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Chapter 1

Introduction

1.1 Why Bayesian Approach?

The mathematical treatment of the models and algorithms in this document is
Bayesian, which means that all the results are treated as being approxsnation
to certain probability distributions or their parameters. Probability distributions
are used for modeling both the uncertainties in the models and for modeling the
physical randomness. The theory of non-linear optimal filtering is formdilzte
terms of Bayesian inference and both the classical and recent filteriogthigs
are derived using the same Bayesian notation and formalism.

The reason for selecting the Bayesian approach is more a practicaéerigm
than a philosophical decision. It simply is easier to develop a consisteotically
applicable theory of recursive inference under Bayesian philostidny under,
for example, least squares or maximum likelihood philosophy. Another lusefu
consequence of selecting the Bayesian approach is that least squar@sum
likelihood and many other philosophically different results can be obtainepeas
cial cases or re-interpretations of the Bayesian results. Of courge,ajten the
same thing applies also other way around.

Modeling uncertainty as randomness is a very “engineering” way of magelin
the world. It is exactly the approach also chosen in statistical physics laasve
in financial analysis. Also the Bayesian approach to optimal filtering is ¢an fr
new (see, e.g., Ho and Lee, 1964; Lee, 1964; Jazwinski, 1966; Stkath, 1968;
Jazwinski, 1970), because the theory already existed at the same timenihalse
article of Kalman (1960b) was published. The Kalman filter was derived ftee
least squares point of view, but the non-linear filtering theory has Begesian
from the beginning (see, e.g., Jazwinski, 1970).

One should not take the Bayesian way of modeling unknown parameters as
random variables too literally. It does not imply that one believes that tieaitky r
is something random in the parameters - it is just a convenient way of esyires
uncertainty under the same formalism that is used for representing rardsmn
Also random or stochastic processes appearing in the mathematical maalels ar
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not necessarily really random in physical sense, but instead, themarads is
just a mathematical trick for taking into account the uncertainty in a dynamic
phenomenon.

But it does not matter if the randomness is interpreted as physical randesmne
or as a representation of uncertainty, as long as the randomness bakeld suc-
ceed in modeling the real world. In the above engineering philosophy titeoco
versy between so called “frequentists” and “Bayesians” is simply silly — itiiteq
much equivalent to the unnecessary controversy about interpretafigosntum
mechanics, that is, whether, for example, the Copenhagen interpretationeral
worlds implementation is the correct one. The philosophical interpretation doe
not matter as long as we get meaningful predictions from the theory.

1.2 What is Optimal Filtering?

Optimal filtering refers to the methodology that can be used for estimating the
state of a time-varying system, which is indirectly observed through noisy mea-
surements. Thetateof the system refers to the collection of dynamic variables
such as position, velocities and accelerations or orientation and rotatiotiahmo
parameters, which describe the physical state of the systemmdidein the mea-
surements refers to a noise in the sense that the measurements are ynbattain
even if we knew the true system state the measurements would not be deterministic
functions of the state, but would have certain distribution of possible vallies

time evolution of the state is modeled as a dynamic system, which is perturbed
by a certainprocess noise This noise is used for modeling the uncertainties in
the system dynamics and in most cases the system is not truly stochastie but th
stochasticity is only used for representing the model uncertainties.

1.2.1 Applications of Optimal Filtering

Phenomena, which can be modeled as time varying systems of the aboveetype ar
very common in engineering applications. These kind of models can be ffmind,
example, in navigation, aerospace engineering, space engineenrgersurveil-
lance, telecommunications, physics, audio signal processing, contjioleening,
finance and several other fields. Examples of such applications aralthveifig:

e Global positioning system (GP®aplan, 1996) is a widely used satellite
navigation system, where the GPS receiver unit measures arrival times of
signals from several GPS satellites and computes its position based on these
measurements. The GPS receiver typically uses an extended Kalman filter
or some other optimal filtering algorithm for computing the position and
velocity such that the measurements and the assumed dynamics (laws of
physics) are taken into account. Also the ephemeris information, which is
the satellite reference information transmitted from the satellites to the GPS
receivers is typically generated using optimal filters.
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Figure 1.1: In GPS system, the measurements are time delays of sasadjitals
and the optimal filter (e.g., EKF) computes the position dreddccurate time.

e Target tracking(Bar-Shalom et al., 2001) refers to the methodology, where
a set of sensors such as active or passive radars, radio foygsensors,
acoustic arrays, infrared sensors and other types of sensorsedefar
determining the position and velocity of a remote target. When this tracking
is done continuously, the dynamics of the target and measurements from the
different sensors are most naturally combined using an optimal filter. The
target in this (single) target tracking case can be, for example, a robot, a
satellite, a car or an airplane.

(. . target

Sensor

Figure 1.2: In target tracking, a sensor generates measurements @ngle mea-
surements) of the target, and the purpose is to determintbet trajectory.

e Multiple target tracking(Bar-Shalom and Li, 1995; Blackman and Popoli,
1999; Stone et al., 1999) systems are used for remote surveillance in the
cases, where there are multiple targets moving at the same time in the same
geographical area. This arises the concept of data association (mk&h
surement was from which target?) and the problem of estimating the number
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of targets. Multiple target tracking systems are typically used in remote
surveillance for military purposes, but possible civil applications are, fo
example, monitoring of car tunnels, automatic alarm systems and people
tracking in buildings.

¥ angle 3

( target 1

angle 6

Sensor 3

s
+,angle 5
s

B
o
Sensor 1 o target 2
5

)

Sensor 2

Figure 1.3: In multiple target target tracking the data association lplem has
to be solved, which means that it is impossible to know witlaoy additional
information, which target produced which measurement.

¢ Inertial navigation(Titterton and Weston, 1997; Grewal et al., 2001) uses
inertial sensors such as accelerometers and gyroscopes for comimgting
position and velocity of a device such as a car, an airplane or a missile.
When the inaccuracies in sensor measurements are taken into account the
natural way of computing the estimates is by using an optimal filter. Also
in sensor calibration, which is typically done in time varying environment
optimal filters are often applied.

¢ Integrated inertial navigatiorfGrewal et al., 2001; Bar-Shalom et al., 2001)
combines the good sides of unbiased but inaccurate sensors, sutimas a
ters and landmark trackers, and biased but locally accurate inertiarsens
Combining of these different sources of information is most naturally per-
formed using an optimal filter such as the extended Kalman filter. This kind
of approach was used, for example, in the guidance system of Apollo 11
lunar module (Eagle), which landed on the moon in 1969.

o GPS/INS navigatiofGrewal et al., 2001; Bar-Shalom et al., 2001) is a form
of integrated inertial navigation, where the inertial sensors are combined
with a GPS receiver unit. In GPS/INS navigation system the short term
fluctuations of the GPS can be compensated with the inertial sensors and
the inertial sensor biases can be compensated with the GPS receiver. An
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additional advantage of this approach is that it is possible to temporarily
switch to pure inertial navigation, when the GPS receiver is unable to com-
pute its position (i.e., has no fix) for some reason. This happens, for éxamp
indoors, in tunnels and in other cases when there is no direct line-of-sight
between the GPS receiver and the satellites.

e Spread of infectious diseas@snderson and May, 1991) can often be mod-
eled as differential equations for the number of susceptible, infectedeand
covered/dead individuals. When uncertainties are induced into the dynamic
equations, and when the measurements are not perfect, the estimation of the
spread of the disease can be formulated as an optimal filtering problem.

e Biological processegMurray, 1993) such as population growth, predator-
pray models and several other dynamic processes in biology can also be
modeled as (stochastic) differential equations. The estimation of the states
of these processes from inaccurate measurements can be formulated as a
optimal filtering problem.

e Telecommunications also a field where optimal filters are traditionally
used. For example, optimal receivers, signal detectors and phasalock
loops can be interpreted to contain optimal filters (Van Trees, 1968, 1971)
as components. Also the celebrated Viterbi algorithm (Viterbi, 1967) can be
interpreted as a combination of optimal filtering and optimal smoothing of
the underlying hidden Markov model.

¢ Audio signal processingpplications such as audio restoration (Godsill and
Rayner, 1998) and audio signal enhancement (Fong et al., 2008) uxfe
TVAR (time varying autoregressive) models as the underlying audio signal
models. These kind of models can be efficiently estimated using optimal
filters and smoothers.

e Stochastic optimal contrqMaybeck, 1982b; Stengel, 1994) considers con-
trol of time varying stochastic systems. Stochastic controllers can typically
be found in, for example, airplanes, cars and rockets. The optimality, in
addition to the statistical optimality, means that control signal is constructed
to minimize a performance cost, such as expected time to reach a predefined
state, the amount of fuel consumed or average distance from a desired p
sition trajectory. Optimal filters are typically used for estimating the states
of the stochastic system and a deterministic optimal controller is constructed
independently from the filter such that it uses the estimate of the filter as
the known state. In theory, the optimal controller and optimal filter are not
completely decoupled and the problem of constructing optimal stochastic
controllers is far more challenging than constructing optimal filters and (de-
terministic) optimal controllers separately.
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e Learning systemer adaptive systems can often be mathematically formu-
lated in terms of optimal filters. The theory of stochastic differential equa-
tions has close relationship with Bayesian non-parametric modeling, ma-
chine learning and neural network modeling (MacKay, 1998; Bishop5)19
Methods, which are similar to the data association methods in multiple target
tracking are also applicable to on-line adaptive classification (Andriel, et a
2002).

e Physical systemahich are time varying and measured through unideal sen-
sors can sometimes be formulated as stochastic state space models, and the
time evolution of the system can be estimated using optimal filters (Kaipio
and Somersalo, 2005). In Vauhkonen (1997) and more recentlydonge,
in Pikkarainen (2005) optimal filtering is applied to Electrical Impedance
Tomography (EIT) problem in time varying setting.

1.2.2 Origins of Bayesian Optimal Filtering

The roots of Bayesian analysis of time dependent behavior are in the optiezal
filtering. The idea of constructing mathematically optimal recursive estimatas wa
first presented for linear systems due to their mathematical simplicity and the most
natural optimality criterion in both mathematical and modeling point of view was
the least squares optimality. For linear systems the optimal Bayesian solution (with
MMSE utility) coincides with the least squares solution, that is, the optimal least
squares solution is exactly the posterior mean.

The history of optimal filtering starts from théfiener filter(Wiener, 1950),
which is a spectral domain solution to the problem of least squares optimah§lter
of stationary Gaussian signals. The Wiener filter is still important in communi-
cation applications (Proakis, 2001), digital signal processing (Hay@36) and
image processing (Rafael C. Gonzalez, 2008). The disadvantagles Wfiener
filter are that it can only be applied to stationary signals and that the cotistruc
of a Wiener filter is often mathematically demanding and these mathematics cannot
be avoided (i.e., made transparent). Due to the demanding mathematics the Wiener
filter can only be applied to simple low dimensional filtering problems.

The success of optimal linear filtering in engineering applications is mostly due
to the seminal article of Kalman (1960b), which describes the recursivgmsoto
the optimal discrete-time (sampled) linear filtering problem. The reason to the
success is that thikalman filtercan be understood and applied with very much
lighter mathematical machinery than the Wiener filter. Also, despite its mathemat-
ical simplicity, the Kalman filter (or actually the Kalman-Bucy filter; Kalman and
Bucy, 1961) contains the Wiener filter as its limiting special case.

In the early stages of its history, the Kalman filter was soon discovered to
belong to the class of Bayesian estimators (Ho and Lee, 1964; Lee, E#vind
ski, 1966, 1970). An interesting historical detail is that while Kalman andyBuc
were formulating the linear theory in the United States, Stratonovich was doing the
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pioneering work on the probabilistic (Bayesian) approach in Russia¢8taich,
1968; Jazwinski, 1970).

As discussed in the book of West and Harrison (1997), in the sixties, Kalma
filter like recursive estimators were also used in the Bayesian community and it is
not clear whether the theory of Kalman filtering or the theongdwhamic linear
models(DLM) was the first. Although these theories were originally derived from
slightly different starting points, they are equivalent. Because of Kalnfizn'di
useful connection to the theory and history of stochastic optimal controkitiais
ument approaches the Bayesian filtering problem from the Kalman filterimg po
of view.

Although the original derivation of th&alman filterwas based on the least
squares approach, the same equations can be derived from therploadbifistic
Bayesian analysis. The Bayesian analysis of Kalman filtering is well cowetbe
classical book of Jazwinski (1970) and more recently in the book of3datom
et al. (2001). Kalman filtering, mostly because of its least squares intatipre
has widely been used in stochastic optimal control. A practical reason to this is
that the inventor of the Kalman filter, Rudolph E. Kalman, has also made severa
contributions (Kalman, 1960a) to the theoryliofear quadratic GaussiafLQG)
regulators, which are fundamental tools of stochastic optimal control g&lten
1994; Maybeck, 1982b).

1.2.3 Optimal Filtering and Smoothing as Bayesian Inference

Optimal Bayesian filtering (see, e.g. Jazwinski, 1970; Bar-Shalom etGi)1;2
Doucet et al., 2001; Ristic et al., 2004) considers statistical inversidngms,
where the unknown quantity is a vector valued time sefigsxs, ...) which is
observed through noisy measuremets, yo, . . .) as illustrated in the Figure 1.4.

An example of this kind of time series is shown in the Figure 1.5. The process
shown is actually a discrete-time noisy resonator with a known angular velocity
The statex;, = (z;, 1) is two dimensional and consists of the position of the res-
onatorzy, and its time derivative;,. The measuremenig are scalar observations

of the resonator position (signal) and they are corrupted by measureoisat

observed: y: y2 y3 Y4
hidden: X1 X2 X3 X4

Figure 1.4: In discrete-time filtering a sequence of hidden statess indirectly observed
through noisy measurements.

The purpose of thetatistical inversiorat hand is to estimate the hidden states
{x1,...,xr} given the observed measuremefis, ..., yr}, which means that
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Figure 1.5: An example of time series, which models a discrete-timenatw. The actual
resonator state (signal) is hidden and only observed ttrthgnoisy measurements.

in the Bayesian sense (Bernardo and Smith, 1994; Gelman et al., 199%) e
to do is to compute the joint posterior distribution of all the states given all the
measurements. This can be done by straightforward application of the' Balges

p()’h---7YT‘X17-~-7XT)P(X17~--,XT) (11)

p(xlv"'7XT|y1a"'7YT):

p(y1,---,¥y7)
where
e p(xi,...,x7), is the prior defined by the dynamic model,
e p(y1,...,yr|X1,...,x7) is the likelihood model for the measurements,
e p(y1,...,yr) is the normalization constant defined as

p(y1,---,yr) = /p(}’b--',YT\XL---,XT)p(X1,~-,XT)d(Xl,---,XT)-
(1.2)

Unfortunately, this full posterior formulation has the serious disadvarntegeach

time we obtain a new measurement, the full posterior distribution would have to
be recomputed. This is particularly a problem in dynamic estimation (which is ex-
actly the problem we are solving here!), because there measuremetygieady
obtained one at a time and we would want to compute the best possible estimate
after each measurement. When number of time steps increases, the dimépsiona
of the full posterior distribution also increases, which means that the cotignah
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complexity of a single time step increases. Thus after a sufficient number of time
steps the computations will become intractable, independently of available eompu
tational resources. Without additional information or harsh approximattbese

is no way of getting over this problem in the full posterior computation.

