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Linearization Based Gaussian Approximation

@ Problem: Determine the mean and covariance of y:

X ~N(p,0?)
y = sin(x)
@ Linearization based approximation:
o asin(u)
Y—S'”(M)JFT(X p) =+

which gives

Ely] ~ E[sin(u) + cos(u)(x — )] = sin(p)
Covly] ~ E[(sin(y) + cos(u)(x — ) — sin(u))?] = cos?(u) o°.
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Principle of Unscented Transform [1/3]

@ Form 3 sigma points as follows:

Xo=p
Xi=p+o
XZZ/L—O'.

@ We may now select some weights Wy, Wy, W, such that
the original mean and (co)variance can be always
recovered by

MZZW/'X/'
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Principle of Unscented Transform [2/3]

@ Use the same formula for approximating the distribution of
y = sin(x) as follows:

py =Y W sin(X))
1
02 = 3" Wi(sin(X) — py)?.
1
@ For vectors x ~ N(m, P) the generalization of standard
deviation ¢ is the Cholesky factor L = +/P:
P=LL"
@ The sigma points can be formed using columns of L (here
c is a suitable positive constant):
Xo=m
Xi=m+clL;
X,H_,' =m-cl;
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Principle of Unscented Transform [3/3]

@ For transformation y = g(x) the approximation is:
Hy = Z Vvlg(xl)
i
Ty = Wi(g(Xi) — ) (9(X)) — )"
i

@ Joint distribution of x and y = g(x) + q is then given as

= (g00+a) 9] = ZW<9(X) ()
Cov Kg(x;(+ q> ‘ q]

X m) (X; —m)’ (X; —m) (g(Xi) — py)
NZ < = py) Xi =m)7 (9(Xi) — py) (9(X)) — uy)>
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Unscented Transform Approximation of Non-Linear
Transforms [1/3]

Unscented transform

The unscented transform approximation to the joint distribution
of x and y = g(x) + g where x ~ N(m,P) and q ~ N(0,Q) is

()~ () (g s2)):

The sub-matrices are formed as follows:
@ Form the matrix of sigma points X as

X=[m -+ m/+vn+tx[0 VP —VP],

[continues in the next slide. . . ]
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Unscented Transform Approximation of Non-Linear
Transforms [2/3]

Unscented transform (cont.)
@ Propagate the sigma points through g(-):

Yi=9(X;)), i=1...2n+1,

@ The sub-matrices are then given as:

Fu = Z W/(—”? Yi

I

Sy=>_ W (Y — py) (Vi — 1) +Q

I

Cu=Y WYX —m)(Y;—py),

I

Simo Sarkka Lecture 5: UKF and PF



Unscented Transform Approximation of Non-Linear
Transforms [3/3]

Unscented transform (cont.)

o \is a scaling parameter defined as A = o2 (n+ k) — n.
@ « and x determine the spread of the sigma points.
o Weights W™ and W'® are given as follows:

W™ = A/(n+ )

WS = A/(n+ )+ (1 - a? + )
W™ =1/{2(n+\)}, i=1,...,2n
W =1/{2(n+A)}, i=1,....2n,

@ (3 can be used for incorporating prior information on the
(non-Gaussian) distribution of x.

4

Simo Sarkka Lecture 5: UKF and PF



Linearization/UT Example

LRI T T O

d

% =exp(—y1), y1(0) =X
dyg 1

at —EYS’ ¥2(0) = x2
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Linearization Approximation
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UT Approximation

Simo Sarkka



Unscented Kalman Filter (UKF): Derivation [1/4]

@ Assume that the filtering distribution of previous step is
Gaussian
P(Xk—1 [ Y1:k—1) = N(Xk—1 | My_1,Px_1)

@ The joint distribution of x, and x,x_1 = f(Xx_1) + qx_1 can
be approximated with UT as Gaussian

~ Xk—1 m; Py Pl
p(xk—hxka |y1:k—1) ~N <|: Xj :| ‘ <m/2> ) <(P/12)T P/22 )

@ Form the sigma points X; of x,_1 ~ N(mk_J,Pk_1) and
compute the transformed sigma points as X; = f(X;).
@ The expected values can now be expressed as:

