 X̂k,i

P−
k =

∑

i

W
(c)
i−1 (X̂k,i −m−

k ) (X̂k,i −m−
k )T + Qk−1.

(3.95)

2. Update step:

(a) Form the matrix of sigma points:

X−
k =

[

m−
k · · · m−

k

]

+
√

n + λ
[

0
√

P−
k −

√

P−
k

]

. (3.96)

(b) Propagate sigma points through the measurement model:

Ŷk,i = h(X−
k,i), i = 1 . . . 2n + 1. (3.97)
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(c) Compute the predicted meanµk, the predicted covariance of the mea-
surementSk, and the cross-covariance of the state and measurement
Ck:

µk =
∑

i

W
(m)
i−1 Ŷk,i

Sk =
∑

i

W
(c)
i−1 (Ŷk,i − µk) (Ŷk,i − µk)

T + Rk

Ck =
∑

i

W
(c)
i−1 (X−

k,i −m−
k ) (Ŷk,i − µk)

T .

(3.98)

(d) Compute the filter gainKk and the filtered state meanmk and covari-
ancePk, conditional to the measurementyk:

Kk = Ck S−1
k

mk = m−
k + Kk [yk − µk]

Pk = P−
k −Kk Sk KT

k .

(3.99)

The filtering equations above can be derived in analogous manner to EKF
equations, but the unscented transform based approximations are usedinstead of
the linear approximations.

The non-additive form of UKF (Julier and Uhlmann, 2004) can be derived by
augmenting the process or measurement noises with the state vector and applying
UT approximation to that. Alternatively, one can first augment the state vector
with process noise, then approximate the prediction step and after that do thesame
with measurement noise on the update step. The different algorithms and ways
of doing this in practice are analyzed in article (Wu et al., 2005). Because of the
various alternative forms and complicated appearance of each of these,the reader
is encouraged to check the augmented form filtering equations from articles(Julier
and Uhlmann, 2004; Wu et al., 2005) and references therein.

The advantage of the UKF over EKF is that UKF is not based on local linear
approximation, but uses a bit further points in approximating the non-linearity.
As discussed in Julier and Uhlmann (2004) the unscented transform is ableto
capture the higher order moments caused by the non-linear transform better than
the Taylor series based approximations. The dynamic and model functions are
also not required to be formally differentiable nor their Jacobian matrices need to
be computed. The advantage of UKF over SLF is that in UKF there is no need
to compute any expected values in closed form, only evaluations of the dynamic
and measurement models are needed. However, the accuracy of UKF cannot be
expected to be as good as of SLF, because SLF try uses larger area in the ap-
proximation, whereas UKF only selects fixed number of points on the area. The
disadvantage over EKF is that UKF often requires slightly more computational
operations than EKF.

The UKF can be interpreted to belong to a wider class of filters called sigma-
point filters (van der Merwe and Wan, 2003), which also includes other types of
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filters such as central differences Kalman filter (CDKF), Gauss-Hermite Kalman
filter (GHKF) and a few others (Ito and Xiong, 2000; Wu et al., 2006; Nørgaard
et al., 2000; Arasaratnam and Haykin, 2009). The classification to sigma-point
methods by van der Merwe and Wan (2003) is based on interpreting the methods
as special cases of (weighted) statistical linear regression (Lefebvreet al., 2002).

As discussed in (van der Merwe and Wan, 2003), statistical linearization is
closely related to sigma-point approximations, because they both are relatedto
statistical linear regression. However, it is important to note that the statisticallin-
ear regression (Lefebvre et al., 2002) which is the basis of sigma-pointframework
(van der Merwe and Wan, 2003) is not exactly equivalent to statistical linearization
(Gelb, 1974) as sometimes is claimed. The statistical linear regression can be
considered as a discrete approximation to statistical linearization.

3.2.7 Gaussian Moment Matching

One way to unify the Taylor series, statistical linearization and unscented transform
based approaches is to think all of them as approximations to the moment integrals:

µM =

∫

g(x) N(x |m,P) dx

SM =

∫

(g(x)− µM ) (g(x)− µM )T N(x |m,P) dx

CM =

∫

(x−m) (g(x)− µM )T N(x |m,P) dx.

If we can compute these, a straight-forward way to form the Gaussian approxima-
tion for (x,y) is to simply match the moments of the distributions, which gives the
following algorithm:

Algorithm 3.13 (Gaussian moment matching of additive transform). The moment
matching based Gaussian approximation to the joint distribution ofx and the
transformed random variabley = g(x)+q wherex ∼ N(m,P) andq ∼ N(0,Q)
is given as

(

x

y

)

∼ N

((

m

µM

)

,

(

P CM

CT
M SM

))

, (3.100)

where

µM =

∫

g(x) N(x |m,P) dx

SM =

∫

(g(x)− µM ) (g(x)− µM )T N(x |m,P) dx + Q

CM =

∫

(x−m) (g(x)− µM )T N(x |m,P) dx.

(3.101)

The non-additive case can be handled in analogous manner. It is now easy
to check by substituting the approximationg(x) = g(m) + Gx(m) (x − m)
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to the above expression that in the linear case the integrals indeed reduce tothe
linear approximations in the Algorithm 3.2. And the same applies to statistical
linearization. However, many other approximations can also be interpreted as such
approximations as is discussed in the next section.

3.2.8 Gaussian Assumed Density Filter

If we replace the linear approximations in EKF with the moment matching approx-
imations in the previous section, we get the followingGaussian assumed density
filter (ADF) which is also calledGaussian filter(Maybeck, 1982a; Ito and Xiong,
2000; Wu et al., 2006):

Algorithm 3.14 (Gaussian assumed density filter). The prediction and update steps
of the additive noise Gaussian assumed density (Kalman) filter are:

• Prediction:

m−
k =

∫

f(xk−1) N(xk−1 |mk−1,Pk−1) dxk−1

P−
k =

∫

(f(xk−1)−m−
k ) (f(xk−1)−m−

k )T

×N(xk−1 |mk−1,Pk−1) dxk−1 + Qk−1.