However, the above problem only arises when we want to computéulthe
posterior distribution of the states at each time step. If we are willing to relax
this a bit and be satisfied with selected marginal distributions of the states, the
computations become order of magnitude lighter. In order to achieve thidswe a
need to restrict the class of dynamic models into probabilistic Markov segagnc
which as a restriction sounds more restrictive than it really is. The modeldor th
states and measurements will be assumed to be of the following type:

e Initial distribution specifies therior distribution p(x) of the hidden state
x¢ at initial time stepk = 0.

e Dynamic modelmodels the system dynamics and its uncertaintiesvarkov
sequencedefined in terms of the transition distributip(ixy, | xx—1).

¢ Measurement modelmodels how the measurement depends on the cur-
rent statex,. This dependence is modeled by specifying the distribution of
the measurement given the statg . | xx).

Because computing the full joint distribution of the states at all time steps is com-
putationally very inefficient and unnecessary in real-time applicationgptimal
(Bayesian) filteringhe following marginal distributions are considered instead:

e Filtering distributionsare the marginal distributions difie current statexy,
giventhe previous measuremertg;, ..., yx}:

p(Xk | Y1, Vi), k=1,...,T. (1.3)

e Prediction distributionsare the marginal distributions of the future states,
steps after the current time step:

P(Xgtn | Y1y -+ -5 VE), k=1,....,T, n=1,2,..., (1.4)

e Smoothing distributionare the marginal distributions of the statgsgiven
a certain intervaly, . .., yr} of measurements with' > k:

p(Xk | ¥1,---,¥YT), k=1,...,T. (1.5)

1.2.4 Algorithms for Optimal Filtering and Smoothing

There exists a few classes of filtering and smoothing problems which hasexdclo
form solutions:



10 Introduction
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Figure 1.6: State estimation problems can be divided into optimal ptéxi, filtering
and smoothing depending on the time span of measuremerilisdavith respect to the
estimated state time span.
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Figure 1.7: The result of computing the filtering distributions for thisaete-time res-
onator model. Thestimatesare the posterior means of the filtering distributions ared th
quantiles are the 95% quantiles of the filtering distribosio

o Kalman filter (KF) is a closed form solution to the discrete linear filtering
problem. Due to linear Gaussian model assumptions the posterior distribu-
tion is exactly Gaussian and no numerical approximations are needed.

e Rauch-Tung-Striebel smooth@&TSS) is the corresponding closed form smoother
to linear Gaussian state space models.
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Figure 1.8: The result of computing the smoothing distributions for thiscrete-time
resonator model. Thestimatesare the posterior means of the smoothing distributions
and the quantiles are the 95% quantiles of the smoothinghiisbns. The smoothing
distributions are actually the marginal distributionstué full state posterior distribution.

Grid filters and smoothersre solutions to Markov models with finite state
spaces.

But because the Bayesian optimal filtering and smoothing equations amaljyene
computationally intractable, many kinds of numerical approximation methods have
been developed:

Extended Kalman filtgfEKF) approximates the non-linear and non-Gaussian
measurement and dynamic models by linearization, that is, by forming a
Taylor series expansion on the nominal (or Maximum a Posteriori, MAP)
solution. This results in Gaussian approximation to the filtering distribution.

Extended Rauch-Tung-Striebel smoot{feRTSS) is the approximate non-
linear smoothing algorithm corresponding to EKF.

Unscented Kalman filteUKF) approximates the propagation of densities
through the non-linearities of measurement and noise processestgnted
transform This also results in Gaussian approximation.

Unscented Rauch-Tung-Striebel smootfiRTSS) is the approximate non-
linear smoothing algorithm corresponding to UKF.

Sequential Monte Carlo methods patrticle filters and smoothergpresent
the posterior distribution a as weighted set of Monte Carlo samples.
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e Unscented particle filte(UPF) andlocal linearizationbased methods use

UKFs and EKFs, respectively, for approximating the importance distribu-
tions in sequential importance sampling.

Rao-Blackwellized particle filters and smoothesg closed form integration
(e.g., Kalman filters and RTS smoothers) for some of the state variables and
Monte Carlo integration for others.

Interacting multiple model§iIMM), and othermultiple modelmethods ap-
proximate the posterior distributions with mixture Gaussian approximations.

Grid based methodapproximate the distribution as a discrete distribution
defined in a finite grid.

Other methodslso exists, for example, based on series expansions, describ-
ing functions, basis function expansions, exponential family of distribstion
variational Bayesian methods, batch Monte Carlo (e.g., MCMC), Galerkin
approximations etc.
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From Bayesian Inference to
Bayesian Optimal Filtering

2.1 Bayesian Inference

This section provides a brief presentation of the philosophical and mathainatic
foundations of Bayesian inference. The connections to the classitistista
inference are also briefly discussed.

2.1.1 Philosophy of Bayesian Inference

The purpose of Bayesian inference (Bernardo and Smith, 1994; Gednah,
1995) is to provide a mathematical machinery that can be used for modeling sys-
tems, where the uncertainties of the system are taken into account anditierde

are made according to rational principles. The tools of this machinery are the
probability distributions and the rules of probability calculus.

If we compare the so called frequentist philosophy of statistical analysis to
Bayesian inference the difference is that in Bayesian inference thalpitity of an
event does not mean the proportion of the event in an infinite number of tridls
the uncertainty of the event in a single trial. Because models in Bayesiaarioter
are formulated in terms of probability distributions, the probability axioms and
computation rules of the probability theory (see, e.g., Shiryaev, 1996 pplsly
in the Bayesian inference.

2.1.2 Connection to Maximum Likelihood Estimation

Consider a situation, where we know the conditional distributign. | 8) of con-
ditionally independent random variables (measurements). ., y,,, but the pa-
rameter® € R is unknown. The classical statistical method for estimating the
parameter is thenaximum likelihood methogMilton and Arnold, 1995), where
we maximize the joint probability of the measurements, also called the likelihood
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function

L(0) =[] p(yx 0). (2.1)
k

The maximum of the likelihood function with respect @logives themaximum
likelihood estimatéML-estimate)

0 = arg max L(6). (2.2)

The difference between the Bayesian inference and the maximum likelihdbdane
is that the starting point of Bayesian inference is to formally consider trespeter

0 as a random variable. Then the posterior distribution of the parafieian be
computed by using thBayes' rule

p(y1,---,¥n|0)p(0)
p(y17~--7yn)

p(O|y1,....yn) = , (2.3)

wherep(0) is the prior distribution, which models the prior beliefs of the parameter
before we have seen any data aifst, . . .,y,) is a normalization term, which is
independent of the parametér Often this normalization constant is left out and if
the measuremengs, . . .,y, are conditionally independent givéh the posterior
distribution of the parameter can be written as

pO1y1,....yn) x p(0) [[ p(yx|8). (2.4)
k

Because we are dealing with a distribution, we might now choose the mosijeob
value of the random variable (MAP-estimate), which is given by the maximum of
the posterior distribution. However, better estimate in mean squared sense is th
posterior mean of the parameter (MMSE-estimate). There are an infinite numbe
of other ways of choosing the point estimate from the distribution and thevagst
depends on the assumed loss function (or utility function). The ML-estimate ca
be considered as a MAP-estimate with uniform prior on the pararfleter

One can also interpret Bayesian inference as a convenient methodlfat-in
ing regularization terms into maximum likelihood estimation. The basic ML-
framework does not have a self-consistent method for including rezmitimn
terms or prior information into statistical models. However, this regularization in-
terpretation of Bayesian inference is not entirely right, because Bayied&ence
is much more than this.

2.1.3 The Building Blocks of Bayesian Models

The basic blocks of a Bayesian model are gr®r model containing the pre-
liminary information on the parameter and tlielihood modeldetermining the
stochastic mapping from the parameter to the measurements. Using the com-
bination rules, namely the Bayes’ rule, it is possible to infer an estimate of the
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parameters from the measurements. The distribution of the parameters,isvhich
conditional to the observed measurements is callegdaiseerior distributiorand it

is the distribution representing the state of knowledge about the paramdtens w

all the information in the observed measurements and the model isPiselictive
posterior distributionis the distribution of the new (not yet observed) measure-
ments when all the information in the observed measurements and the model is
used.

e Prior model
The prior information consists of subjective experience based beligfseon
possible and impossible parameter values and their relative likelihoods be-
fore anything has been observed. The prior distribution is a mathematical
representation of this information:

p(0) = Information on parametét before seeing any observations. (2.5)

The lack of prior information can be expressed by using a non-informativ
prior. The non-informative prior distribution can be selected in various dif
ferent ways (Gelman et al., 1995).

e Likelihood model
Between the true parameters and the measurements there often is a causal,
but inaccurate or noisy relationship. This relationship is mathematically
modeled using the likelihood distribution:

p(y | @) = Distribution of observatioly given the parametes  (2.6)

e Posterior distribution
Posterior distribution is the conditional distribution of the parameters, and
it represents the information we have after the measuremdras been
obtained. It can be computed by using the Bayes' rule:

_p(y[0)p(6)
p(@ly) = o) p(y 10)p(0), (2.7)
where the normalization constant is given as
p(y) = / p(y|6)p(6)de. (2.8)
R4

In the case of multiple measuremests ..., y,, if the measurements are
conditionally independent the joint likelihood of all measurements is the
product of individual measurements and the posterior distribution is

POy, yn) < p(8) [ [ vk 6), (2.9)
k

where the normalization term can be computed by integrating the right hand
side over6. If the random variable is discrete the integration reduces to
summation.
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e Predictive posterior distribution
The predictive posterior distribution is the distribution of new measurements

Yn+1:

p(yn+1|y1,-~,yn)Z/de(ynﬂ|9)p(9!>’1,---,yn)d9- (2.10)

After obtaining the measurements, . . ., y, the predictive posterior distri-
bution can be used for computing the probability distribution/fo¢ 1:th
measurement, which has not been observed yet.

In the case of tracking, we could imagine that the parameter is the sequience o
dynamic states of a target, where the state contains the position and velocity. Or
in the continuous-discrete setting the parameter would be an infinite-dimehsiona
random function describing the trajectory of the target at a given time adtelrv

both cases the measurements could be, for example, noisy distance atidrdire
measurements produced by a radar.

2.1.4 Bayesian Point Estimates

The distributions as such have no use in applications, but also in Bayesigue
tations finite dimensional summaries (point estimates) are needed. This selection
of a point from space based on observed values of random variatdestatisti-

cal decision, and therefore this selection procedure is most naturathufated

in terms ofstatistical decision theoryBerger, 1985; Bernardo and Smith, 1994;
Raiffa and Schlaifer, 2000).

Definition 2.1 (Loss Function) A loss functior.(0, a) is a scalar valued function,
which determines the loss of taking thetiona, when the true parameter value

is 8. The action (or control) is the statistical decision to be made based on the
currently available information.

Instead of loss functions it is also possible to work with utility functioh®, a),
which determine the reward from taking the actimwith parameter value8.
Loss functions can be converted to utility functions and vice versa byidefin
U(B,a) = —L(0,a).

If the value of parametef is not known, but the knowledge on the parameter
can be expressed in terms of the posterior distribupi@h| y1, . ..,y»), then the
natural choice is the action, which gives timnimum (maximum) of the expected
loss (utility) (Berger, 1985):

BILO.2) vy = [ 200y y) 0. (211

Commonly used loss functions are the following:
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e Quadratic error loss If the loss function is quadratic

L(6,a)= (6 —a)l (0 —a), (2.12)
then the optimal choica, is theposterior mearof the distribution of:
a,= [ 6p(6ly1.....y)db. (2.13)
R

This posterior mean based estimate is often callediinenum mean squar-

ed error (MMSE)estimate of the paramet@r The quadratic loss is the most
commonly used loss function, because it is easy to handle mathematically
and because in the case of Gaussian posterior distribution the MAP estimate
and the median coincide with the posterior mean.

e Absolute error lossThe loss function of the form

L(6,a) = |0; — ail, (2.14)

is called an absolute error loss and in this case the optimal choice is the
medianof the distribution (i.e., medians of the marginal distributions in
multidimensional case).

e 0-1 loss If the loss function is of the form

1 , if=a
L(G,a):{o 62 (2.15)

then the optimal choice is the maximum of the posterior distribution, that is,
themaximum a posterior (MAR)stimate of the parameter.

2.1.5 Numerical Methods

In principle, Bayesian inference provides the equations for computingdbte-

rior distributions and point estimates for any model once the model specificatio
has been set up. However, the practical problem is that computation oftéhe
grals involved in the equations can rarely be performed analytically andneahe
methods are needed. Here we shall briefly describe numerical methaidk, ave

also applicable in higher dimensional problems: Gaussian approximations, multi-
dimensional quadratures, Monte Carlo methods, and importance sampling.

e Very common types of approximations aeaussian approximation&el-
man et al., 1995), where the posterior distribution is approximated with a
Gaussian distribution

p(@|y1,...,yn) = N(@|m,P). (2.16)

The meanm and covarianc® of the Gaussian approximation can be either
computed by matching the first two moments of the posterior distribution, or
by using the maximum of the distribution as the mean estimate and approxi-
mating the covariance with the curvature of the posterior on the mode.
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e Multi-dimensional quadrature or cubature methodach as Gauss-Hermite
guadrature can also be often used if the dimensionality of the integral is mod-
erate. In those methods the idea is to deterministically form a representative
set of sample point® = {6 | i = 1,..., N} (sometimes calledigma
pointg and form the approximation of the integral as weighted average:

N
Elg(0)|y1,....yn] = > W g(0"), (2.17)
=1

where the numerical values of the weights®) are determined by the al-
gorithm. The sample points and weights can be selected, for example, to
give exact answers for polynomials up to certain degree or to acoouititef
moments up to certain degree.

¢ In directMonte Carlo methoda set of N samples from the posterior distri-
bution is randomly drawn

0% ~ p@|y1,...,yn), i=1,...,N, (2.18)

and expectation of any functigg(-) can be then approximated as the sample
average

Blg(0) [v1.-yal = 1 > g(6®) 219

Another interpretation of this is that Monte Carlo methods form an approxi-
mation of the posterior density of the form

N
p(0|YIa---7Yn ~ Z z— a0 (2.20)

where(-) is the Dirac delta function. The convergence of Monte Carlo
approximation is guaranteed by thentral limit theorem (CLT)see, e.g.,
Liu, 2001) and the error term is, at least in theory, independent ofitherd
sionality of6.

o Efficient methods for generating non-independent Monte Carlo samges a
the Markov chain Monte CarldMCMC) methods (see, e.g., Gilks et al.,
1996). In MCMC methods, a Markov chain is constructed such that it leas th
target distribution as its stationary distribution. By simulating the Markov
chain, samples from the target distribution can be generated.

e Importance samplingsee, e.g., Liu, 2001) is a simple algorithm for gener-
ating weightedsamples from the target distribution. The difference to the
direct Monte Carlo sampling and to MCMC is that each of the particles
contains a weight, which corrects the difference between the actuat targe
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distribution and the approximation obtained from an importance distribution
m(-).

Importance sampling estimate can be formed by drawNhgamples from
theimportance distribution

09 ~ (0|y1,....yn), i=1,...,N. (2.21)

Theimportance weightare then computed as

. (4)
(O | y1,...,¥n)

and the expectation of any functign-) can be then approximated as

Zf\il w® g(e(i))

2.23
Zi\il w(®) ( :

Elg(0)|y1,...,yn] =

2.2 Batch and Recursive Estimation

In order to understand the meaning and applicability of optimal filtering and its
relationship with recursive estimation, it is useful to go through an examplerev
we solve a simple and familiar linear regression problem in a recursive manne
After that we shall generalize this concept to include a dynamic model in twde
illustrate the differences in dynamic and batch estimation.

2.2.1 Batch Linear Regression

Consider the linear regression model
Yk = 01 + Oz tg + e, (2.24)

where we assume that the measurement noise is zero mean Gaussian wath a giv
variancee;, ~ N(0, o2) and the prior distribution for parameters is Gaussian with
know mean and covariand® ~ N(myg, P(). In the classical linear regression
problem we want to estimate the parametgrs (6, GQ)T from a set of measure-
ment datéD = {(y1,t1), --., (Yx,tx)}. The measurement data and the true linear
function used in simulation are illustrated in Figure 2.1.

In compact probabilistic notation the linear regression model can be written as

p(yr|0) = N(yx | Hy, 6, 0%)

2.25
p(6) = N(6 | mo, Py). (2:29)

where we have introduced the matlik, = (1 ¢;) andN(-) denotes the Gaus-
sian probability density function (see, Appendix A.1). The likelihoodpfs, of
course, conditional on the regressersalso (or equivalentlyHy), but we will not
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Figure 2.1: The underlying truth and the measurement data in the sirm@ar regression
problem.

denote this dependence explicitly to simplify the notation and from now on this
dependence is assumed to be understood from the context.

Thebatch solutionio this linear regression problem can be obtained by straight-
forward application of the Bayes’ rule:

(8 | y1:x) o p(8) [ [ p(ux | 6)
k

= N(0|mo, Po) [ [ N(yx | Hy. 6, 0%).
K

Also in the posterior distribution above, we assume the conditioning, cand
Hp, but will not denote it explicitly. Thus the posterior distribution is denoted
to be conditional ony1.x = {v1,-..,yx}, and not on the data s& containing
the regressor valuéeg also. The reason for this simplification is that the simplified
notation will also work in more general filtering problems, where there is hoala
way of defining the associated regressor variables.

Because the prior and likelihood are Gaussian, the posterior distribution will
also be Gaussian:

p(a ‘ ym) = N(9 ‘ mpg, PK). (2.26)

The mean and covariance can be obtained by completing the quadratic ftyren in
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exponent, which gives:

1 1
myg = |:Pal + O_QHTH:| |:O_2HTy + Pglmo

., (2.27)
-1 L oo
g
whereH;, = (1 t;) and
H; 1 4 Y1
Hg 1tk YK

Figure 2.2 shows the result of batch linear regression, where the ipostezan
parameter values are used as the linear regression parameters.

1.7

T
Measurement
True signal
16 - — —Estimate

15

14

13

1.2

11

1
09 q

0.8 b

0.7 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time

Figure 2.2: The result of simple linear regression with a slight regaktion prior used
for the regression parameters. For simplicity, the vagamas assumed to be known.

2.2.2 Recursive Linear Regression

Recursive solutioto the regression problem (2.25) can be obtained by assuming

that we already have obtained posterior distribution conditioned on théopeev
measurements, ..., k — 1:

p(@|y1:k—1) = N(O |my_1,Pp_1q).
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Now assume that we have obtained a new measureypeamid we want to compute
the posterior distribution 08 given the old measurements.,_; and the new
measuremeny;. According to the model specification the new measurement has
the likelihood

p(yk |0) = Ny | Hy, 0,07).

Using the batch version equations such that we interpret the previotesiposis
the prior, we can calculate the distribution

p(0|y1x) o< p(yr | 0) p(0 | y1:k—1)

2.29
o N(0 | my, Py), (2:29)
where the Gaussian distribution parameters are
1 R
m; = |:P’;11 + 2H£Hk:| I:QHgyk + P;Elmk,1
g g
(2.30)

1 -1
—1 T
P, = [Pkl + —Hj H,f} .
By using the matrix inversion lemma, the covariance calculation can be written as
-1
Py =Py — Py Hf [HP,_Hf + 0] HyPj_;.

By introducing temporary variables, andK,, the calculation of mean and covari-
ance can be written in form
Sy = HyP,_H} + o2
Ky, =P, HS.!
my, = my_1 + Kilyp — Hymy 4]
P, =P, — K S K},

(2.31)

Note thatS), = HkPk_lH}f + 02 is a scalar, because measurements are scalar and
thus no matrix inversion is required.

The equations above actually are special cases of the Kalman filter update
equations. Only the update part of the equations is required, becausstithe
mated parameters are assumed to be constant, that is, there is no a pi@asttoc
dynamics model for the parametésFigure 2.3 illustrates the convergence of the
means and variances of parameters during the recursive estimation.

2.2.3 Batch vs. Recursive Estimation

In this section we shall generalize the recursion idea used in the pregciissto
general probabilistic models. The underlying idea is simply that at each neeasu
ment we treat the posterior distribution of previous time step as the prior for the
current time step. This way we can compute the same solution in recursivemann
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that we would obtain by direct application of Bayesian rule to the whole (batch

data set.
Thebatch Bayesian solutioto a statistical estimation problem can be formu-

lated as follows:

1. Specify the likelihood model of measurementg;, | @) given the parameter
6. Typically the measuremenys. are assumed to be conditionally indepen-
dent such that

p(y1k |0) = HPYHO

2. The prior information about the paramefkis encoded into the prior distri-
butionp(0).

3. The observed data set1» = {(¢1,y1),-.., (tx,yx)}, or if we drop the
explicit conditioning taty, the data isD = yq.x.

4. The batch Bayesian solution to the statistical estimation problem can be
computed by applying the Bayes’ rule

p(0]y1k) = HPYk|0

For example, the batch solution of the above kind to the linear regressiblepro
(2.25) was given by Equations (2.26) and (2.27).

Therecursive Bayesian solutidn the above statistical estimation problem can
be formulated as follows:

1. The distribution of measurements is again modeled by the likelihood func-
tion p(yx | €) and the measurements are assumed to be conditionally inde-
pendent.

2. In the beginning of estimation (i.e, at step 0), all the information about the
parametep we have, is the prior distribution(9).

3. The measurements are assumed to be obtained one at a tima, fiingtny
and so on. At each step we use the posterior distribution from the previous
time step as the current prior distribution:

p(8]y1) = lep<y1 16)p(6)

P8 y12) = Z12p<y2 10)p(8 | y1)
(0 y15) = Zlgp<y3 10)p(0 | y12)

1
p(6 \ ViK) = TP(YK | 0)p(0|yirk-1)-
K
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It is easy to show that the posterior distribution at the final step above is
exactly the posterior distribution obtained by the batch solution. Also, re-
ordering of measurements does not change the final solution.

For example, the Equations (2.29) and (2.30) give the one step updaferrtiie
linear regression problem in Equation (2.25).
The recursive formulation of Bayesian estimation has many useful pieser

e The recursive solution can be considered asathiene learningsolution to
the Bayesian learning problem. That is, the information on the parameters is
updated in online manner using new pieces of information as they arrive.

e Because each step in the recursive estimation is a full Bayesian update step
batchBayesian inference isgpecial case of recursii@ayesian inference.

e Due to the sequential nature of estimation we can also model the effect of
time to parameters. That is, we can build model to what happens to the
paramete# between the measurements — this is actuallytsas of filtering
theory, where time behavior is modeled by assuming the parameter to be a
time-dependent stochastic procéss).

2.3 Towards Bayesian Filtering

Now that we are able to solve the static linear regression problem in reeursi
manner, we can proceed towards Bayesian filtering by allowing the paramete
change between the measurements. By generalizing this idea, we endbenter
Kalman filter, which is the workhorse of dynamic estimation.

2.3.1 Drift Model for Linear Regression

Assume that we have similar linear regression model as in Equation (2.2%)ebu
paramete# is allowed to performGaussian random walketween the measure-
ments:

P(yk | 0x) = N(yi | Hy 0, 07)
(01| 0k—1) =N(0;]6,-1,Q) (2.32)
p(6o) = N(8o | mo, Po),

whereQ is the covariance of the random walk. Now, given the distribution
P(Ok—1|y1:6-1) = N(Op—1 |[my_1,Pp_1),
the joint distribution 0@, and@,,_ is*

POk, 0k—1 | y1:k—1) = POk | Ok—1) P(Or—1 | Y1:5—1)-

'!Note that this formula is correct only for Markovian dynamic models, nehe
POk | Ok—1,Y1:6—1) = P(Ok | Or—1).
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The distribution 0#;, given the measurement history up to time step 1 can be
calculated by integrating ové,_

POk | yik—1) = /P(Gk |0k—1) p(Ok—1|y1:—1) dO)_1.

This relationship is sometimes called tBkapman-Kolmogorov equatioBecause
p(0r | Ox—1) andp(Ox_1 | y1.x—1) are Gaussian, the result of the marginalization is
Gaussian:
POk | y1:k—1) = N(Oy |m,P,),

where

m; =my_]

P, =P, +Q
By using this as the prior distribution for the measurement likelihe(ad | 6;.) we
get the parameters of the posterior distribution

(0 | y1.k) = N(O | my, Py),

which are given by equations (2.31), whar,_; andP;_; are replaced byn,
andP,:

S, = HyP_HI + o2

K, =P, H[S;'

my, = m; + K[y, — Hym, |

P, =P, — K S:K}.
This recursive computational algorithm for the time-varying linear regpasgeights
is again a special case of the Kalman filter algorithm. Figure 2.4 shows tHeaksu
recursive estimation of sine signal assuming a small diagonal Gaussitam oldié|
for the parameters.

At this point we shall change from tliegression notationised so far intstate

space model notatigrwhich is commonly used in Kalman filtering and related

dynamic estimation literature. Because this notation easily causes confusion to
people who have got used to regression notation, this point is emphasized:

(2.33)

¢ In state space notatior means the unknown state of the system, that is, the
vector ofunknown parameters in the systeliris notthe regressor, covariate
or input variable of the system.

e For example, the time-varying linear regression model with drift presented
in this section can be transformed into more standdade space model
notationby replacing the variabl@, = (6, GM)T with the variablex;, =
(@1,k 962,1<:)T1

pyk | xk) = N(yx | Hg x, 0%)
p(Xk [ xp—1) = N(xp | x5-1, Q) (2.34)

p(x0) = N(x0 | mg, Po).
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2.3.2 Kalman Filter

The linear model with drift in the previous section had the disadvantage that th
covariatest;, occurred explicitly in the model specification. The problem with
this is that when we get more and more measurements, the parameemws
without a bound. Thus the conditioning of the problem also gets worse in time.
For practical reasons it also would be desirable to have time-invariantintbae

is, @ model which is not dependent on the absolute time, but only on the eelativ
positions of states and measurements in time.

The alternative state space formulation of the linear model with drift, without
using explicit covariates can be done as follows. Let's denote time differen
between consecutive times A, = t; — t;_1. The idea is that if the under-
lying phenomenon (signal, state, parametgr)vas exactly linear, the difference
between adjacent time points could be written exactly as

Ty — The1 = T Atg_q (2.35)

wherez is the derivative, which is constant in the exactly linear case. The diver-
gence from the exactly linear function can be modeled by assuming thatdhe ab
equation does not hold exactly, but there is a small noise term on the rigtit ha
side. The derivative can also be assumed to perform small random nalthas

not be exactly constant. This model can be written as follows:

1k =21 -1+ Atp_122 51 + w1
Tok = T2k + w2 (2.36)

Yo =211 t e

where the signal is the first components of the sigtg and the derivative is the
secondrs . The noises are ~ N(0,0?), (w1;w2) ~ N(0,Q). The model can
also be written in form

p(yr | xk) = N(ye | Hxy, 0°)
p(xk | xp—1) = N(xp | Ap—1 x1-1, Q),

1 Aty
Ak1:<0 f1>, H:(l 0).

With suitableQ this model is actually equivalent to model (2.32), but in this for-
mulation we explicitly estimate the state of the signal (point on the regression line)
instead of the linear regression parameters.

We could now explicitly derive the recursion equations in the same manner as
we did in the previous sections. However, we can also uskalaan filter, which
is a readily derived recursive solution to generic linear Gaussian madélks fmrm

(2.37)

where

p(yr | xx) = N(yx | Hg X1, Ri)
p(xk | Xk—1) = N(Xp | Ap—1 Xp—1, Qr—1)-
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Our alternative linear regression model in Equation (2.36) can be seem &0 b
special case of these models. The Kalman filter equations are often seghias
prediction and update steps as follows:

1. Prediction step:

m, =Ap 1m;
P, =A P AL+ Q.

2. Update step:

S =H; P, HI +R;

K, =P, H{ S, "

m; =m, + K[y, —Hym,]
P, =P, —K;S;Kf.

The result of tracking the sine signal with Kalman filter is shown in Figure 2l5. A
the mean and covariance calculation equations given in this documentisavéar
been special cases of the above equations, including the batch solutierstatar
measurement case (which is a one-step solution). The Kalman filter regtyrsi
computes the mean and covariance of the posterior distributions of the form

P(Xk Y1, -5 ¥E) = N(xg | my, Py).

Note that the estimates &f, derived from this distribution are non-anticipative in
the sense that they are only conditional to measurements obtained baefaiaiaa
time stepk. However, after we have obtained measuremgnis. ., y, we could
compute estimates of;,_1, xx_o, . . ., Which are also conditional to the measure-
ments after the corresponding state time steps. Because more measurements an
more information is available for the estimator, these estimates can be expected to
be more accurate than the non-anticipative measurements computed by the filter

The above mentioned problem of computing estimates of state by condition-
ing not only to previous measurements, but also to future measurements s calle
optimal smoothin@s already mentioned in Section 1.2.3. The optimal smoothing
solution to the linear Gaussian state space models is given bRaheh-Tung-
Striebel smootherThe full Bayesian theory of optimal smoothing as well as the
related algorithms will be presented in Chapter 4.

It is also possible to predict the time behavior of the state in the future that we
have not yet measured. This procedure is cadiptimal prediction Because op-
timal prediction can always be done by iterating the prediction step of the optimal
filter, no specialized algorithms are needed for this.

The non-linear generalizations of optimal prediction, filtering and smoothing
can be obtained by replacing the Gaussian distributions and linear funations
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model (2.37) with non-Gaussian and non-linear ones. The Bayesiamilymes-
timation theory described in this document can be applied to generic non-linear
filtering models of the following form:

Vi~ p(ye | %)
X ~ P(Xg | Xp—1).

To understand the generality of this model is it useful to note that if we @gcbpp
the time-dependence from the state we would get the model

Yk ~ p(¥r %)
x ~ p(x).

Becausex denotes an arbitrary set of parameters or hyper-parameters of the sys
tem, all static Bayesian models are special cases of this model. Thus in dynamic
estimation context we extend the static models by allowing a Markov model for
the time-behavior of the (hyper)parameters.

The Markovianity also is less of a restriction than it sounds, becausewehat
have is a vector valued Markov process, not a scalar one. Thernewgerecall
from the elementary calculus that differential equations of an arbitratgraran
be always transformed into vector valued differential equations of thedider.
In analogous manner, Markov processes of an arbitrary ordere#matsformed
into vector valued first order Markov processes.
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Figure 2.3: (a) Convergence of the recursive linear regression meahne.fifial value is
exactly the same as that was obtained with batch lineargsigre Note that time has been
scaled tol atk = K. (b) Convergence of the variances plotted on logarithmédescAs
can be seen, every measurement brings more informationhendnicertainty decreases
monotonically. The final values are the same as the variaolotsned from the batch
solution.
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Figure 2.4: Example of tracking sine signal with linear model with drifthere the pa-
rameters are allowed to vary according to Gaussian randdknmadel.
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Figure 2.5: Example of tracking sine signal with locally linear stat@sp model. The
result differs a bit from the random walk parameter modetabese of slightly different
choice of process noise. It could be made equivalent if ddsir



Chapter 3

Optimal Filtering

In this chapter we first present the classical formulation of the discreteepne
timal filtering as recursive Bayesian inference. Then the classical Kafittens,
extended Kalman filters and statistical linearization based filters are présente
terms of the general theory. In addition to the classical algorithms the uescen
Kalman filter and general assumed density filters are also presented nSaljue
portance resampling based patrticle filtering, as well as Rao-Blackwellentidlp
filtering are also covered.