(3.102)

• Update:

µk =

∫

h(xk) N(xk |m−
k ,P−

k ) dxk

Sk =

∫

(h(xk)− µk) (h(xk)− µk)
T N(xk |m−

k ,P−
k ) dxk + Rk

Ck =

∫

(xk −m−) (h(xk)− µk)
T N(xk |m−

k ,P−
k ) dxk

Kk = Ck S−1
k

mk = m−
k + Kk (yk − µk)

Pk = P−
k −Kk Sk KT

k .

(3.103)

The advantage of the moment matching formulation is that it enables usage of
many well known numerical integration methods such as Gauss-Hermite quadra-
tures, cubature rules and central difference based methods (Ito and Xiong, 2000;
Wu et al., 2006; Nørgaard et al., 2000; Arasaratnam and Haykin, 2009). The
unscented transformation can also be interpreted as an approximation to these
integrals (Wu et al., 2006).

One interesting way to approximate the integrals is to use the Bayes-Hermite
quadrature (O’Hagan, 1991), which is based of fitting a Gaussian process regres-
sion model to the non-linear functions on finite set of training points. This approach
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is used in the Gaussian process filter of Deisenroth et al. (2009). It is also possible
to approximate the integrals by Monte Carlo integration, which is the approach
used in Monte Carlo Kalman Filter (MCKF) of Kotecha and Djuric (2003).

3.3 Monte Carlo Approximations

3.3.1 Principles and Motivation of Monte Carlo

Within statistical methods in engineering and science, as well as in optimal filter-
ing, it is often necessary to evaluate expectations in form

E[g(x)] =

∫

g(x) p(x) dx, (3.104)

whereg : R
n → R

m in an arbitrary function andp(x) is the probability density of
x. Now the problem is that such an integral can be evaluated in closed form only
in a few special cases and generally, numerical methods have to be used.

Monte Carlomethods provide a numerical method for calculating integrals of
the form (3.104). Monte Carlo refers to general class of methods, where closed
form computation of statistical quantities is replaced by drawing samples from the
distribution and estimating the quantities by sample averages.

In (perfect) Monte Carlo approximation, we draw independent random samples
from x(i) ∼ p(x) and estimate the expectation as

E[g(x)] ≈ 1

N

∑

i

g(x(i)). (3.105)

Thus Monte Carlo methods approximate the target density by a set of samples
that are distributed according to the target density. Figure 3.8 representsa two
dimensional Gaussian distribution and its Monte Carlo representation.
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Figure 3.8: (a) Two dimensional Gaussian density. (b) Monte Carlo representation of the
same Gaussian density.
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The convergence of Monte Carlo approximation is guaranteed by Central Limit
Theorem (CLT) (see, e.g., Liu, 2001) and the error term isO(N−1/2), regardless
of dimensionality ofx. This invariance of dimensionality is unique to Monte Carlo
methods and makes them superior to practically all other numerical methods when
dimensionality ofx is considerable. At least in theory, not necessarily in practice.

In Bayesian inference the target distribution is typically the posterior distribu-
tion p(x |y1, . . . ,yn) and it is assumed that it is easier to draw (weighted) samples
from the distribution than to compute, for example, integrals of the form (3.104).
This, indeed, often happens to be the case.

3.3.2 Importance Sampling

It is not always possible to obtain samples directly fromp(x) due to its compli-
cated formal appearance. Inimportance sampling(IS) (see, e.g., Liu, 2001) we
use approximate distribution called importance distributionπ(x), which we can
easily draw samples from. Having samplesx(i) ∼ π(x) we can approximate the
expectation integral (3.104) as

E[g(x)] ≈ 1

N

∑

i

g(x(i)) p(x(i))

π(x(i))
. (3.106)

Figure 3.9 illustrates the idea of importance sampling. We sample from the impor-
tance distribution, which is an approximation to the target distribution. Because
the distribution of samples is not exact, we need to correct the approximation by
associating a weight to each of the samples.
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Figure 3.9: (a) Importance distribution approximates the target distribution (b) Weights
are associated to each of the samples to correct the approximation.

The disadvantage of this direct importance sampling is that we should be able
to evaluatep(x(i)) in order to use it directly. But the problem is that we often do not
know the normalization constant ofp(x(i)), because evaluation of it would require
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evaluation of an integral with comparable complexity to the expectation integral
itself. In importance sampling we often use an approximation, where we define
unnormalized weights as

wi =
p(x(i))

π(x(i))
. (3.107)

and approximate the expectation as

E[g(x)] ≈
∑

i g(x(i)) wi
∑

i wi
, (3.108)

which has the fortunate property that we do not have to know the normalization
constant ofp(x).

3.4 Particle Filtering

3.4.1 Sequential Importance Sampling

Sequential importance sampling(SIS) (see, e.g., Doucet et al., 2001) is a sequen-
tial version of importance sampling. It is based on fact that we can evaluatethe
importance distribution for statesxk on each time stepk recursively as follows:

π(x0:k|y1:k) = π(xk|x0:k−1,y1:k)π(x0:k−1|y1:k−1) (3.109)

Thus, we can also evaluate the (unnormalized) importance weights recursively:

w̃
(i)
k ∝ w̃

(i)
k−1

p(yk|x(i)
k ) p(x

(i)
k |x

(i)
k−1)

π(x
(i)
k |x

(i)
0:k−1,y1:k)

(3.110)

The SIS algorithm can be used for generating Monte Carlo approximations to
filtering distributions of generic state space models of the form

xk ∼ p(xk | xk−1)

yk ∼ p(yk | xk),
(3.111)

wherexk ∈ R
n is the state on time stepk andyk ∈ R

m is the measurement. The
state and measurements may contain both discrete and continuous components.

The SIS algorithm uses a weighted set of particles{(w(i)
k ,x

(i)
k ) : i = 1, . . . , N}

for representing the filtering distributionp(xk |y1:k) such that on every time stepk
an approximation of the expectation of an arbitrary functiong(x) can be calculated
as the weighted sample average

E[g(xk) |y1:k] ≈
N
∑

i=1

w
(i)
k g(x

(i)
k ). (3.112)
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Equivalently, SIS can be interpreted to form an approximation of the posterior
distribution as

p(xk |y1:k) ≈
N
∑

i=1

w
(i)
k δ(xk − x

(i)
k ), (3.113)

whereδ(·) is the Dirac delta function.
The generic sequential importance sampling algorithm can be now described

as follows:

Algorithm 3.15 (Sequential importance sampling). Steps of SIS are the following:

1. Initialization: Draw N samplesx(i)
0 from the prior

x
(i)
0 ∼ p(x0) (3.114)

and set
w

(i)
0 = 1/N (3.115)

2. Prediction: Draw N new samplesx(i)
k from importance distribution

x
(i)
k ∼ π(xk |x(i)

0:k−1,y1:k) (3.116)

3. Update: Calculate new weights according to

w
(i)
k = w

(i)
k−1

p(yk |x(i)
k ) p(x

(i)
k |x

(i)
k−1)

π(x
(i)
k |x

(i)
0:k−1,y1:k)

(3.117)

and normalize them to sum to unity.