3.1 Formal Filtering Equations and Exact Solutions

3.1.1 Discrete-Time Probabilistic State Space Models

Before going into the practical non-linear filtering algorithms, in the nexices
the theory of probabilistic (Bayesian) filtering is presented. The Kalmanifi¢ter
equations, which are the closed form solutions to the linear Gaussiantditione
optimal filtering problem, are also derived.

Definition 3.1 (Discrete-time state space moddDiscrete-time state space model
is a recursively defined probabilistic model of the form
X ~ X X—
K~ p(xg | Xp—1) (3.1)
Yk ~ P(Ye [ %K),

where
e x5 € R" is thestateof the system on the time step
e yi € R™ is the measurement on the time skep

e p(xx | xx—1) is thedynamic modelwhich models the stochastic dynamics
of the system. The dynamic model can be a probability density, a counting
measure or combination of them depending on if the statis continuous,
discrete or hybrid.
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e p(yr | xx) is themeasurement modelvhich models the distribution of the
measurements given the state.

The model is assumed to be Markovian, which means that it has the following
two properties:
Property 3.1 (Markov property of states)

States{x; : k= 1,2,...} form a Markov sequence (or Markov chain if the state
is discrete). This Markov property means that (and actually the whole future
Xk+1, Xk+2, - - -) givenxg_q is independent from anything that has happened in the
past:

P(Xk | X1:6—1, Y1:6—1) = D(Xk | Xk—1)- (3.2)

Also the past is independent of the future given the present:
P(Xk—1 | X1, Y1) = P(Xk—1 | Xi)- (3.3)

Property 3.2 (Conditional independence of measurements)
The measuremegt, given the state; is conditionally independent from the mea-
surement and state histories:

P(Yk | X1k, Y1k—1) = (Vi | Xk)- (3.4)

As simple example of a Markovian sequence is the Gaussian random walk.
When this is combined with noisy measurements, we obtain an example of a prob-
abilistic state space model:

Example 3.1(Gaussian random walk{zaussian random walk model can be writ-
ten as

Tp = Tp—1 + Wg—1, wr—1 ~ N(O,
k k—1 k—1 k—1 (0,q) (3.5)
Yk = Tk + €, ekNN(07T)>

wherezy is the hidden state ang, is the measurement. In terms of probability
densities the model can be written as

p(rr | vp—1) = N(2k | 2121, @)
1 1
= o exp (—2q(l’k - (L‘k1)2>
p(yk | 71) = N(yg | 75, 7)
1 1 ,
= exp | ——(yp —

which is a discrete-time state space model.

E

(3.6)
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The filtering model (3.1) actually states that the joint prior distribution of the

stateqxo, . . ., x7) and the joint likelihood of the measuremefys, ..., yr) are,
respectively
T
p(xo, .., x7) = p(x0) [ p(xk[xr-1) (3.7)
k=1
T
p(y1:- -yl %0, xr) = [ [ plyn | %8). (3.8)
k=1

In principle, for givenT” we could simply compute the posterior distribution of the
states by the Bayes rule:

P(Yh--~,YT‘X07-~-7XT)P(X07~--7XT)
p(y1,---,y7) (3.9
x p(y1s---,¥7 | X0,-..,%X7) P(X0, - .., XT).

p(X0y- -, X7 | Y1, .-, YT) =

However, this kind of explicit usage of the full Bayes’ rule is not feasibleesal

time applications, because the amount of computations per time step increases
when new observations arrive. Thus, this way we could only work witHIstata

sets, because if the amount of data is not bounded (as in real time sgregopii
cations), then at some point of time the computations would become intractable.
To cope with real time data we need to have an algorithm which does constant
amount of computations per time step.

As discussed in Section 1.2.flltering distributions prediction distributions
andsmoothing distributionsan be computed recursively such that only constant
amount of computations is done on each time step. For this reason we sltalhnot
sider the full posterior computation at all, but concentrate to the above-medtio
distributions instead. In this chapter, we shall mainly consider computatiore of th
filtering and prediction distributions, and algorithms for computing the smoothing
distributions will be considered in the next chapter.

3.1.2 Optimal Filtering Equations

The purpose obptimal filteringis to compute thenarginal posterior distribution
of the statex;, on the time stef: given the history of the measurements up to the
time stepk

(XK | y1:k)- (3.10)

The fundamental equations of the Bayesian filtering theory are givenebfoth
lowing theorem:

Theorem 3.1(Bayesian optimal filtering equationsyhe recursive equations for
computing thepredicted distributiorp(xy, | y1.x—1) and thefiltering distribution
p(xx | y1.x) On the time stef are given by the followin@ayesian filtering equa-
tions
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e Initialization. The recursion starts from the prior distributigrixg).

e Prediction. The predictive distribution of the statg, on time stepk given
the dynamic model can be computed by the Chapman-Kolmogorov aguatio

Pk | Yie_1) = / P | %6 1) PRkt | yre ) dxet.  (3.11)

e Update.Given the measurement, on time step: the posterior distribution
of the statex;, can be computed by the Bayes’ rule

1
P(Xk | yik) = ZP(Yk | x1) P(Xk | Y1:6—1), (3.12)

where the normalization consta#y, is given as
2= [ byl x0) p y101) (3.13)

If some of the components of the state are discrete, the correspontigegils are
replaced with summations.

dynamics
current

previous

Figure 3.1: Visualization of the prediction step: the prediction prgptes the state
distribution of the previous measurement step through theahic model such that the
uncertainties (stochastic terms) in the dynamic model aken into account.

Proof. The joint distribution ofk;, andx;_; giveny;.,_1 can be computed as

P(Xk, Xk—1 | Y1:6—1) = P(Xk | Xk—1, Y1:6—1) P(Xke—1 | Y1:5-1)

(3.14)
= p(Xp | Xp—1) P(Xk—1 | Y1:6—1),



3.1 Formal Filtering Equations and Exact Solutions 35

posterior

(b)

Figure 3.2: Visualization of the update step: (a) Prior distributiomfin prediction and the
likelihood of measurement just before the update step. l{)pbsterior distribution after
combining the prior and likelihood by Bayes’ rule.

where the disappearance of the measurement higtofy; is due to the Markov
property of the sequendey, k = 1,2, ...}. The marginal distribution ot given
Yi.k—1 can be obtained by integrating the distribution (3.14) axgr,, which
gives theChapman-Kolmogorov equation

p(%k | Y1p1) = / P | %6 1) PRkt | yra_t) dxe_t.  (3.15)

If x;,_1 is discrete, then the above integral is replaced with sum =yer. The
distribution ofx;, giveny, andy.;_1, thatis, giveny,., can be computed by the
Bayes' rule

1
P(Xk | Yi:k) = ZP(Yk | Xk, Y1:k—1) D(Xk | Y1:k—1)
(3.16)

1
= 7?(3% | k) p(Xk | Y1:6-1)
k
where the normalization constant is given by Equation (3.13). The diasgpee
of the measurement histogy .1 in the Equation (3.16) is due to the conditional
independence of; from the measurement history, giveg. O

3.1.3 Kalman Filter

The Kalman filter(Kalman, 1960b) is the closed form solution to the optimal
filtering equations of the discrete-time filtering model, where the dynamic and
measurements models are linear Gaussian:

Xp = Agp—1Xp—1 + Qg1

(3.17)
yi = Hpxp + 1y,
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wherex;, € R" is the statey; € R™ is the measurementy, 1 ~ N(0, Qx_1) is
the process noise;, ~ N(0, Ry) is the measurement noise and the prior distribu-
tion is Gaussiaxy ~ N(myg, Py). The matrixA_; is the transition matrix of the
dynamic model and;, is the measurement model matrix. In probabilistic terms
the model is

P(Xk [ Xp—1) = N(xp | Ap—1 X1, Q1) (3.18)
p(ye | xK) = Ny | Hi xx, Rg).

Algorithm 3.1 (Kalman filter) The optimal filtering equations for the linear fil-
tering modek3.17)can be evaluated in closed form and the resulting distributions
are Gaussian:

p(Xk | y1:h—1) = N(x¢ [m; , P)
p(xp | y1:k) = N(xi | my, Py) (3.19)
P(Ye | y1k—1) = N(yr [ Hpmy , Sg).

The parameters of the distributions above can be computed with the following
Kalman filterpredictionandupdate steps

e The prediction stefs

m, =A; 1m;_

- (3.20)
P, = A1 P AL + Q.

e The update stejs
Vi =Yyr — Hpym,
S, = H, P, Hf + R,
K, =P, H{ S, (3.21)
my = m, + Kj v
P, =P, —K;S; K}.

The initial state has a given Gaussian prior distributien ~ N(my, Py), which
also defined the initial mean and covariance.

The Kalman filter equations can be derived as follows:

1. By Lemma A.1 on page 81, the joint distribution ®f and x;_; given
Yik-11S

P(Xk—1, Xk | Y1:6—-1) = P(Xpe | Xp—1) P(Xk—1 | Y1:6—-1)
= N(xp | Ap—1 Xp—1, Qr—1) N(xp—1 |myp_1,Pp_q)

- N ([Xkl} ‘m’,P’) ,
Xk

(3.22)
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where
m — ( my_ ) P — < Pr P é{” > .
Ap_1my_)’ Ap 1Pr 1 Ap i Pr 1Al | +Qr
(3.23)
and the marginal distribution ofy, is by Lemma A.2
p(xk ‘ Y1:k71) = N<Xk ’ mlzv P];)v (324)

where
m; = A, 1my_q, P, =A; 1P 1Al +Qp1. (3.25)
2. By Lemma A.1, the joint distribution of;, andxy, is

P(Xp, Vi | Yik—1) = ¥k | Xk) D(Xk | Y1:8-1)
= N(yr | Hpxi, Ri) N(xp [m, P)

- N <|:Xk:| ‘m//’P//) :
Yk
where

— — — 7
2 — mk P// — Pk Pk Hk; 3 27
m <Hkmk> (HkPk H,P, H! 1R, ) 20

(3.26)

3. By Lemma A.2 the conditional distribution &f, is

P(xXk | Yi, Y1:k—1) = P(Xk | Y1:5)

(3.28)
= N(x, | my, Py),

where
my, = m; + P, H} (H, P, H + Ry) '[y; — Hym}]

A i ~ B (3.29)
P, =P, - P, H] (H;P, Hf +R;) ' H; P,

which can be also written in form (3.21).

The functional form of the Kalman filter equations given here is not the pogy
sible one. In the numerical stability point of view it would be better to work with
matrix square roots of covariances instead of plain covariance matricesh&ory

and details of implementation of this kind of methods is well covered, for example,
in the book of Grewal and Andrews (2001).

Example 3.2(Kalman filter for Gaussian random walkj\ssume that we are ob-
serving measuremenyg of the Gaussian random walk model given in Example 3.1
and we want to estimate the statg on each time step. The information obtained
up to time stef: — 1 is summarized by the Gaussian filtering density

P(Th—1|Y1:6—1) = N(xp—1 | mr—1, Pe—1). (3.30)
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The Kalman filter prediction and update equations are now given as

my = Mg—1

Po =P, 1+gq
C (= mp) (3.31)

me =m -m .
b k Pk_—i-rylC k

P*Q
Py =P, — (_’f) :

Pk +r

6l ° o M_'easurement |
— Signal

0 20 40 60 80 100

Figure 3.3: Simulated signal and measurements of the Kalman filteringgste (Example
3.2).
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Figure 3.4: Signal, measurements and filtering estimate of the Kalm#arifig example
(Example 3.2).

3.2 Gaussian Approximation Based Filtering

3.2.1 Linearization of Non-Linear Transforms

Consider the following transformation of a Gaussian random varibigo an-
other random variablg

x ~ N(m, P)

3.32
y = g(x). (3.32)

wherex € R, y € R™, andg : R" — R™ is a general non-linear function.
Formally, the probability density of the random varialplés® (see, e.g Gelman
et al., 1995)

p(y) = J(y)| N(g"'(y) |m, P), (3.33)

where|J(y)| is the determinant of the Jacobian matrix of the inverse transform
g !(y). However, it is not generally possible to handle this distribution directly,
because it is non-Gaussian for all but lingar

A first order Taylor series based Gaussian approximation to the distribnition
y can be now formed as follows. If we l&t= m + Jx, whereix ~ N(0, P), we
can form Taylor series expansion of the functgn) as follows:

g(x) = g(m+0x) = g(m)+Gx(m) 6x+Y %5XT G (m) oxe;+... (3.34)

This actually only applies to invertiblg(-), but it can be easily generalized to the non-invertible
case.
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where andGx(m) is the Jacobian matrix @ with elements

9g;(x)
[Gx(m)], ;, = =7 (3.35)
i Oz .
anng,)c(m) is the Hessian matrix ¢f;(-) evaluated ain:
2
(i) _ 0%gi(x)
[Gxx(m)]j’j/ = or,005 | (3.36)

e;=(0---010 --- 0)7 is a vector with 1 at position and other elements are
zero, that is, it is the unit vector in direction of the coordinate axis
The linear approximation can be obtained by approximating the function by

the first two terms in the Taylor series:

g(x) ~ g(m) + Gx(m) ix. (3.37)

Computing the expected value w.st gives:

Elg(x)] ~ E[g(m)] + Gx(m) 0x]
= g(m) + Gx(m) E[0x] (3.38)
= g(m).

(Gx(m) 0) (Gix(m) 0"
E [0x6x"] GL (m)

(3.39)

We are also often interested in the the joint covariance between the varables
andy. Approximation to the joint covariance can be achieved by considering the
augmented transformation

g(x) = (g&) . (3.40)
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The resulting mean and covariance are:

Bleeol ~ (o )

g(m)
Cov[g(x)] ~ (G)jm)> P < le(m))T (3.41)
_ ( P P GI(m) ) .
Gu(m) P Gy(m) PG (m)

In the derivation of the extended Kalman filter equations, we need a bit more
general transformation of the form

x ~ N(m, P)
q~N(0,Q) (3.42)
y =g(x) +aq,

whereq is independent ok. The joint distribution ofx andy as defined above
is now the same as in Equations (3.41) except that the covarf@nseadded to
the lower right block of the covariance matrix f:). Thus we get the following
algorithm:

Algorithm 3.2 (Linear approximation of additive transformJhe linear approxi-
mation based Gaussian approximation to the joint distributios ahd the trans-
formed random variablg = g(x) + q wherex ~ N(m, P) andqg ~ N(0,Q) is

given as
X m P C;
G~ (Gn)-(er 50)) @49
where
py, = g(m)
S, = Gx(m)PGI(m)+Q (3.44)
CL =P GZ(D’I),

and Gx(m) is the Jacobian matrix of with respect tax, evaluated atk = m
with elements

[Gx(m)]; ;» = agjx(;() . (3.45)

X=m

Furthermore, in filtering models where the process noise is not additive, we
often need to approximate transformations of the form
x ~ N(m,P)
q~N(0,Q) (3.46)
y = g(x,9).
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wherex andq are uncorrelated random variables. The mean and covariance can be
now computed by substituting the augmented vectog) to the vectox in Equa-

tion (3.41). The joint Jacobian matrix can be then writterGasy = (Gx Gq).

Here G is the Jacobian matrix of(-) with respect tog and both the Jacobian
matrices are evaluated at= m,q = 0. The approximations to the mean and
covariance of the augmented transform as in Equation (3.41) are tremagv

E[g(x,q)] ~ g(m,0)

Cov[g(x,q)] ~ (Gxim) Gq((]m)) (lg g)T (zem) G(;()>T
T
= (Gx(il) P Gu(m)P Gz(il?-l}i((r}nq)(m) Q Gg(m)>

(3.47)
The approximation above can be formulated as the following algorithm:

Algorithm 3.3 (Linear approximation of non-additive transformihe linear ap-
proximation based Gaussian approximation to the joint distributios @ind the
transformed random variablg = g(x, q) whenx ~ N(m, P) andq ~ N(0, Q)

is given as
X m P C;
()=~ () (& ) @49
where
pp = g(m)
S = Gx(m) P Gy (m) + G4(m) Q G (m) (3.49)
Cr=PGI(m),

andGx(m) is the Jacobian matrix af with respect tx, evaluated ak = m, q =
0 with elements

dg;(x,q
[Gx(m)]; ;» = g(x, ) (3.50)
J x=m,q=0
andGq(m) is the corresponding Jacobian matrix with respectjto
69 X, q
Gl = 2.0 351
4’ x=m,q=0

3.2.2 Extended Kalman Filter

The extended Kalman filter (EKF) (see, e.g., Jazwinski, 1970; Mayld€aa;
Bar-Shalom et al., 2001; Grewal and Andrews, 2001) is an extenttbe &alman
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filter to non-linear optimal filtering problems. If process and measuremese$o
can be assumed to be additive, the EKF model can be written as

xp = f(xp—1) + qr—1

(3.52)
vi = h(xg) +rp,

wherex;, € R" is the statey, € R™ is the measurementy, 1 ~ N(0, Qx_1)
is the Gaussian process noisg,~ N(0, Ry) is the Gaussian measurement noise,
f(-) is the dynamic model function arid(-) is the measurement model function.
The functionsf andh can also depend on the step numbebut for notational
convenience, this dependence has not been explicitly denoted.

The idea of extended Kalman filter is to form Gaussian approximations

p(xk | y1:k) = N(xp [ my, Py), (3.53)

to the filtering densities. In EKF this is done by utilizing linear approximations to
the non-linearities and the result is

Algorithm 3.4 (Extended Kalman filter I) The prediction and update steps of the
first order additive noise extended Kalman filter are:

e Prediction:
m, = f(mg_1)

g . (3.54)
P, =Fy(my_1)Pp_1 Fy(my_1) + Qp_1.

e Update:

Vi =y, — h(m,)

S = Hx(m;)) Py Hy (my) + Ry,

K; =P, HL (m;)S;" (3.55)
my = m, + Ky vy

P, =P, - K;S;Ki.

These filtering equations can be derived by repeating the same steps as in
derivation of the Kalman filter in Section 3.1.3 and by applying Taylor series
approximations on appropriate steps:

1. The joint distribution ofx; andx;_; is non-Gaussian, but we can form
Gaussian approximation to it by applying the approximation Algorithm 3.2
to the function

f(xk-1) + k-1, (3.56)

which results in the Gaussian approximation

Xp._
P(Xk—1,Xk, |Y1:6-1) &N ([ f{kl] ‘m/,P,) , (3.57)
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where

= (fﬁkill)>

P — ( P P FZ >
F,Pi1 F.P, 1 FL 4+ Q1)

(3.58)

and the Jacobian matrR, of f(x) is evaluated at = my_;. The marginal
mean and covariance &f, are thus

m, = f(my_y)

- (3.59)
P, =F, P, 1 FL + Q4.

. The joint distribution ofy; andx; is also non-Gaussian, but we can again

approximate it by applying the Algorithm 3.2 to the function

h(xy) + ry. (3.60)
We get the approximation
Xk " oo
P(Xks Yk | Y1k—1) = N <[Yk] ’m P > , (3.61)
where
"o m;; " PI; P]; H£
"o <h(mk)>  B= (Hka HyP, HL + R, )’ (3.62)

and the Jacobian matrbi, of h(x) is evaluated at = m,_.

. By Lemma A.2 the conditional distribution &f, is approximately

P(Xk | Y, y1:6-1) = N(xp | my, Pg), (3.63)
where
m; = m, + P, HI (Hx P, HL + R;) '[yx — h(m;)] (3.64)
P, =P, — P, Hl (H P, Hl + R;) 'H, P,
A more general EKF filtering model can be written as
xg = f(Xk—1, k1) (3.65)

vi = h(xg,ry),

whereqi_1 ~ N(0,Qx—1) andr; ~ N(0,Ry) are the Gaussian process and
measurement noises, respectively. Again, the functieralh can also depend on
the step numbek.
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Algorithm 3.5 (Extended Kalman filter Il) The prediction and update steps of the
(first order) extended Kalman filter (EKF) are:

e Prediction:

m, = f(m;_,0)

P, =Fy(my_1) Proy Fi (my_q) + Fq(my_1) Qp—1 F& (my_1).
(3.66)

e Update:

Vi =y, —h(m; ,0)

Sk = Hx(my ) P, Hy (m;) + He(m;) Ry Hy (m;)

K; =P, HL (m;)S;" (3.67)
my = m, + Ky vy

P, =P, - K;S;Ki.

where the matrice¥«x(m), Fq(m), Hx(m), andH,(m), are the Jacobian ma-
trices off andh with respect to state and noise, with elements

[Fx(m)]; = Q%Z’,q) (3.68)
x=m,q=0

[Fq(m)]; . = w 0 (3.69)
x=m,q=

(), = 250 . 370

[Hy(m)]; ;= W | (3.71)
x=m,r=0

These filtering equations can be derived by repeating the same steps as in th
derivation of the extended Kalman filter above, but instead of using therifigo
3.2, we use the Algorithm 3.3 for computing the approximations.

In so called second order EKF the non-linearity is approximated by retaining
second order terms in Taylor series expansion. The derivation anegbking
equations are straightforward, but due to their complicated appeareyeare
not presented here. The equations can be found, or example, in tkeobBar-
Shalom et al. (2001).

The advantage of EKF over the other non-linear filtering methods is its relativ
simplicity compared to its performance. Linearization is very common engineering
way of constructing approximations to non-linear systems and thus it is asgy e
to understand and apply. A disadvantage of it is that because it is basad o
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local linear approximation, it will not work in problems with considerable non-
linearities. Also the filtering model is restricted in the sense that only Gaussian
noise processes are allowed and thus the model cannot contain, fioplexalis-
crete valued random variables. The Gaussian restriction also prerbny of
hierarchical models or other models where significantly non-Gaussiaibdtgin
models would be needed.

The EKF is also the only filtering algorithm presented in this document, which
formally requires the measurement model and dynamic model functions to-be dif
ferentiable. This as such might be a restriction, but in some cases it mighiealso
simply impossible to compute the required Jacobian matrices, which renders the
usage of EKF impossible. And even when the Jacobian matrices exist altl co
be computed, the actual computation and programming of Jacobian matrices can
be quite error prone and hard to debug.

3.2.3 Statistical Linearization of Non-Linear Transforms

In statistically linearized filter (Gelb, 1974) the Taylor series approximatied irs
the EKF is replaced by statistical linearization. Recall the transformatiorigmmob
considered in Section 3.2.1, which was stated as

In statistical linearization we form a linear approximation to the transformation as
follows:

g(x) ~ b+ A dx, (3.72)

wheredx = x — m, such that the mean squared error is minimized:
MSE(b, A) = E[(g(x) — b — Adx)T (g(x) — b — A dx)]. (3.73)

Setting derivatives with respect kpand A zero gives
(3.74)

In this approximation of transforrg(x), b is now exactly the mean and the ap-
proximate covariance is given as

E[(g(x) — Elg(x)]) (g(x) — Elg(x)])]
~APAT (3.75)
= Elg(x) 0x"] P! Elg(x) 6x"]",
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We may now apply this approximation to the augmented fun@ion = (x; g(x))
in Equation (3.40) of Section 3.2.1, where we get the approximation

b1g00)~ (i)

P Elg(x) 6x]” >

(3.76)
Covl80) ~ (g 7] Bl 1 Bl T

We now get the following algorithm corresponding to Algorithm 3.2 in Section
3.2.1:

Algorithm 3.6 (Statistically linearized approximation of additive transforrjhe
statistical linearization based Gaussian approximation to the joint distribution of
x and the transformed random variabje= g(x) + q wherex ~ N(m, P) and

q ~ N(0,Q) is given as

()< () e ) o

ps = E[g(x)]
Ss = Elg(x) 6x" | P! Elg(x) 6x"]" + Q (3.78)
Cs = E[g(x) oxT]7.

where

The expectations are taken with respect to the distribution of

Applying the same approximation witfx,q) in place ofx we obtain the
following mean and covariance:

Elg(x, q)] ~ <E[gg<l, qﬂ)

P Elg(x,q) ox’]" (3.79)
Covlg(x,q)] ~ (E[g@c, a)0x7] Elg(x) x| P! E[g(x) 6xT]T>
+E[g(x)q”] Q7! E[g(x) q"]"

Thus we get the following algorithm for non-additive transform as in Aitipon
3.3

Algorithm 3.7 (Statistically linearized approximation of non-additive transfarm)
The statistical linearization based Gaussian approximation to the joint distributio
of x and the transformed random variabje= g(x, q) whenx ~ N(m, P) and

q ~ N(0,Q) is given as

() (()- (e &), 0
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where
ps = Elg(x, q)]
Ss = Elg(x) x| P! E[g(x) 0x"]" + E[g(x)q"] Q" E[g(x)q"]" (3.81)
Cs = E[g(x,q) 6x"]".

The expectations are taken with respect to varialslesd q.

3.2.4 Statistically Linearized Filter

Statistically linearized filter (SLF) (Gelb, 1974) or quasi-linear filter (St&rigg94)

is a Gaussian approximation based filter, which can be applied to the samd kind o
models as EKF, that is, to models of the form (3.52) or (3.65). The filter is similar
to EKF, but the difference is that statistical linearization algorithms 3.6 and8.7 a
used instead of the Taylor series approximations.

Algorithm 3.8 (Statistically linearized filter 1) The prediction and update steps of
the additive noise statistically linearized (Kalman) filter are:

e Prediction:
m;, = E[f(xr-1)]
P, = E[f(x;_1) 0xt )P}, Elf (xx_1) 0xF_1]7 + Qi1

wheredx,_1 = X;_1 — my_; and the expectations are taken with respect
to the variablex;_1 ~ N(my_1, Py_1).

(3.82)

e Update:
v =y — E[h(xy)]
Sk = E[h(xx) ox; ] (P) " E[h(xk) 6x;]" + Ry
K. = E[h(x) 6xi 7S, ! (3.83)
m; = m,; + Kk Vi
P, =P, —K;S;Kf.
where the expectations are taken with respect to the varigble N(m, , P, ).

Algorithm 3.9 (Statistically linearized filter IL) The prediction and update steps
of the non-additive statistically linearized (Kalman) filter are:

e Prediction:
m, = E[f(x;_1,qx—1)]
P = E[f(xp-1,qk-1) 0x}_1] Pty BIf (xp—1, qr1) 0x_]"

+ E[f(x5—1, qk-1) di—1] Qi Eff (xp—1, ar—1) ai_]”,
(3.84)

wheredx,_1 = x;_1 — my_, and the expectations are taken with respect
to the variablesx;_1 ~ N(my_1,Px_1) andqg_1 ~ N(0, Qx—1).
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e Update:

vi =y — E[h(xy, ry)]

St = E[h(xg, k) 5X;‘5] (P/,;)_1 E[h(xg, rg) (5X{}T
+ E[h(xy,r4) rr] R;l E[h(x, ) ri]T

K, = E[h(xy, ;) 0x5]7 S, *

my = m, + Kj vy

P, =P, - K;S;Kf.

(3.85)

where the expectations are taken with respect to variables N(m, , P,)
andry;, ~ N(0,Ry).

Both the filters above can be derived by following the derivation of the EKF
Section 3.2.2 and by utilizing the statistical linearization approximations instead of
linear approximations on appropriate steps.

The advantage of SLF over EKF is that it is more global approximation than
EKF, because the linearization is not only based on the local region ditben
mean but on a whole range of function values. The non-linearities als@mido n
have to be differentiable nor do we need to derive their Jacobian matfides.
clear disadvantage is that the certain expected values of the non-limeiohs
have to be computed in closed form. Naturally, it is not possible for all funstio
Fortunately, the expected values involved are of such type that one istickéhd
many of them tabulated in older physics and control engineering books.

3.2.5 Unscented Transform

Theunscented transforfUT) (Julier and Uhlmann, 1995; Julier et al., 2000) is a
relatively recent numerical method, which can be also used for approrgrthe
joint distribution of random variables andy defined as

x ~ N(m,P)
y = g(x).

However, the philosophy in UT differs from the linearization and statistical lin
earization in the sense that it tries to directly approximate the mean and caearian
of the target distribution instead of trying to approximate the non-linear fumctio
(Julier and Uhlmann, 1995).

The idea of UT is to form a fixed number of deterministically chosen sigma-
points, which capture the mean and covariance of the original distribution of
exactly. These sigma-points are then propagated through the non-linaadity
the mean and covariance of the transformed variable are estimated from them.
Note that although the unscented transform resembles Monte Carlo estimation th
approaches are significantly different, because in UT the sigma pointelaated
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P S i e

(a) Original (b) Transformed

Figure 3.5: Example of applying a non-linear transformation to a randeemiable on the
left, which results in the random variable on the right.

(a) Original (b) Transformed

Figure 3.6: lllustration of linearization based (EKF) approximation the transformation
in Figure 3.5. The Gaussian approximation is formed by daling the curvature at the
mean, which results in bad approximation further from themeThe true distribution is
presented by the blue dotted line and the red solid line iafioximation.
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(a) Original (b) Transformed
Figure 3.7: lllustration of unscented transform based (UKF) approxiima to the trans-
formation in Figure 3.5. The Gaussian approximation is fechiby propagating the sigma
points through the non-linearity and the mean and covamaace estimated from the

transformed sigma points. The true distribution is presdrity the blue dotted line and
the red solid line is the approximation.

deterministically (Julier and Uhlmann, 2004). The difference between liyear
proximation and UT is illustrated in Figures 3.5, 3.6 and 3.7.

Theunscented transforfiorms the Gaussian approximation with the following
procedure:

1. Form the matrix of sigma poiniX as
X=[m - ml+vn+A[0 VP —VP],

where\ is a scaling parameter, which is defined in terms of algorithm pa-
rametersy andx as follows:

A=a?(n+r)—n. (3.86)

The parameters andx determine the spread of the sigma points around the
mean (Wan and Van der Merwe, 2001). The matrix square root denotes a

matrix such that/P vP' = P. The sigma points are the columns of the
sigma point matrix.

2. Propagate the sigma points through the non-linear funetion
Yi:g(Xi), izl...2n—|—1,
whereX; andY; denote théth columns of matriceX andY, respectively.

3. Estimates of the mean and covariance of the transformed variable can be
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computed from the sigma points as follows:

Elgx)] ~ Y Wiy,
i (3.87)
Covlg(x)] ~ Y W (Vi — ) (Y; — )T

where the constant WeighWi(m) andWi(C) are given as follows (Wan and
Van der Merwe, 2001):
W™ = A/(n+\)
W =X/ (n+X) +(1—a+ )
wi™ =1/{2mn+ N}, i=1,....2n

)
W =1/{2n+ N}, i=1,...,2n,

1

(3.88)

andg is an additional algorithm parameter, which can be used for incorporat-
ing prior information on the (non-Gaussian) distributionxof\wan and Van

der Merwe, 2001). Note that the indexing starts from zero, becaigeaity

the sigma points were numbered starting from zero instead of starting from
one as we do here.