4. Setk ← k + 1 and go to step 2.

3.4.2 Sequential Importance Resampling

One problem in the SIS algorithm described in the previous section is that we
very easily encounter the situation that almost all the particles have zero weights
and only a few of them (or only one) are non-zero. This is called thedegeneracy
problem in particle filtering literature and it used to prevent practical applications
of particle filters for long time.

The degeneracy problem can be solved by usingresamplingprocedure. It
refers to a procedure where we drawN new samples from the discrete distribution
defined by the weights and replace the old set ofN samples with this new set. This
procedure can be be written as the following algorithm:

Algorithm 3.16 (Resampling). Resampling procedure can be described as fol-
lows:



62 Optimal Filtering

1. Interpret each weightw(i)
k as the probability of obtaining the sample indexi

in the set{x(i)
k | i = 1, . . . , N}.

2. DrawN samples from that discrete distribution and replace the old sample
set with this new one.

3. Set all weights to the constant valuew
(i)
k = 1/N .

The idea of the resampling procedure is to remove particles with very small
weights and duplicate particles with large weights. Although, the theoretical dis-
tribution represented by the weighted set of samples does not change, resampling
induces additional variance to estimates. This variance introduced by the resam-
pling procedure can be reduced by proper choice of the resampling method. The
stratified resamplingalgorithm (Kitagawa, 1996) is optimal in terms of variance.

Sequential importance resampling (SIR)2 (Gordon et al., 1993; Kitagawa, 1996;
Doucet et al., 2001; Ristic et al., 2004), is a generalization of theparticle filtering
framework, in which the resampling step is included as part of the sequentialim-
portance sampling algorithm.

Usually the resampling is not performed on every time step, but only when it
is actually needed. One way of implementing this is to do resampling on everynth
step, wheren is some predefined constant. This method has the advantage that it
is unbiased. Another way, which is used here, is theadaptive resampling. In this
method, the effective number of particles, which is estimated from the variance
of the particle weights (Liu and Chen, 1995), is used for monitoring the need for
resampling. The estimate for the effective number of particles can be computed as:

neff ≈
1

∑N
i=1

(

w
(i)
k

)2 , (3.118)

wherew
(i)
k is the normalized weight of particlei on the time stepk (Liu and

Chen, 1995). Resampling is performed when the effective number of particles
is significantly less than the total number of particles, for example,neff < N/10,
whereN is the total number of particles.

Algorithm 3.17 (Sequential importance resampling). The SIR algorithm can be
summarized as follows:

1. Draw new pointx(i)
k for each point in the sample set{x(i)

k−1, i = 1, . . . , N}
from the importance distribution:

x
(i)
k ∼ π(xk | x(i)

k−1,y1:k), i = 1, . . . , N. (3.119)

2Sequential importance resampling (SIR)is also often referred to assampling importance resam-
pling (SIR) orsequential importance sampling resampling (SISR).



3.4 Particle Filtering 63

2. Calculate new weights

w
(i)
k = w

(i)
k−1

p(yk | x(i)
k ) p(x

(i)
k | x

(i)
k−1)

π(x
(i)
k | x

(i)
k−1,y1:k)

, i = 1, . . . , N. (3.120)

and normalize them to sum to unity.

3. If the effective number of particles(3.118)is too low, perform resampling.

The performance of the SIR algorithm is depends on the quality of the impor-
tance distributionπ(·), which is an approximation to posterior distribution of states
given the values at the previous step. The importance distribution should bein such
functional form that we can easily draw samples from it and that it is possible to
evaluate the probability densities of the sample points.The optimal importance
distribution in terms of variance (see, e.g., Doucet et al., 2001; Ristic et al., 2004)
is

π(xk | xk−1,y1:k) = p(xk | xk−1,y1:k). (3.121)

If the optimal importance distribution cannot be directly used, good importance
distributions can be obtained bylocal linearizationwhere a mixture of extended
Kalman filters (EKF) or unscented Kalman filters (UKF) is used as the importance
distribution (Doucet et al., 2000; Van der Merwe et al., 2001). Van der Merwe et al.
(2001) also suggest a Metropolis-Hastings step after (or in place of) resampling
step to smooth the resulting distribution, but from their results, it seems that this
extra computation step has no significant performance effect. A particle filter with
UKF importance distribution is also referred to asunscented particle filter(UPF).

By tuning the resampling algorithm to specific estimation problems and pos-
sibly changing the order of weight computation and sampling, accuracy andcom-
putational efficiency of the algorithm can be improved (Fearnhead and Clifford,
2003). An important issue is that sampling is more efficient without replacement,
such that duplicate samples are not stored. There is also evidence that in some
situations it is more efficient to use a simple deterministic algorithm for preserving
theN most likely particles. In the article (Punskaya et al., 2002) it is shown that
in digital demodulation, where the sampled space is discrete and the optimization
criterion is the minimum error, the deterministic algorithm performs better.

The bootstrap filter(Gordon et al., 1993) is a variation of SIR, where the
dynamic modelp(xk | xk−1) is used as the importance distribution. This makes
the implementation of the algorithm very easy, but due to the inefficiency of the
importance distribution it may require a very large number of Monte Carlo samples
for accurate estimation results. In bootstrap filter the resampling is normally done
at each time step.

Algorithm 3.18 (Bootstrap filter). The bootstrap filter algorithm is given as fol-
lows:
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1. Draw new pointx(i)
k for each point in the sample set{x(i)

k−1, i = 1, . . . , N}
from the dynamic model:

x
(i)
k ∼ p(xk | x(i)

k−1), i = 1, . . . , N. (3.122)

2. Calculate the weights

w
(i)
k = p(yk | x(i)

k ), i = 1, . . . , N. (3.123)

and normalize them to sum to unity.

3. Do resampling.

Another variation of sequential importance resampling is the auxiliary SIR
(ASIR) filter (Pitt and Shephard, 1999). The idea of the ASIR is to mimic the
availability of optimal importance distribution by performing the resampling at
stepk − 1 using the available measurement at timek.

One problem encountered in particle filtering, despite the usage of resampling
procedure, is calledsample impoverishment(see, e.g., Ristic et al., 2004). It refers
to the effect that when the noise in the dynamic model is very small, many of the
particles in the particle set will turn out to have exactly the same value. That is,
the resampling step simply multiplies a few (or one) particles and thus we end up
having a set of identical copies of certain high weighted particles. This problem
can be diminished by using, for example, resample-move algorithm, regularization
or MCMC steps (Ristic et al., 2004).

Because low noise in the dynamic model causes problems with the sample
impoverishment, it also implies that pure recursive estimation with particle filters
is challenging. This is because in pure recursive estimation the process noise is
formally zero and thus a basic SIR based particle filter is likely to perform very
badly. However, pure recursive estimation, such as recursive estimation of static
parameters can be done by applying a Rao-Blackwellized particle filter instead of
a basic SIR particle filter.

3.4.3 Rao-Blackwellized Particle Filter

One way of improving the efficiency of SIR is to use Rao-Blackwellization. The
idea of theRao-Blackwellized particle filter(RBPF) (Akashi and Kumamoto, 1977;
Doucet et al., 2001; Ristic et al., 2004) is that sometimes it is possible to evalu-
ate some of the filtering equations analytically and the others with Monte Carlo
sampling instead of computing everything with pure sampling. According to the
Rao-Blackwell theorem(see, e.g., Berger, 1985; Casella and Robert, 1996) this
leads to estimators with less variance than what could be obtained with pure Monte
Carlo sampling. An intuitive way of understanding this is that the marginalization
replaces the finite Monte Carlo particle set representation with an infinite closed
form particle set, which is always more accurate than any finite set.
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Most commonly Rao-Blackwellized particle filtering refers to marginalized
filtering of conditionally Gaussian Markov models of the form

p(xk |xk−1, θk−1) = N(xk |Ak−1(θk−1)xk−1,Qk−1(θk−1))

p(yk |xk, θk) = N(yk |Hk(θk)xk,Rk(θk))

p(θk | θk−1) = (any given form),

(3.124)

wherexk is the state,yk is the measurement, andθk is an arbitrary latent variable.
If also the prior ofxk is Gaussian, due to conditionally Gaussian structure of the
model the state variablesxk can be integrated out analytically and only the latent
variablesθk need to be sampled. The Rao-Blackwellized particle filter uses SIR
for the latent variables and computes everything else in closed form.

Algorithm 3.19 (Conditionally Gaussian Rao-Blackwellized particle filter). Given

an importance distributionπ(θk | θ
(i)
1:k−1,y1:k) and a set of weighted samples

{w(i)
k−1, θ

(i)
k−1,m

(i)
k−1,P

(i)
k−1 : i = 1, . . . , N}, the Rao-Blackwellized particle filter

processes each measurementyk as follows (Doucet et al., 2001):

1. Perform Kalman filter predictions for each of the Kalman filter means and
covariances in the particlesi = 1, . . . , N conditional on the previously
drawn latent variable valuesθ(i)

k−1

m
−(i)
k = Ak−1(θ

(i)
k−1)m

(i)
k−1

P
−(i)
k = Ak−1(θ

(i)
k−1)P

(i)
k−1 AT

k−1(θ
(i)
k−1) + Qk−1(θ

(i)
k−1).

(3.125)

2. Draw new latent variablesθ(i)
k for each particle ini = 1, . . . , N from the

corresponding importance distributions

θ
(i)
k ∼ π(θk | θ(i)

1:k−1,y1:k). (3.126)

3. Calculate new weights as follows:

w
(i)
k ∝ w

(i)
k−1

p(yk |θ(i)
1:k,y1:k−1) p(θ

(i)
k |θ

(i)
k−1)

π(θ
(i)
k |θ

(i)
1:k−1,y1:k)

, (3.127)

where the likelihood term is the marginal measurement likelihood of the
Kalman filter

p(yk |θ(i)
1:k,y1:k−1)

= N
(

yk

∣

∣

∣Hk(θ
(i)
k )m

−(i)
k ,Hk(θ

(i)
k )P

−(i)
k HT

k (θ
(i)
k ) + Rk(θ

(i)
k )
)

.

(3.128)

such that the model parameters in the Kalman filter are conditioned on the
drawn latent variable valueθ(i)

k . Then normalize the weights to sum to unity.
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4. Perform Kalman filter updates for each of the particles conditional on the
drawn latent variablesθ(i)

k

v
(i)
k = yk −Hk(θ

(i)
k )m−

k

S
(i)
k = Hk(θ

(i)
k )P

−(i)
k HT

k (θ
(i)
k ) + Rk(θ

(i)
k )

K
(i)
k = P

−(i)
k HT

k (θ
(i)
k )S−1

k

m
(i)
k = m

−(i)
k + K

(i)
k v

(i)
k

P
(i)
k = P

−(i)
k −K

(i)
k S

(i)
k [K

(i)
k ]T .

(3.129)

5. If the effective number of particles(3.118)is too low, performresampling.

The Rao-Blackwellized particle filter produces for each time stepk a set of
weighted samples{w(i)

k , θ
(i)
k ,m

(i)
k ,P

(i)
k : i = 1, . . . , N} such that expectation of

a functiong(·) can be approximated as

E[g(xk, θk) |y1:k] ≈
N
∑

i=1

w
(i)
k

∫

g(xk, θ
(i)
k ) N(xk |m(i)

k ,P
(i)
k ) dxk. (3.130)

Equivalently the RBPF can be interpreted to form an approximation of the filtering
distribution as

p(xk, θk |y1:k) ≈
N
∑

i=1

w
(i)
k δ(θk − θ

(i)
k ) N(xk |m(i)

k ,P
(i)
k ). (3.131)

In some cases, when the filtering model is not strictly Gaussian due to slight
non-linearities in either dynamic or measurement models it is possible to replace
the exact Kalman filter update and prediction steps in RBPF with extended Kalman
filter (EKF) or unscented Kalman filter (UKF) prediction and update steps.