If we apply the unscented transform to the augmented fungian = (x, g(x)),

we simply get the set of sigma points, where the sigma pdgtandY; have
been concatenated to the same vectors. Thus, also forming approximationt to jo
distributionx andg(x) + q is straightforward and the result is:

Algorithm 3.10 (Unscented approximation of additive transforriihe unscented
transform approximation based Gaussian approximation to the joint distributio
of x and the transformed random varialye= g(x) + q wherex ~ N(m, P) and

q ~ N(0,Q) is given as

)+ ((8) (e &) 09

where the submatrices can be computed as follows:
1. Form the matrix of sigma poiniX as
X=[m - m]+vVn+A[0 VP —VP|,
where the parameters are as defined above.
2. Propagate the sigma points through the non-linear funcgjon:
Y, =g(X;), i=1...2n+1,

whereX; andY; denote théth columns of matriceX andY, respectively.
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3. The submatrices are then given as:

By = Z Wi(inl) Y;
Su = W (Y~ py) (Yi— )" +Q (3.90)
Cu =Y W (Xi —m) (Yi — )7,

where the constant Weighwi(m) and WZ.(C) were defined above.

The unscented transform approximation to a transformation of the yoem
g(x, q) can be derived by considering the augmented random vatabléx, q)
as the input variable. The resulting algorithm is:

Algorithm 3.11 (Unscented approximation of non-additive transfarfhe un-
scented transform based Gaussian approximation to the joint distributian of
and the transformed random variabje = g(x,q) whenx ~ N(m,P) and

q ~ N(0,Q) is given as

X m P Cy
~ N , , 3.91
<Y> ((w) (CE SU)) (.99
where the submatrices can be computed as follows. Let the dimensiondlities o

andq ben, andn,, respectively, and let = n, + n,.

1. Form the matrix of sigma points of the augmented random varigbte
(x,q)

X=(m - @m)+vati(o VB —VB).

() +-( )

2. Propagate the sigma points through the function:
Y, =g(X?, XY, i=1...2n+1,

where

wheref(f and Xg denote the parts of the augmented sigma paimthich
correspond tax andq, respectively.

3. Compute the predicted meag;, the predicted covarianc®;; and the cross-
covarianceCy:

Ry = Z Wi(inl) ?i
Su =Y W (Y - ) (¥ — )"

Cu = Z Wi(f)l (Xf —m) (Yz‘ — )’

)
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where the definitions of the weights™ and W) are as above.

3.2.6 Unscented Kalman Filter

Theunscented Kalman filtefJKF) (Julier et al., 1995; Julier and Uhimann, 2004;
Wan and Van der Merwe, 2001) is an optimal filtering algorithm that utilizes the
unscented transform and can be used for approximating the filtering digiritof
models having the same form as with EKF and SLF, that is, models of the form
(3.52) or (3.65). As EKF and SLF, UKF forms a Gaussian approximationeo th
filtering distribution:

p(xk [ y15- -, yk) & N(xg | my, Py), (3.92)
wherem; andP;, are the mean and covariance computed by the algorithm.

Algorithm 3.12 (unscented Kalman filter)n the additive form unscented Kalman
filter (UKF) algorithm, which can be applied to additive models of the f(8r62)
the following operations are performed on each measurementkstep, 2,3, . . .:

1. Prediction step:

(a) Form the matrix of sigma points:

Xp_1 = [mk_l mk_1] +vVn+A [O Pi._1 —/Pr_1|.
(3.93)

(b) Propagate the sigma points through the dynamic model:
Xpi=f(Xp_14), i=1...2n+1. (3.94)
(c) Compute the predicted meam,_ and the predicted covariande, :
my; = Z Wi(inl) X
: ) ) (3.95)
P, = Z Wi(f)l (Xpi —my ) (X — m;;)T + Qp—1-
2. Update step:
(a) Form the matrix of sigma points:
Xp=[mg - mg]+vatafo P, -\ /P]. (396)
(b) Propagate sigma points through the measurement model:

Yii=h(X;,), i=1...2n+1 (3.97)
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(c) Compute the predicted mean, the predicted covariance of the mea-
surementS,, and the cross-covariance of the state and measurement
Cs:

K = Z Wi(:nl) Yk,i

Sk = Z Wi(f)l (Yri— ) (Yei — )™ + Ry (3.98)
Cr= > W% (X, —my) (Vs — )"
(d) Compute the filter gailK;, and the filtered state mean;, and covari-
ancePy, conditional to the measuremeypt:

K) = CiS; !
my, = m; + Ky [yr — py) (3.99)
P, =P, —-K;S; K} .

The filtering equations above can be derived in analogous manner to EKF
eqguations, but the unscented transform based approximations arenstezd! of
the linear approximations.

The non-additive form of UKF (Julier and Uhlmann, 2004) can be derlyy
augmenting the process or measurement noises with the state vector andgapply
UT approximation to that. Alternatively, one can first augment the state vector
with process noise, then approximate the prediction step and after that skmtiee
with measurement noise on the update step. The different algorithms arsd way
of doing this in practice are analyzed in article (Wu et al., 2005). Becadusgeo
various alternative forms and complicated appearance of each of theseader
is encouraged to check the augmented form filtering equations from a(ticlésr
and Uhlmann, 2004; Wu et al., 2005) and references therein.

The advantage of the UKF over EKF is that UKF is not based on local linear
approximation, but uses a bit further points in approximating the non-linearity
As discussed in Julier and Uhlmann (2004) the unscented transform idcable
capture the higher order moments caused by the non-linear transformthatie
the Taylor series based approximations. The dynamic and model functiens a
also not required to be formally differentiable nor their Jacobian matriced tte
be computed. The advantage of UKF over SLF is that in UKF there is no need
to compute any expected values in closed form, only evaluations of the dynamic
and measurement models are needed. However, the accuracy of WKét te
expected to be as good as of SLF, because SLF try uses larger areadp-th
proximation, whereas UKF only selects fixed number of points on the area. T
disadvantage over EKF is that UKF often requires slightly more computational
operations than EKF.

The UKF can be interpreted to belong to a wider class of filters called sigma-
point filters (van der Merwe and Wan, 2003), which also includes othpstyf



56 Optimal Filtering

filters such as central differences Kalman filter (CDKF), Gauss-Hernaienkn
filter (GHKF) and a few others (Ito and Xiong, 2000; Wu et al., 2006;d4ard

et al., 2000; Arasaratnam and Haykin, 2009). The classification to Sogimd-
methods by van der Merwe and Wan (2003) is based on interpreting thedsetho
as special cases of (weighted) statistical linear regression (Lefebate 2002).

As discussed in (van der Merwe and Wan, 2003), statistical linearization is
closely related to sigma-point approximations, because they both are redated
statistical linear regression. However, it is important to note that the statiltical
ear regression (Lefebvre et al., 2002) which is the basis of sigma-fpaméework
(van der Merwe and Wan, 2003) is not exactly equivalent to statisticalriregion
(Gelb, 1974) as sometimes is claimed. The statistical linear regression can be
considered as a discrete approximation to statistical linearization.

3.2.7 Gaussian Moment Matching

One way to unify the Taylor series, statistical linearization and unscentezfdran
based approaches is to think all of them as approximations to the momentligsitegra

s = [ ) Nox | m, ) dx
Sur = [ (800) ~ ag) (8 — )" N(x|m. P) dx
Car =[x m) (gx) — )" N(x | m, P) .
If we can compute these, a straight-forward way to form the Gaussianxdpm@-

tion for (x, y) is to simply match the moments of the distributions, which gives the
following algorithm:

Algorithm 3.13 (Gaussian moment matching of additive transforifi)e moment
matching based Gaussian approximation to the joint distributiorx gfnd the
transformed random variable = g(x)+q wherex ~ N(m, P) andq ~ N(0, Q)

is given as
X m P Cy
~N , , 3.100
() ~~(() (& S) 3100

By = / N(x|m,P)dx

Sy = / (8(x) — 1ar) (8(x) — )’ N(x|m,P)dx+Q  (3.101)

where

Cy = /x— — )T N(x|m,P)dx.

The non-additive case can be handled in analogous manner. It is rsyw ea
to check by substituting the approximatigiix) = g(m) + G,(m) (x — m)
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to the above expression that in the linear case the integrals indeed redihee to
linear approximations in the Algorithm 3.2. And the same applies to statistical
linearization. However, many other approximations can also be interpretadah
approximations as is discussed in the next section.

3.2.8 Gaussian Assumed Density Filter

If we replace the linear approximations in EKF with the moment matching approx-
imations in the previous section, we get the followiBgussian assumed density
filter (ADF) which is also calledzaussian filtefMaybeck, 1982a; Ito and Xiong,
2000; Wu et al., 2006):

Algorithm 3.14 (Gaussian assumed density filteFhe prediction and update steps
of the additive noise Gaussian assumed density (Kalman) filter are:

e Prediction:

m; = /f(xk1) N(xg—1 |my_1,Pr_1) dxp1

Py = /(f(xk_l) —my) (F(xp_1) —mj)7 (3.102)

X N(xg—1 |mg_1,Pr_1) dx—1 + Qg_1.
e Update:
pi= [ i) NG | P
St = [ (h(x0) = ) (h(0) = )" Nl [, Py d + R

Ci = / (s — ) (h(x) — pa)7 N(xi, | mp Py dxy
K; = CyS; !
my, =m, + Ky, (yr — p)

P, =P, - K;S;Kf.
(3.103)

The advantage of the moment matching formulation is that it enables usage of
many well known numerical integration methods such as Gauss-Hermiteaguadr
tures, cubature rules and central difference based methods (Itoiand,>2000;

Wu et al., 2006; Ngrgaard et al., 2000; Arasaratham and Haykin,)200Be
unscented transformation can also be interpreted as an approximation é¢o thes
integrals (Wu et al., 2006).

One interesting way to approximate the integrals is to use the Bayes-Hermite
guadrature (O’'Hagan, 1991), which is based of fitting a Gaussiaregsaegres-
sion model to the non-linear functions on finite set of training points. Thiscagh
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is used in the Gaussian process filter of Deisenroth et al. (2009). loipassible
to approximate the integrals by Monte Carlo integration, which is the approach
used in Monte Carlo Kalman Filter (MCKF) of Kotecha and Djuric (2003).

3.3 Monte Carlo Approximations

3.3.1 Principles and Motivation of Monte Carlo

Within statistical methods in engineering and science, as well as in optimal filter-
ing, it is often necessary to evaluate expectations in form

Elg(x)] = / g(x) p(x) dx, (3.104)

whereg : R — R™ in an arbitrary function angd(x) is the probability density of
x. Now the problem is that such an integral can be evaluated in closed fdym o
in a few special cases and generally, numerical methods have to be used.
Monte Carlomethods provide a numerical method for calculating integrals of
the form (3.104). Monte Carlo refers to general class of methods,endiesed
form computation of statistical quantities is replaced by drawing samples fr@m th
distribution and estimating the quantities by sample averages.
In (perfect) Monte Carlo approximation, we draw independent randonpkes
from x() ~ p(x) and estimate the expectation as

Bl ~ 1 Y ex) (3.105)

Thus Monte Carlo methods approximate the target density by a set of samples
that are distributed according to the target density. Figure 3.8 represdws
dimensional Gaussian distribution and its Monte Carlo representation.

oooooooooooo

(@) (b)

Figure 3.8: (a) Two dimensional Gaussian density. (b) Monte Carlo regmtation of the
same Gaussian density.
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The convergence of Monte Carlo approximation is guaranteed by Ceiriril L
Theorem (CLT) (see, e.g., Liu, 2001) and the error ter@ (&' —'/2), regardless
of dimensionality ofk. This invariance of dimensionality is unique to Monte Carlo
methods and makes them superior to practically all other numerical methods when
dimensionality ofk is considerable. At least in theory, not necessarily in practice.

In Bayesian inference the target distribution is typically the posterior distribu
tionp(x|y1,...,yn) anditis assumed that it is easier to draw (weighted) samples
from the distribution than to compute, for example, integrals of the form (3.104
This, indeed, often happens to be the case.

3.3.2 Importance Sampling

It is not always possible to obtain samples directly frp(w) due to its compli-
cated formal appearance. importance samplinglS) (see, e.g., Liu, 2001) we
use approximate distribution called importance distributigs), which we can
easily draw samples from. Having sampie® ~ 7(x) we can approximate the
expectation integral (3.104) as

@Y (@
Elg(x)] ~ % > W. (3.106)

™

Figure 3.9 illustrates the idea of importance sampling. We sample from the impor-
tance distribution, which is an approximation to the target distribution. Because
the distribution of samples is not exact, we need to correct the approximation b

associating a weight to each of the samples.

(a) (b)

Figure 3.9: (a) Importance distribution approximates the target ilistion (b) Weights
are associated to each of the samples to correct the ap@eim

The disadvantage of this direct importance sampling is that we should be able
to evaluatep(x(?)) in order to use it directly. But the problem is that we often do not
know the normalization constant pfx(?)), because evaluation of it would require
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evaluation of an integral with comparable complexity to the expectation integral
itself. In importance sampling we often use an approximation, where we define
unnormalized weights as

i = 4 107
w W(X(Z)) (3.107)
and approximate the expectation as

- D g(x(i)> Wy

which has the fortunate property that we do not have to know the normatizatio
constant of(x).

3.4 Particle Filtering

3.4.1 Sequential Importance Sampling

Sequential importance samplii§lS) (see, e.g., Doucet et al., 2001) is a sequen-
tial version of importance sampling. It is based on fact that we can evahmate
importance distribution for states. on each time step recursively as follows:

T(X0:k|Y1:k) = T(Xk|X0k—1, Y1:) T (X0:k—1Y 1:5—1) (3.109)

Thus, we can also evaluate the (unnormalized) importance weights xextyrsi

o plyelx) p(x1x? )

~(#)
Wy, oWy 4 GINO) (3.110)
ﬂ-(xk ‘onk_l’ylzk)

The SIS algorithm can be used for generating Monte Carlo approximations to
filtering distributions of generic state space models of the form

Xpp ~ p(Xp | Xp—1)

(3.111)
Yi ~ (Y | Xi),

wherex;, € R" is the state on time stépandy, € R™ is the measurement. The

state and measurements may contain both discrete and continuous components.
The SIS algorithm uses a weighted set of parti@(e@i”, xfj)) ci=1,...,N}

for representing the filtering distributigrixy, | y1.x) such that on every time stép

an approximation of the expectation of an arbitrary functiér) can be calculated

as the weighted sample average

N
Elg(xe) |yi] & Y wig(x}). (3.112)
=1
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Equivalently, SIS can be interpreted to form an approximation of the poster
distribution as

N
Pk |y1r) = > w8 (xy, —x), (3.113)
=1

whered(-) is the Dirac delta function.
The generic sequential importance sampling algorithm can be now described
as follows:

Algorithm 3.15 (Sequential importance samplingyteps of SIS are the following:
1. Initialization: Draw N sample&éi) from the prior
x(()i) ~ p(xo) (3.114)

and set .
w) =1/N (3.115)

2. Prediction: Draw N new samplex,(f) from importance distribution

X](gl) ~ ﬂ-(xk ‘ Xgi;;_lv Y1:k) (3116)

3. Update: Calculate new weights according to

(@) (1) 1 (@)
i o P(Yk |Xk )p(xk ‘Xk_1)
of? <)

—— (3.117)
==y

and normalize them to sum to unity.

4. Setk — k + 1 and go to step 2.

3.4.2 Sequential Importance Resampling

One problem in the SIS algorithm described in the previous section is that we
very easily encounter the situation that almost all the particles have zerbtaeig
and only a few of them (or only one) are non-zero. This is calledidgeneracy
problem in particle filtering literature and it used to prevent practical agjits

of particle filters for long time.

The degeneracy problem can be solved by usegamplingprocedure. It
refers to a procedure where we draiwnew samples from the discrete distribution
defined by the weights and replace the old se¥afamples with this new set. This
procedure can be be written as the following algorithm:

Algorithm 3.16 (Resampling) Resampling procedure can be described as fol-
lows:
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1. Interpret each Weighb,(f) as the probability of obtaining the sample index
in the set{x,(j) li=1,...,N}.

2. Draw N samples from that discrete distribution and replace the old sample
set with this new one.

3. Set all weights to the constant vahwéi) =1/N.

The idea of the resampling procedure is to remove particles with very small
weights and duplicate particles with large weights. Although, the theoretical dis
tribution represented by the weighted set of samples does not chasgepleng
induces additional variance to estimates. This variance introduced byshm+e
pling procedure can be reduced by proper choice of the resampling an€the
stratified resamplinglgorithm (Kitagawa, 1996) is optimal in terms of variance.

Sequential importance resampling (SIRpordon et al., 1993; Kitagawa, 1996;
Doucet et al., 2001; Ristic et al., 2004), is a generalization optrécle filtering
framework, in which the resampling step is included as part of the sequiential
portance sampling algorithm.

Usually the resampling is not performed on every time step, but only when it
is actually needed. One way of implementing this is to do resampling on etlery
step, wheren is some predefined constant. This method has the advantage that it
is unbiased. Another way, which is used here, isatiaptive resamplingln this
method, the effective number of particles, which is estimated from the varianc
of the particle weights (Liu and Chen, 1995), is used for monitoring the raed f
resampling. The estimate for the effective number of particles can be comrgmite

1

W (3.118)

Neff =~

where w,(;) is the normalized weight of particle on the time stepgc (Liu and
Chen, 1995). Resampling is performed when the effective number ttlpar
is significantly less than the total number of particles, for example,< N/10,

whereN is the total number of particles.

Algorithm 3.17 (Sequential importance resamplinglhe SIR algorithm can be
summarized as follows:

1. Draw new poimx,(f) for each point in the sample sek,(le,z' =1,...,N}
from the importance distribution:

xg) ~ 7T(XI<; | X;@p)’l:kz)a i=1,...,N. (3.119)

2sequential importance resampling (SIRplso often referred to aampling importance resam-
pling (SIR) orsequential importance sampling resampling (SISR).
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2. Calculate new weights

o CNWROING
wl? = w1(21p<yk %)) P !xk_1)7 i—1...N. (3120

7T(X](;) | X](jzlaylzkz)

and normalize them to sum to unity.
3. If the effective number of particl€3.118)is too low, perform resampling.

The performance of the SIR algorithm is depends on the quality of the impor-
tance distributionr(-), which is an approximation to posterior distribution of states
given the values at the previous step. The importance distribution shouddbeh
functional form that we can easily draw samples from it and that it is ples&ib
evaluate the probability densities of the sample poifitee optimal importance
distributionin terms of variance (see, e.g., Doucet et al., 2001; Ristic et al., 2004)
is

T(Xk | Xk—1,Y1:6) = P(Xk | X1, Y1:8)- (3.121)

If the optimal importance distribution cannot be directly used, good importance
distributions can be obtained ligcal linearizationwhere a mixture of extended
Kalman filters (EKF) or unscented Kalman filters (UKF) is used as the impatanc
distribution (Doucet et al., 2000; Van der Merwe et al., 2001). Van dené et al.
(2001) also suggest a Metropolis-Hastings step after (or in place sdymgaling

step to smooth the resulting distribution, but from their results, it seems that this
extra computation step has no significant performance effect. A partictefitte

UKF importance distribution is also referred towasscented particle filtefUPF).

By tuning the resampling algorithm to specific estimation problems and pos-
sibly changing the order of weight computation and sampling, accuracgane
putational efficiency of the algorithm can be improved (Fearnhead anbidlif
2003). An important issue is that sampling is more efficient without replacemen
such that duplicate samples are not stored. There is also evidence tloatén s
situations it is more efficient to use a simple deterministic algorithm for preserving
the N most likely particles. In the article (Punskaya et al., 2002) it is shown that
in digital demodulation, where the sampled space is discrete and the optimization
criterion is the minimum error, the deterministic algorithm performs better.

The bootstrap filteGordon et al., 1993) is a variation of SIR, where the
dynamic modep(xy, | x;—1) is used as the importance distribution. This makes
the implementation of the algorithm very easy, but due to the inefficiency of the
importance distribution it may require a very large number of Monte Carlo sample
for accurate estimation results. In bootstrap filter the resampling is normaléy don
at each time step.

Algorithm 3.18 (Bootstrap filter) The bootstrap filter algorithm is given as fol-
lows:
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1. Draw new poimxfj) for each point in the sample s{:k,(ﬁl,i =1,...,N}
from the dynamic model:

XS) ~ p(xg | xl(jzl), i=1,...,N. (3.122)

2. Calculate the weights

wl =p(y | x{"), i=1... N, (3.123)

and normalize them to sum to unity.

3. Do resampling.

Another variation of sequential importance resampling is the auxiliary SIR
(ASIR) filter (Pitt and Shephard, 1999). The idea of the ASIR is to mimic the
availability of optimal importance distribution by performing the resampling at
stepk — 1 using the available measurement at tikne

One problem encountered in particle filtering, despite the usage of resgmplin
procedure, is calledample impoverishme(gee, e.g., Ristic etal., 2004). It refers
to the effect that when the noise in the dynamic model is very small, many of the
particles in the particle set will turn out to have exactly the same value. That is,
the resampling step simply multiplies a few (or one) particles and thus we end up
having a set of identical copies of certain high weighted particles. Thislgmro
can be diminished by using, for example, resample-move algorithm, regtilamiza
or MCMC steps (Ristic et al., 2004).

Because low noise in the dynamic model causes problems with the sample
impoverishment, it also implies that pure recursive estimation with particle filters
is challenging. This is because in pure recursive estimation the procsssisio
formally zero and thus a basic SIR based particle filter is likely to perform ver
badly. However, pure recursive estimation, such as recursive estimtistatic
parameters can be done by applying a Rao-Blackwellized patrticle filter ihefea
a basic SIR patrticle filter.

3.4.3 Rao-Blackwellized Particle Filter

One way of improving the efficiency of SIR is to use Rao-Blackwellizatione Th
idea of theRao-Blackwellized patrticle filt§RBPF) (Akashi and Kumamoto, 1977;
Doucet et al., 2001; Ristic et al., 2004) is that sometimes it is possible to evalu-
ate some of the filtering equations analytically and the others with Monte Carlo
sampling instead of computing everything with pure sampling. According to the
Rao-Blackwell theorenfsee, e.g., Berger, 1985; Casella and Robert, 1996) this
leads to estimators with less variance than what could be obtained with pute Mon
Carlo sampling. An intuitive way of understanding this is that the marginalization
replaces the finite Monte Carlo particle set representation with an infinitedclose
form particle set, which is always more accurate than any finite set.



3.4 Particle Filtering 65

Most commonly Rao-Blackwellized particle filtering refers to marginalized
filtering of conditionally Gaussian Markov models of the form

P(Xp | Xp—1,0p—1) = N(xp, | Ap—1(0k—1) Xp—1, Q—1(0k—1))
p(¥k | Xk, 0r) = N(yi | Hi(0r) xi, Ry (01)) (3.124)
p(0r | Bx—1) = (any given form)

wherex;, is the statey;, is the measurement, afig is an arbitrary latent variable.

If also the prior ofx;, is Gaussian, due to conditionally Gaussian structure of the
model the state variableg, can be integrated out analytically and only the latent
variablesd;, need to be sampled. The Rao-Blackwellized particle filter uses SIR
for the latent variables and computes everything else in closed form.

Algorithm 3.19 (Conditionally Gaussian Rao-Blackwellized particle filteBiven
an importance distributionr (6, | 0%_1,y1:k) and a set of weighted samples

{w,(jzl, 0,(21, m,(le, P,(Ql : i =1,..., N}, the Rao-Blackwellized particle filter

processes each measuremgptas follows (Doucet et al., 2001):

1. Perform Kalman filter predictions for each of the Kalman filter means and
covariances in the particles = 1,..., N conditional on the previously

drawn latent variable value@,(fl1

i = A 100 )

P = A0 )P AL )+ 0
2. Draw new latent variableé,(f) for each particle iri = 1,..., N from the
corresponding importance distributions
0\ ~ x(6;]6%) | yix). (3.126)
3. Calculate new weights as follows:
w,(f) ~ w](lep(yk | 9§€L,Y1zk—1) p(ez(j) | 9521)7 (3.127)

(0100} 1 y1x)
where the likelihood term is the marginal measurement likelihood of the
Kalman filter
pyx| 6%, yin-1)
= (o B0 g a0 PO BT (6))+ Ru6)).
(3.128)

such that the model parameters in the Kalman filter are conditioned on the
drawn latent variable value,(;). Then normalize the weights to sum to unity.
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4. Perform Kalman filter updates for each of the particles conditional on the
drawn latent variable®!”

Vé) =y — Hk(e( )) m,
sy = Hy(0)) P, HT (6]) + Ru(6)")

K" =p_ HT(f),Q)sk1 (3.129)
m,(j) = mk( Dy K,(f) v,(;)

P,(f) _ P;(i) _ K,(f) S,(f) [K](j)]T‘
5. If the effective number of particl¢3.118)is too low, performresampling

The Rao- Blackwelllzed particle fllter produces for each time dtepset of
weighted samplef@wk , ,(j), mg), P,(j) =1,..., N} such that expectation of
a functiong(-) can be approximated as

Elg(xk, 01) | y14] ~ Zwk/ g(x, 00)) N(x; |m{” P) dx;.. (3.130)

Equivalently the RBPF can be interpreted to form an approximation of therfdter
distribution as

N
p(xi, O | yi) = 3wy 6(6; — 65) N(xi | my”, P}). (3.131)

In some cases, when the filtering model is not strictly Gaussian due to slight
non-linearities in either dynamic or measurement models it is possible to replace
the exact Kalman filter update and prediction steps in RBPF with extended Kalman
filter (EKF) or unscented Kalman filter (UKF) prediction and update steps.

In addition to the conditional Gaussian models, another general class ef mod
els where Rao-Blackwellization can often be applied are state space mattels w
unknown static parameters. These models are of the form (Storvik, 2002)

X ~ p(xp | Xk—1,0)
Vi ~ p(yr | Xk, 0) (3.132)
0 ~ p(0),

where vectoP contains the unknown static parameters. If the posterior distribution
of parameter® depends only on some sufficient statistics

T = Tr(x1:,¥1:8), (3.133)

and if the sufficient statics are easy to update recursively, then sampting state
and parameters can be efficiently performed by recursively computirsgfficent
statistics conditionally to the sampled states and the measurements (Storvik, 2002)
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A particularly useful special case is obtained when the dynamic model is in-
dependent of the parameté?s In this case, if conditionally to the statg, the
prior p(0) belongs to the conjugate family of the likelihopfy . | xx, @), the static
parameter® can be marginalized out and only the states need to be sampled.
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Chapter 4

Optimal Smoothing

4.1 Formal Equations and Exact Solutions

4.1.1 Optimal Smoothing Equations

The purpose obptimal smoothingjis to compute the marginal posterior distribu-
tion of the statex;, at the time stej after receiving the measurements up to a time
stepT', whereT' > k:

p(Xk [ y11)- (4.1)

The difference between filters and smoothers is thatoptimal filtercomputes

its estimates using only the measurements obtained before and on the time step
k, butthe optimal smoothenses also the future measurements for computing its
estimates. After obtaining the filtering posterior state distributions, the following
theorem gives the equations for computing the marginal posterior distribuftion

each time step conditionally to all measurements up to the timerstep

Theorem 4.1 (Bayesian optimal smoothing equation3he backward recursive
equations for computing themoothed distributions(xy, | y1.7) foranyk < T are
given by the followinddayesian (fixed interval) smoothing equations

p(%ks1 | Y1) = / P(Xpa1 | X5) P | Y1)

P(XE X ) P\XE YT
p(xx | yr.T) ZP(Xk’ylzk)/{ (k1| %) P 1 | Y1.7) dXp41,
P(Xkt1 | yik)

wherep(xy, | y1.1) is the filtering distribution of the time stép Note that the term
p(Xk+1 | y1:1) IS simply the predicted distribution of time step- 1. The integra-
tions are replaced by summations if some of the state components ateliscr

Proof. Due to the Markov properties the statg is independent of . 1.7 given
Xk+1, Which givesp(xy | xk+1,¥1.7) = p(Xk | Xk+1,y1:£). By using theBayes’

YIn this document only fixed-interval smoothing is considered.
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rule the distribution ofk;, givenxj; andy.r can be expressed as

P(Xk | Xkt1,Y1.7) = P(Xk | Xkt 1, Y1:8)
~ p(Xk, Xpg1 | Yik)
Xk | Y1)
(g1 | g Y1k) DXk | Y1:k) (4.3)
a P(Xk+1 | Y1k
_ p(Xpgr | Xk) p(X | Y1:8)
B p(Xk+1 |Y1:k)

The joint distribution ofx;, andxy 1 giveny;.r can be now computed as

P(Xks Xkt 1 | y1.1) = P(Xk | Xy 1, Y1.1) P(Xkt1 | y1:7)
= (X | X415 Y1:k) P(Xbg1 | y1:7) (4.4)
 p(Xpgr | Xk) p(Xk | Y1) P(Xet1 [Y1:7)
B P(Xk41 | y1:k)

I

wherep(x;11 | y1.7) is the smoothed distribution of the time stépt 1. The
marginal distribution ofx; giveny;.r is given by integral (or summation) over
xk+1 In Equation (4.4), which gives the desired result. O

4.1.2 Discrete-Time Rauch-Tung-Striebel Smoother

Thediscrete-time Rauch-Tung-Striebel (R¥Qke, e.g., Rauch et al., 1965; Gelb,
1974; Bar-Shalom et al., 2001) can be used for computing the closedsfopoth-
ing solution

p(Xk [ y11) = N(x¢ | mg, PE), (4.5)
to the linear filtering model (3.17). The difference to the solution computeddoy th
Kalman filteris that the smoothed solution is conditional on the whole measure-
ment datay.7, while the filtering solution is conditional only on the measurements
obtained before and on the time steghat is, on the measurementsy.

Theorem 4.2(Discrete-time RTS smootherhe backward recursion equations
for the discrete-time fixed interval Rauch-Tung-Striebel smoother (Kasmaother)
are given as
m; = Apmy
PI;-H = A, Py A% + Qy,
Cie =P, A [P, ]! (4.6)
mj, = my, + Cy [mj; —m;_ ]
Pj =P, + C, [P}, — P, ] CL,

2Also called discrete-time Kalman smoother.
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wherem,, andP;, are the mean and covariance computed by the Kalman filter. The
recursion is started from the last time st€pwithm?, = m7 andP7. = P7. Note
that the first two of the equations are simply the Kalman filter prediction equstio

Proof. Similarly to the Kalman filter case, by Lemma A.1, the joint distribution of
X andxy1 givenyy.i Is

p(Xk>Xk+1 |Y1:k) = P(Xk+1 |Xl<:)p(Xk |Y1:k)
= N(Xpt1 | Ap x5, Qi) N(xp, | my, Py)

:N([ i ] \mI,Pl),
Xk41

my, Py, P, AT )
m; — . P = . (48
! (Ak mk> ! (Ak P, APLAT +Qy (4.8)

Due to the Markov property of the states we have

(4.7)

where

P(Xk | X1, Y1.1) = P(Xk | Xt 1, Y1:1), (4.9

and thus by Lemma A.2 we get the conditional distribution

P(Xk | X1, Y1.7) = P(Xk | Xt 1, Y1:8)

(4.10)
= N(Xk ‘ mso, Pg),

where

Cr=Pr Al (A P AL + Q)"
my = my, + Cy, (X1 — A my) (4.11)
Py, =P, — C. (AP, AT + Q) CT.