In addition to the conditional Gaussian models, another general class of mod-
els where Rao-Blackwellization can often be applied are state space models with
unknown static parameters. These models are of the form (Storvik, 2002)

xk ∼ p(xk |xk−1, θ)

yk ∼ p(yk |xk, θ)

θ ∼ p(θ),

(3.132)

where vectorθ contains the unknown static parameters. If the posterior distribution
of parametersθ depends only on some sufficient statistics

Tk = Tk(x1:k,y1:k), (3.133)

and if the sufficient statics are easy to update recursively, then sampling of the state
and parameters can be efficiently performed by recursively computing thesufficient
statistics conditionally to the sampled states and the measurements (Storvik, 2002).
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A particularly useful special case is obtained when the dynamic model is in-
dependent of the parametersθ. In this case, if conditionally to the statexk the
prior p(θ) belongs to the conjugate family of the likelihoodp(yk |xk, θ), the static
parametersθ can be marginalized out and only the states need to be sampled.
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Chapter 4

Optimal Smoothing

4.1 Formal Equations and Exact Solutions

4.1.1 Optimal Smoothing Equations

The purpose ofoptimal smoothing1 is to compute the marginal posterior distribu-
tion of the statexk at the time stepk after receiving the measurements up to a time
stepT , whereT > k:

p(xk |y1:T ). (4.1)

The difference between filters and smoothers is thatthe optimal filtercomputes
its estimates using only the measurements obtained before and on the time step
k, but the optimal smootheruses also the future measurements for computing its
estimates. After obtaining the filtering posterior state distributions, the following
theorem gives the equations for computing the marginal posterior distributions for
each time step conditionally to all measurements up to the time stepT :

Theorem 4.1 (Bayesian optimal smoothing equations). The backward recursive
equations for computing thesmoothed distributionsp(xk |y1:T ) for anyk < T are
given by the followingBayesian (fixed interval) smoothing equations

p(xk+1 |y1:k) =

∫

p(xk+1 |xk) p(xk |y1:k) dxk

p(xk |y1:T ) = p(xk |y1:k)

∫ [

p(xk+1 |xk) p(xk+1 |y1:T )

p(xk+1 |y1:k)

]

dxk+1,

(4.2)

wherep(xk |y1:k) is the filtering distribution of the time stepk. Note that the term
p(xk+1 |y1:k) is simply the predicted distribution of time stepk + 1. The integra-
tions are replaced by summations if some of the state components are discrete.

Proof. Due to the Markov properties the statexk is independent ofyk+1:T given
xk+1, which givesp(xk |xk+1,y1:T ) = p(xk |xk+1,y1:k). By using theBayes’

1In this document only fixed-interval smoothing is considered.
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rule the distribution ofxk givenxk+1 andy1:T can be expressed as

p(xk |xk+1,y1:T ) = p(xk |xk+1,y1:k)

=
p(xk,xk+1 |y1:k)

p(xk+1 |y1:k)

=
p(xk+1 |xk,y1:k) p(xk |y1:k)

p(xk+1 |y1:k)

=
p(xk+1 |xk) p(xk |y1:k)

p(xk+1 |y1:k)
.

(4.3)

The joint distribution ofxk andxk+1 giveny1:T can be now computed as

p(xk,xk+1 |y1:T ) = p(xk |xk+1,y1:T ) p(xk+1 |y1:T )

= p(xk |xk+1,y1:k) p(xk+1 |y1:T )

=
p(xk+1 |xk) p(xk |y1:k) p(xk+1 |y1:T )

p(xk+1 |y1:k)
,

(4.4)

wherep(xk+1 |y1:T ) is the smoothed distribution of the time stepk + 1. The
marginal distribution ofxk given y1:T is given by integral (or summation) over
xk+1 in Equation (4.4), which gives the desired result.

4.1.2 Discrete-Time Rauch-Tung-Striebel Smoother

Thediscrete-time Rauch-Tung-Striebel (RTS)2 (see, e.g., Rauch et al., 1965; Gelb,
1974; Bar-Shalom et al., 2001) can be used for computing the closed form smooth-
ing solution

p(xk |y1:T ) = N(xk |ms
k,P

s
k), (4.5)

to the linear filtering model (3.17). The difference to the solution computed by the
Kalman filter is that the smoothed solution is conditional on the whole measure-
ment datay1:T , while the filtering solution is conditional only on the measurements
obtained before and on the time stepk, that is, on the measurementsy1:k.

Theorem 4.2(Discrete-time RTS smoother). The backward recursion equations
for the discrete-time fixed interval Rauch-Tung-Striebel smoother (Kalman smoother)
are given as

m−
k+1 = Ak mk

P−
k+1 = Ak Pk AT

k + Qk

Ck = Pk AT
k [P−

k+1]
−1

ms
k = mk + Ck [ms

k+1 −m−
k+1]

Ps
k = Pk + Ck [Ps

k+1 −P−
k+1]C

T
k ,

(4.6)

2Also called discrete-time Kalman smoother.
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wheremk andPk are the mean and covariance computed by the Kalman filter. The
recursion is started from the last time stepT , withms

T = mT andPs
T = PT . Note

that the first two of the equations are simply the Kalman filter prediction equations.

Proof. Similarly to the Kalman filter case, by Lemma A.1, the joint distribution of
xk andxk+1 giveny1:k is

p(xk,xk+1 |y1:k) = p(xk+1 |xk) p(xk |y1:k)

= N(xk+1 |Ak xk,Qk) N(xk |mk,Pk)

= N

([

xk

xk+1

]

∣

∣

∣
m1,P1

)

,

(4.7)

where

m1 =

(

mk

Ak mk

)

, P1 =

(

Pk Pk AT
k

Ak Pk Ak Pk AT
k + Qk

)

. (4.8)

Due to the Markov property of the states we have

p(xk |xk+1,y1:T ) = p(xk |xk+1,y1:k), (4.9)

and thus by Lemma A.2 we get the conditional distribution

p(xk |xk+1,y1:T ) = p(xk |xk+1,y1:k)

= N(xk |m2,P2),
(4.10)

where

Ck = Pk AT
k (Ak Pk AT

k + Qk)
−1

m2 = mk + Ck (xk+1 −Ak mk)

P2 = Pk −Ck (Ak Pk AT
k + Qk)C

T
k .

(4.11)

The joint distribution ofxk andxk+1 given all the data is

p(xk+1,xk |y1:T ) = p(xk |xk+1,y1:T ) p(xk+1 |y1:T )

= N(xk |m2,P2) N(xk+1 |ms
k+1,P

s
k+1)

= N

([

xk+1

xk

]

∣

∣

∣m3,P3

)

(4.12)

where

m3 =

(

ms
k+1

mk + Ck (ms
k+1 −Ak mk)

)

P3 =

(

Ps
k+1 Ps

k+1 CT
k

Ck Ps
k+1 Ck Ps

k+1 CT
k + P2

)

.

(4.13)
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Thus by Lemma A.2, the marginal distribution ofxk is given as

p(xk |y1:T ) = N(xk |ms
k,P

s
k), (4.14)

where

ms
k = mk + Ck (ms

k+1 −Ak mk)

Ps
k = Pk + Ck (Ps

k+1 −Ak Pk AT
k −Qk)C

T
k .

(4.15)

Example 4.1(RTS smoother for Gaussian random walk). The RTS smoother for
the random walk model given in Example 3.1 is given by the equations

m−
k+1 = mk

P−
k+1 = Pk + q

ms
k = mk +

Pk

P−
k+1

(ms
k+1 −m−

k+1)

P s
k = Pk +

(

Pk

P−
k+1

)2

[P s
k+1 − P−

k+1],

(4.16)

wheremk andPk are the updated mean and covariance from the Kalman filter in
Example 3.2.
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Figure 4.1: Filter and smoother variances in the Kalman smoothing example (Example
4.1).



4.2 Gaussian Approximation Based Smoothing 73

0 20 40 60 80 100

−10

−8

−6

−4

−2

0

2

4

6 Filter Estimate
Smoother Estimate
Filter’s 95% Quantiles
Smoother’s 95% Quantiles

Figure 4.2: Filter and smoother estimates in the Kalman smoothing example (Example
4.1).

4.2 Gaussian Approximation Based Smoothing

4.2.1 Discrete-Time Extended Rauch-Tung-Striebel Smoother

The first order (i.e., linearized) extended Rauch-Tung-Striebel smoother (ERTSS)
(Cox, 1964; Sage and Melsa, 1971) can be obtained from the basic RTSsmoother
equations by replacing the prediction equations with first order approximations.
Higher order extended Kalman smoothers are also possible (see, e.g., Cox, 1964;
Sage and Melsa, 1971), but only the first order version is presented here.

For the additive model Equation (3.52) the extended Rauch-Tung-Striebel smoother
algorithm is the following:

Algorithm 4.1 (Extended RTS smoother). The equations for the extended RTS
smoother are

m−
k+1 = f(mk)

P−
k+1 = Fx(mk)Pk FT

x (mk) + Qk

Ck = Pk FT
x (mk) [P−

k+1]
−1

ms
k = mk + Ck [ms

k+1 −m−
k+1]

Ps
k = Pk + Ck [Ps

k+1 −P−
k+1]C

T
k ,

(4.17)

where the matrixFx(mk) is the Jacobian matrix off(x) evaluated atmk.
The above procedure is a recursion, which can be used for computing the

smoothing distribution of stepk from the smoothing distribution of time stepk +1.
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Because the smoothing distribution and filtering distribution of the last time stepT
are the same, we havems

T = mT , Ps
T = PT , and thus the recursion can be used

for computing the smoothing distributions of all time steps by starting from the last
stepk = T and proceeding backwards to the initial stepk = 0.

Proof. Assume that the approximate means and covariances of the filtering distri-
butions

p(xk |y1:k) ≈ N(xk |mk,Pk),

for the model (3.52) have been computed by the extended Kalman filter or a similar
method. Further assume that the smoothing distribution of time stepk+1 is known
and approximately Gaussian

p(xk+1 |y1:T ) ≈ N(xk+1 |ms
k+1,P

s
k+1).

As in the derivation of the prediction step of EKF in Section 3.2.2, the approximate
joint distribution ofxk andxk+1 giveny1:k is

p(xk,xk+1 |y1:k) = N

([

xk

xk+1

]

∣

∣

∣m1,P1

)

, (4.18)

where

m1 =

(

mk

f(mk)

)

P1 =

(

Pk Pk FT
x

Fx Pk Fx Pk FT
x + Qk

)

.

(4.19)

where the Jacobian matrixFx of f(x) is evaluated atx = mk. By conditioning to
xk+1 as in RTS derivation in Section 4.1.2 we get

p(xk |xk+1,y1:T ) = p(xk |xk+1,y1:k)

= N(xk |m2,P2),
(4.20)

where

Ck = Pk FT
x (Fx Pk FT

x + Qk)
−1

m2 = mk + Ck (xk+1 − f(mk))

P2 = Pk −Ck (Fx Pk FT
x + Qk)C

T
k .

(4.21)

The joint distribution ofxk andxk+1 given all the data is now

p(xk+1,xk |y1:T ) = p(xk |xk+1,y1:T ) p(xk+1 |y1:T )

= N

([

xk+1

xk

]

∣

∣

∣m3,P3

)

(4.22)
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where

m3 =

(

ms
k+1

mk + Ck (ms
k+1 − f(mk))

)

P3 =

(

Ps
k+1 Ps

k+1 CT
k

Ck Ps
k+1 Ck Ps

k+1 CT
k + P2

)

.

(4.23)

The marginal distribution ofxk is then

p(xk |y1:T ) = N(xk |ms
k,P

s
k), (4.24)

where

ms
k = mk + Ck (ms

k+1 − f(mk))

Ps
k = Pk + Ck (Ps

k+1 − Fx Pk FT
x −Qk)C

T
k .

(4.25)

The generalization to non-additive model (3.65) is analogous to the filtering
case.