The joint distribution ofx;, andx;.; given all the data is

P(Xkt1, Xk | Y1.7) = P(Xk | X1, Y1.7) P(Xpet1 | Y1.7)
= N(x |my, Py) N(xp41 |mj 1, Pi )

o Xk+1
(5] fmoreo)

(4.12)

where

mZH
ma- —=
s <mk +Ci(mj,; — Ay mk)>

poe (Fh o L)
CvPiy CiPp,Cp +Po

(4.13)
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Thus by Lemma A.2, the marginal distributionxf is given as

p(Xk |YI:T) = N(Xk | mzv PZ)? (4-14)
where
m; =m;+Cr(mj,, —Arm
1; k+ Cr ( sk—i—l k k)T . (4.15)
P, =P, +Cp (P, — AP AL — Qi) Cy.
]

Example 4.1(RTS smoother for Gaussian random walkhe RTS smoother for
the random walk model given in Example 3.1 is given by the equations

My = Mk

Py =P+q

s Pe (s -
my = my + - (Mg — My ) (4.16)
k+1

2
s By, s -
PkZPk+<P> [Piv1 — Pl
ht1

wherem;, and P, are the updated mean and covariance from the Kalman filter in
Example 3.2.

= Filter Variance
Smoother Variance

0.9
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Figure 4.1: Filter and smoother variances in the Kalman smoothing elaripxample
4.1).
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Figure 4.2: Filter and smoother estimates in the Kalman smoothing elaifiixample
4.1).

4.2 Gaussian Approximation Based Smoothing

4.2.1 Discrete-Time Extended Rauch-Tung-Striebel Smoothe

The first order (i.e., linearized) extended Rauch-Tung-Striebel srao@ERTSS)
(Cox, 1964; Sage and Melsa, 1971) can be obtained from the basisiRd&her
equations by replacing the prediction equations with first order approxingatio
Higher order extended Kalman smoothers are also possible (see, e.q.196dx
Sage and Melsa, 1971), but only the first order version is presented h

For the additive model Equation (3.52) the extended Rauch-Tung-Stsimbether
algorithm is the following:

Algorithm 4.1 (Extended RTS smoother)rhe equations for the extended RTS
smoother are
m;, = f(my)
P, = Fx(m;) Py Fy(my) + Q,
_;’_1 X X
Ci =Py Fy (my) [Py, ] (4.17)
mj, = my, + Cy [mj,; —m;_ ]
p=Pr+C[Pry — P ] Ct,
where the matri¥'x(my) is the Jacobian matrix df(x) evaluated aimy,.

The above procedure is a recursion, which can be used for computeng th
smoothing distribution of stefofrom the smoothing distribution of time steg- 1.
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Because the smoothing distribution and filtering distribution of the last timelstep
are the same, we hawa’, = my, P35, = Pp, and thus the recursion can be used
for computing the smoothing distributions of all time steps by starting from the last
stepk = T and proceeding backwards to the initial step= 0.

Proof. Assume that the approximate means and covariances of the filtering distri-
butions

P(xk | y1:k) = N(xp | my, Pg),

for the model (3.52) have been computed by the extended Kalman filter or arsimila
method. Further assume that the smoothing distribution of timekstepis known
and approximately Gaussian

P(Xey1 | y17) = N(xpy1 [mi 1, Pryq).
As in the derivation of the prediction step of EKF in Section 3.2.2, the apprdg&ima

joint distribution ofx; andxy. giveny;. is

P(Xg, Xp11 | Y1) =N ([ *k ] ‘m17P1> , (4.18)
Xk+1

where

e (f(rfnkk)>

P, P, Fl
Pi={pp ¥ p, F’ '
x Lk x Lk x+Qk

(4.19)

where the Jacobian matrRR, of f(x) is evaluated ak = m;. By conditioning to
Xk+1 a@s in RTS derivation in Section 4.1.2 we get

Pk | X1, Y1) = P(XR | X1, ¥1:8) (4.20)
= N(Xk; | my, P2)a
where

Cy =P, FL (F, P, FL + Qy) "
my = my, + Cp (x41 — f(my)) (4.21)
P, =P, — C;, (F, P, FT + Q) CE.

The joint distribution ofx; andxy_; given all the data is now

P(Xkt1, Xk | Y1:1) = DXk | Xt 1, Y1.7) P(Xt1 | Y1:7)

N ({mm] ’m&PS) (4.22)

Xk
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where

_ mj
= (om0 s - tm)

. ) (4.23)
P; = ( Pk:-i—l Pk+1 (%;;F ) .
CiPiy CrPi G +Po
The marginal distribution o%;, is then
p(xk | yrr) = N(x | mg, Py), (4.24)
where
m; = my + Ci (mj_, — f(m
1; k k ( 8k+1 ( kz))T . (4.25)
B = Pk+Ck(Pk+1 —F, Py F, — Qk)ck
O

The generalization to non-additive model (3.65) is analogous to the filtering
case.

4.2.2 Statistically Linearized RTS Smoother

The statistically linearized Rauch-Tung-Striebel smoother for the additivdemo
(3.52) is the following:

Algorithm 4.2 (Statistically linearized RTS smootherfJhe equations for the sta-
tistically linearized RTS smoother are

my., = E[f (x)]
w1 = EIf(xi) 0x( ] P E[f(xp) 6x1 )" + Qy
Cy, = E[f (x¢) ox;.]" [Py, ] (4.26)
my, = my, + Cy [mj ; —m,_ ]
P; =P+ Cy[P},, — P, ] C{,

where the expectations are taken with respect to the filtering distributjor-

Proof. Analogous to the EKF case. O

The generalization to the non-additive case is also straight-forward.
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4.2.3 Unscented Rauch-Tung-Striebel Smoother

Theunscented Rauch-Tung-Striebel smoofhRTSS) (see, e.g., Sarkka, 2008) is
a Gaussian approximation based smoother, where the non-linearity ixepated
using the unscented transform. The smoother equations foothadditive model
(3.65) are given as follows:

Algorithm 4.3 (Unscented Rauch-Tung-Striebel smoother N)single step of the
unscented RTS smoothisras follows:

1. Form the matrix of sigma points of thé-dimensional augmented random
variablex;, = (x] qf )"

X = (i - wg) 4V EA (0 VB —VBy).

where
_ (myg - (P, O
w= () =0 Q)

2. Propagate the sigma points through the dynamic model:

XI;—Q—IZ ( kz?XZZ) 2212n/+1,

WhereXi’i andf(z , denote the parts of the augmented sigma pginthich
correspond tax;, andqy, respectively.

3. Compute the predicted meam_ ,, the predicted covariancP,_ , and the
cross-covarianc®y,  1:

m; ., = E :W k+1z

- X~ - \T
k+1 - Z W k;+1 i mk+1) (Xk+1,i - mk+1) (4.27)

Djy1 = Z W(C) (X} i) (X, — ml;Jrl)T’

A

where the definitions of the weightt;’i(m) and Wi(c) are the same as in
Section 3.2.5.

4. Compute the smoother gy, the smoothed mean;, and the covariance
P
Cr = Dip1 [PI;H]_I
mj; =my, + Cj, [mj, | — m,;rJ (4.28)

=P+ Gy [PZ—H k—i—l] CT
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Proof. Assume that the approximate means and covariances of the filtering distri-
butions are available:

p(xk | Y1) = N(xp | my, Pg),

and the smoothing distribution of time stép+ 1 is known and approximately
Gaussian

P(Xpt1 | Y1) = N(Xpq1 | mi 1, Pi ).

An unscented transform based approximation to the optimal smoothing solution
can be derived as follows:

1. Generate unscented transform based Gaussian approximation to the join
distribution ofx;, andxy1:

X my, Py Dgy
() (e 2))
<Xk+1> | mg .4 D%—rl P

This can be done by concatenating the state and process noise to a new
augmented random variabitg = (x% ql)T, which then has the distribution

v~ N((5)- (5 @)

Itis now easy to use the unscented transform for forming a Gaussiamapp
imation to the joint distribution ok, = (x! q)? andxx1 = f(xx,qx).

The Gaussian approximation to the joint distributiorxkgfandxy, can be
formed by extracting the relevant parts of the mean and covariance feom th
joint Gaussian approximation of;, andxy.;. This is done in Equations
(4.27).

2. Because the distribution (4.29) is Gaussian, by the computation rules of
Gaussian distributions and the conditional distributiox pfs given as

X | Xp11, Y117 ~ N(mg, P3),

where

Cr = Diya [Pl;rl]_l
my = my, + Cg(Xp11 —my )

Py =P, - C, P, C}.

3. Therest of the derivation is completely analogous to the derivation DEER
in Section 4.2.1.

O]
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As the noises in the state space model (3.52) appear in additive manttleatfor
model it is possible write the URTSS equations in a bit simpler additive form:

Algorithm 4.4 (Unscented Rauch-Tung-Striebel smootherThe additive form
unscented RTS smoother algoritlisrthe following:

1. Form the matrix of sigma points:

Xp=[mp -+ my]+vn+A[0 VP —VPyl.

2. Propagate the sigma points through the dynamic model:

Xk+1,i = f(X]m‘), t=1...2n+ 1.

3. Compute the predicted meam,_ , the predicted covariancP,_ , and the
cross-covarianc®y, ;1

m];Jrl Z W Xk+1 i
Py = Z W XkH i ml:—kl) (XHM - ml;rl)T + Qu (4.30)

Diy1 = Z W (Xii — my) (Xpegr,s — my, )7

4. Compute the smoother gy, the smoothed mean;, and the covariance
P; as follows:

Ci = Djy1 [Py 4]
mj, = my, + Cy (mj; —m,_ ) (4.31)
P; =P, +Cy (P}, — P;,,) CL.

The above computations are started from the filtering result of the last tipe ste
m7 = mr, P57 = P7 and the recursion runs backwards for=T -1, ..., 0.

4.2.4 Gaussian Assumed Density RTS Smoother

The Gaussian moment matching described in Section 3.2.7 can be used in gmoothe
in analogous manner as in Gaussian assumed density filters in Section 3:x&8. If
follow the extended RTS smoother derivation in Section 4.2.1, we get the foliow
algorithm (see, e.g., Sarkka and Hartikainen, 2010a,b):
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Algorithm 4.5 (Gaussian assumed density smooth@&he equations of th&aus-
sian assumed density RTS smoother the following:

my. = /f(xk) N(xz | my, Py) dxp,
P, = /[f(xk) — ] [f(xi) — my " N(xp | my, Pg) dxp, + Qi

Dyyy = / k. — ) [£(xi) — i, 1" N(xg | m, Py) dx

Cir =Dji1 [P 4]
mj, = my, + Cy (mj; —m;_ )

P, =Pr+Cr(Pj1 — P ) CT
(4.32)

The integrals above can be approximated using analogous numericahintegr
tion or analytical approximation schemes as in the filtering case, that is, with
Gauss-Hermite quadratures or central differences (Ito and Xior@f); 20argaard
et al., 2000; Wu et al., 2006), cubature rules (Arasarathnam and Ha3®09),
Monte Carlo (Kotecha and Djuric, 2003), Gaussian process / Bagestké based
integration (O’Hagan, 1991; Deisenroth et al., 2009), or with many otinsienical
integration schemes.

4.3 Monte Carlo Based Smoothers

4.3.1 Sequential Importance Resampling Smoother

Optimal smoothingan be performed with the SIR algorithm with a slight modifi-
cation to the filtering case. Instead of keeping Monte Carlo samples of the state
on single time stepck), we keep samples of the whole state hlstox§§ The
computations of the algorithm remain exactly the same, but in resampling stage
the whole state histories are resampled instead of the states of single time steps.
The weights of these state histories are the same as in normal SIR algorithm and
the smoothed posterior distribution estimate of time gtgjven the measurements

up to the time stefi” > k is given as (Kitagawa, 1996; Doucet et al., 2000)

p(Xk | y1.7) Zw;)é (xp — xk)). (4.33)

whered(-) is the Dirac delta function anﬂ(l) is thekth component |rx(l)

However, if T > k this simple method is known to produce very degen-
erate approximations (Kitagawa, 1996; Doucet et al., 2000). In (Goetsdl.,
2004) more efficient methods for sampling from the smoothing distributions are
presented.



80 Optimal Smoothing

4.3.2 Rao-Blackwellized Particle Smoother

The Rao-Blackwellized particle smoothem be used for computing the smooth-
ing solution to the conditionally Gaussian RBPF model (3.124). A weighted set
of Monte Carlo samples from the smoothed distribution of the paraméjens

the model (3.124) can be produced by storing the histories instead of gjle sin
states, as in the case of plain SIR. The corresponding histories of thes medn
the covariances are then conditional on gagameter historie®;.,. However,

the means and covariances at time gtege only conditional on thmmeasurement
historiesup to k&, not on the later measurements. In order to correct this, Kalman
smoothers have to be applied to each history of the means and the covariance

Algorithm 4.6 (Rao—BIackweIIized particle smootherA set of weighted samples
{ws® 630 m>W P . i =1, N} representing the smoothed distribu-
tion can be computed as follows:

1. Compute the weighted set of Rao-Blackwellized state histories
(w0, ml) PV =1, N} (4.34)
by using the Rao-Blackwellized particle filter.

2. Set
(4) (4)

S, _
Wp "~ = Wy

iy i (4.35)
07 =6\

3. Apply the Kalman smoother to each of the mean and covariance histories

mgi)T, sz)T fori =1,..., N to produce the smoothed mean and covariance

historieSmig@, Pigf).

The Rao-Blackwellized particle smoother in this simple form also has the same
disadvantage as the plain SIR smoother, that is, the smoothed estinthiean
be quite degenerate I >> k. Fortunately, the smoothed estimates of the actual
statesx;, can still be quite good, because its degeneracy is avoided by the Rao-
Blackwellization. To avoid the degeneracy in estimate@,oit is possible to use
more efficient sampling procedures for generating samples from the smgpoth
distributions (Fong et al., 2002).

As in the case of filtering, in some cases approximately Gaussian parts of a
state space model can be approximately marginalized by using extended Kalman
smoothers or unscented Kalman smoothers.

In the case of Rao-Blackwellization of static parameters (Storvik, 2002) the
smoothing is much easier. In this case, due to lack of dynamics, the posterior
distribution obtained after processing the last measurement is the smoottied dis
bution.



Appendix A

Additional Material

A.1 Properties of Gaussian Distribution

Definition A.1 (Gaussian distribution)Random variablex € R” has Gaussian
distribution with meamm € R™ and covariancd® € R™*" if it has the probability
density of the form

N(x|m,P) = W exp (—;(x ~—m) P! (x— m)> , (Al

where|P| is the determinant of matriR.

Lemma A.1 (Joint density of Gaussian variabled) random variablesx € R"

andy € R™ have the Gaussian probability densities
x ~ N(x|m,P)
(A.2)
y|x~NyHx+uR),

then the joint density of, y and the marginal distribution of are given as

x|y m P PH?
vl ™~ (Hm—l—u "|HP HPHT+R> (A.3)

y~NHm+u, HPH? + R).

Lemma A.2 (Conditional density of Gaussian variable#)the random variables
x andy have the joint Gaussian probability density

RN

then the marginal and conditional densitiesxodndy are given as follows:
x ~ N(a, A)

(b,B)

x|y ~N@a+CB™! (y—b),A— cBich)

y|x~Nb+C'Al(x—a),B-CTA1C).

y~ N (A.5)
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