4.2.2 Statistically Linearized RTS Smoother

The statistically linearized Rauch-Tung-Striebel smoother for the additive model
(3.52) is the following:

Algorithm 4.2 (Statistically linearized RTS smoother). The equations for the sta-
tistically linearized RTS smoother are

m−
k+1 = E[f(xk)]

P−
k+1 = E[f(xk) δxT

k ]P−1
k E[f(xk) δxT

k ]T + Qk

Ck = E[f(xk) δxT
k ]T [P−

k+1]
−1

ms
k = mk + Ck [ms

k+1 −m−
k+1]

Ps
k = Pk + Ck [Ps

k+1 −P−
k+1]C

T
k ,

(4.26)

where the expectations are taken with respect to the filtering distributionxk ∼
N(mk,Pk).

Proof. Analogous to the EKF case.

The generalization to the non-additive case is also straight-forward.
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4.2.3 Unscented Rauch-Tung-Striebel Smoother

Theunscented Rauch-Tung-Striebel smoother(URTSS) (see, e.g., Särkkä, 2008) is
a Gaussian approximation based smoother, where the non-linearity is approximated
using the unscented transform. The smoother equations for thenon-additive model
(3.65) are given as follows:

Algorithm 4.3 (Unscented Rauch-Tung-Striebel smoother II). A single step of the
unscented RTS smootheris as follows:

1. Form the matrix of sigma points of then′-dimensional augmented random
variablex̃k = (xT

k qT
k )T

X̃k =
(

m̃k · · · m̃k

)

+
√

n′ + λ
(

0
√

P̃k −
√

P̃k

)

.

where

m̃k =

(

mk

0

)

P̃k =

(

Pk 0

0 Qk

)

.

2. Propagate the sigma points through the dynamic model:

X̃−
k+1,i = f(X̃x

k,i, X̃
q
k,i), i = 1 . . . 2n′ + 1,

whereX̃x
k,i andX̃

q
k,i denote the parts of the augmented sigma pointi, which

correspond toxk andqk, respectively.

3. Compute the predicted meanm−
k+1, the predicted covarianceP−

k+1 and the
cross-covarianceDk+1:

m−
k+1 =

∑

i

W
(m)
i−1 X̃−

k+1,i

P−
k+1 =

∑

i

W
(c)
i−1 (X̃−

k+1,i −m−
k+1) (X̃−

k+1,i −m−
k+1)

T

Dk+1 =
∑

i

W
(c)
i−1 (X̃x

k,i −mk) (X̃−
k+1,i −m−

k+1)
T ,

(4.27)

where the definitions of the weightsW (m)
i and W

(c)
i are the same as in

Section 3.2.5.

4. Compute the smoother gainCk, the smoothed meanms
k and the covariance

Ps
k:

Ck = Dk+1 [P−
k+1]

−1

ms
k = mk + Ck

[

ms
k+1 −m−

k+1

]

Ps
k = Pk + Ck

[

Ps
k+1 −P−

k+1

]

CT
k .

(4.28)
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Proof. Assume that the approximate means and covariances of the filtering distri-
butions are available:

p(xk |y1:k) ≈ N(xk |mk,Pk),

and the smoothing distribution of time stepk + 1 is known and approximately
Gaussian

p(xk+1 |y1:T ) ≈ N(xk+1 |ms
k+1,P

s
k+1).

An unscented transform based approximation to the optimal smoothing solution
can be derived as follows:

1. Generate unscented transform based Gaussian approximation to the joint
distribution ofxk andxk+1:

(

xk

xk+1

)

|y1:k ∼ N

((

mk

m−
k+1

)

,

(

Pk Dk+1

DT
k+1 P−

k+1

))

, (4.29)

This can be done by concatenating the state and process noise to a new
augmented random variablẽxk = (xT

k qT
k )T , which then has the distribution

x̃k |y1:k ∼ N

((

mk

0

)

,

(

Pk 0

0 Qk

))

.

It is now easy to use the unscented transform for forming a Gaussian approx-
imation to the joint distribution of̃xk = (xT

k qT
k )T andxk+1 = f(xk,qk).

The Gaussian approximation to the joint distribution ofxk andxk+1 can be
formed by extracting the relevant parts of the mean and covariance from the
joint Gaussian approximation of̃xk andxk+1. This is done in Equations
(4.27).

2. Because the distribution (4.29) is Gaussian, by the computation rules of
Gaussian distributions and the conditional distribution ofxk is given as

xk |xk+1,y1:T ∼ N(m2,P2),

where

Ck = Dk+1 [P−
k+1]

−1

m2 = mk + Ck(xk+1 −m−
k+1)

P2 = Pk −Ck P−
k+1 CT

k .

3. The rest of the derivation is completely analogous to the derivation of ERTSS
in Section 4.2.1.
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As the noises in the state space model (3.52) appear in additive manner, forthat
model it is possible write the URTSS equations in a bit simpler additive form:

Algorithm 4.4 (Unscented Rauch-Tung-Striebel smoother I). Theadditive form
unscented RTS smoother algorithmis the following:

1. Form the matrix of sigma points:

Xk =
[

mk · · · mk

]

+
√

n + λ
[

0
√

Pk −
√

Pk

]

.

2. Propagate the sigma points through the dynamic model:

X̂k+1,i = f(Xk,i), i = 1 . . . 2n + 1.

3. Compute the predicted meanm−
k+1, the predicted covarianceP−

k+1 and the
cross-covarianceDk+1:

m−
k+1 =

∑

i

W
(m)
i−1 X̂k+1,i

P−
k+1 =

∑

i

W
(c)
i−1 (X̂k+1,i −m−

k+1) (X̂k+1,i −m−
k+1)

T + Qk

Dk+1 =
∑

i

W
(c)
i−1 (Xk,i −mk) (X̂k+1,i −m−

k+1)
T .

(4.30)

4. Compute the smoother gainCk, the smoothed meanms
k and the covariance

Ps
k as follows:

Ck = Dk+1 [P−
k+1]

−1

ms
k = mk + Ck (ms

k+1 −m−
k+1)

Ps
k = Pk + Ck (Ps

k+1 −P−
k+1)C

T
k .

(4.31)

The above computations are started from the filtering result of the last time step
ms

T = mT , Ps
T = PT and the recursion runs backwards fork = T − 1, . . . , 0.

4.2.4 Gaussian Assumed Density RTS Smoother

The Gaussian moment matching described in Section 3.2.7 can be used in smoothers
in analogous manner as in Gaussian assumed density filters in Section 3.2.8. Ifwe
follow the extended RTS smoother derivation in Section 4.2.1, we get the following
algorithm (see, e.g., Särkkä and Hartikainen, 2010a,b):
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Algorithm 4.5 (Gaussian assumed density smoother). The equations of theGaus-
sian assumed density RTS smootherare the following:

m−
k+1 =

∫

f(xk)N(xk |mk,Pk) dxk

P−
k+1|k =

∫

[f(xk)−m−
k+1] [f(xk)−m−

k+1]
T N(xk |mk,Pk) dxk + Qk

Dk+1 =

∫

[xk −mk] [f(xk)−m−
k+1]

T N(xk |mk,Pk) dxk

Ck = Dk+1 [P−
k+1]

−1

ms
k = mk + Ck (ms

k+1 −m−
k+1)

Ps
k = Pk + Ck (Ps

k+1 −P−
k+1)C

T
k .

(4.32)

The integrals above can be approximated using analogous numerical integra-
tion or analytical approximation schemes as in the filtering case, that is, with
Gauss-Hermite quadratures or central differences (Ito and Xiong, 2000; Nørgaard
et al., 2000; Wu et al., 2006), cubature rules (Arasaratnam and Haykin, 2009),
Monte Carlo (Kotecha and Djuric, 2003), Gaussian process / Bayes-Hermite based
integration (O’Hagan, 1991; Deisenroth et al., 2009), or with many other numerical
integration schemes.

4.3 Monte Carlo Based Smoothers

4.3.1 Sequential Importance Resampling Smoother

Optimal smoothingcan be performed with the SIR algorithm with a slight modifi-
cation to the filtering case. Instead of keeping Monte Carlo samples of the states
on single time stepx(i)

k , we keep samples of the whole state historiesx
(i)
1:k. The

computations of the algorithm remain exactly the same, but in resampling stage
the whole state histories are resampled instead of the states of single time steps.
The weights of these state histories are the same as in normal SIR algorithm and
the smoothed posterior distribution estimate of time stepk given the measurements
up to the time stepT > k is given as (Kitagawa, 1996; Doucet et al., 2000)

p(xk |y1:T ) ≈
N
∑

i=1

w
(i)
T δ(xk − x

(i)
k ). (4.33)

whereδ(·) is the Dirac delta function andx(i)
k is thekth component inx(i)

1:T .
However, if T ≫ k this simple method is known to produce very degen-

erate approximations (Kitagawa, 1996; Doucet et al., 2000). In (Godsillet al.,
2004) more efficient methods for sampling from the smoothing distributions are
presented.
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4.3.2 Rao-Blackwellized Particle Smoother

The Rao-Blackwellized particle smoothercan be used for computing the smooth-
ing solution to the conditionally Gaussian RBPF model (3.124). A weighted set
of Monte Carlo samples from the smoothed distribution of the parametersθk in
the model (3.124) can be produced by storing the histories instead of the single
states, as in the case of plain SIR. The corresponding histories of the means and
the covariances are then conditional on theparameter historiesθ1:T . However,
the means and covariances at time stepk are only conditional on themeasurement
historiesup tok, not on the later measurements. In order to correct this, Kalman
smoothers have to be applied to each history of the means and the covariances.

Algorithm 4.6 (Rao-Blackwellized particle smoother). A set of weighted samples

{ws,(i)
T , θ

s,(i)
1:T ,m

s,(i)
1:T ,P

s,(i)
1:T : i = 1, . . . , N} representing the smoothed distribu-

tion can be computed as follows:

1. Compute the weighted set of Rao-Blackwellized state histories

{w(i)
T , θ

(i)
1:T ,m

(i)
1:T ,P

(i)
1:T : i = 1, . . . , N} (4.34)

by using the Rao-Blackwellized particle filter.

2. Set

w
s,(i)
T = w

(i)
T

θ
s,(i)
1:T = θ

(i)
1:T .

(4.35)

3. Apply the Kalman smoother to each of the mean and covariance histories
m

(i)
1:T ,P

(i)
1:T for i = 1, . . . , N to produce the smoothed mean and covariance

historiesms,(i)
1:T ,P

s,(i)
1:T .

The Rao-Blackwellized particle smoother in this simple form also has the same
disadvantage as the plain SIR smoother, that is, the smoothed estimate ofθk can
be quite degenerate ifT ≫ k. Fortunately, the smoothed estimates of the actual
statesxk can still be quite good, because its degeneracy is avoided by the Rao-
Blackwellization. To avoid the degeneracy in estimates ofθk it is possible to use
more efficient sampling procedures for generating samples from the smoothing
distributions (Fong et al., 2002).

As in the case of filtering, in some cases approximately Gaussian parts of a
state space model can be approximately marginalized by using extended Kalman
smoothers or unscented Kalman smoothers.

In the case of Rao-Blackwellization of static parameters (Storvik, 2002) the
smoothing is much easier. In this case, due to lack of dynamics, the posterior
distribution obtained after processing the last measurement is the smoothed distri-
bution.



Appendix A

Additional Material

A.1 Properties of Gaussian Distribution

Definition A.1 (Gaussian distribution). Random variablex ∈ R
n has Gaussian

distribution with meanm ∈ R
n and covarianceP ∈ R

n×n if it has the probability
density of the form

N(x |m,P) =
1

(2π)n/2 |P|1/2
exp

(

−1

2
(x−m)T P−1 (x−m)

)

, (A.1)

where|P| is the determinant of matrixP.

Lemma A.1 (Joint density of Gaussian variables). If random variablesx ∈ R
n

andy ∈ R
m have the Gaussian probability densities

x ∼ N(x |m,P)

y |x ∼ N(y |Hx + u,R),
(A.2)

then the joint density ofx,y and the marginal distribution ofy are given as
[

x

y

]

∼ N

([

m

Hm + u

]

,

[

P PHT

HP HPHT + R

])

y ∼ N(Hm + u,HPHT + R).

(A.3)

Lemma A.2 (Conditional density of Gaussian variables). If the random variables
x andy have the joint Gaussian probability density

x,y ∼ N

([

a

b

]

,

[

A C

CT B

])

, (A.4)

then the marginal and conditional densities ofx andy are given as follows:

x ∼ N(a,A)

y ∼ N(b,B)

x |y ∼ N(a + CB−1 (y − b),A−CB−1CT )

y |x ∼ N(b + CT A−1 (x− a),B−CT A−1 C).

(A.5)
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