!
my = Mmy_4
I (m) .
m; = Z W7 Xi
i
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Unscented Kalman Filter (UKF): Derivation [2/4]

@ The blocks of covariance can be expressed as:
Pi1 = Pk
2 —ZW” X; —my_y) (X; — my)”

P2 = Z W 2) (Xi —mp)T + Q4

@ The prediction mean and covariance of x, are then m5, and
P,,, and thus we get

m = > WX,
i
P; — Z VVI(f% ()A(, — m;) ()A(, — m;)T + Qg_1

i
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Unscented Kalman Filter (UKF): Derivation [3/4]

@ For the joint distribution of xx and yx = h(xx) + r¢ we
similarly get

xk ml/) < P// P// ))
X6 Vi | Y1k 1) ~N 1) 11 12 )
plssye i) =N (o] | () (@ i

o If X;” are the sigma points of x, ~ N(m,,P,’) and
Y; =1f(X;), we get:

mj =m,
mg =3 WY,
i

P/, = Z WX —mp) (Vi —m3)T

22—ZW1(Y m3) (Y, —mj)" + Ry
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Unscented Kalman Filter (UKF): Derivation [4/4]

@)

x|ly~N@+CB'(y—b),A-CB~'C’).

then

@ Thus we get the conditional mean and covariance:

my = m, + PY, (P32) " (yx —mj
P« =P, — P/, (P52) ™" (P12)".
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Unscented Kalman Filter (UKF): Algorithm [1/3]

Unscented Kalman filter: Prediction step
@ Form the matrix of sigma points:

Xt =M1 mq] +vVn+ A0 /Py —/Pr_i]-

@ Propagate the sigma points through the dynamic model:
Xei=FXk 1), i=1...2n+1.
@ Compute the predicted mean and covariance:
m =Y W Ky
i

Pr =3 W (R — mye) (Riei — my)T + Qs
i

v
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Unscented Kalman Filter (UKF): Algorithm [2/3]

Unscented Kalman filter: Update step

@ Form the matrix of sigma points:

X, =[m, - m;]+\/n+—/\{o \/E —\/E}.

@ Propagate sigma points through the measurement model:

Yii=h(X.), i=1..2n+1
© Compute the following terms:
Hk = Z W/(—n? Vi
i

Sk=)_ W (Ve — i) (Yiei — k)T + R
i

_ () ry— —\ (V. . T
Cx = Z W3 Ko —my ) (Y — )



Unscented Kalman Filter (UKF): Algorithm [3/3]

Unscented Kalman filter: Update step (cont.)

O Compute the filter gain K, and the filtered state mean my
and covariance Py, conditional to the measurement y:
Kk = Ck S,
my = m, + Kk [yx — 1]
P« = P, — Kk SkK].
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Unscented Kalman Filter (UKF): Example

@ Recall the discretized pendulum model

X\ X+ x2_ At 0
2) = \x2 , —gsin(x}_pat) "
Xc X1 — g sin(xy_4) qk—1

f(xk—1)
Yk = sin(x}) +rk,
——
h(xk)

@ = Matlab demonstration
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Unscented Kalman Filter (UKF): Advantages

@ No closed form derivatives or expectations needed.

@ Not a local approximation, but based on values on a larger
area.

@ Functions f and h do not need to be differentiable.

@ Theoretically, captures higher order moments of
distribution than linearization.
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Unscented Kalman Filter (UKF): Disadvantage

@ Not a truly global approximation, based on a small set of
trial points.

@ Does not work well with nearly singular covariances, i.e.,
with nearly deterministic systems.

@ Requires more computations than EKF or SLF, e.g.,
Cholesky factorizations on every step.

@ Can only be applied to models driven by Gaussian noises.
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Particle Filtering: Overview [1/3]

Demo: Kalman vs. Particle Filtering:

o
o
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Particle Filtering: Overview [2/3]

=

@ The idea is to form a weighted particle presentation
(x(), w(D) of the posterior distribution:

p(x) = > wt 5(x —x).
i
@ Particle filtering = Sequential importance sampling, with
additional resampling step.

@ Bootstrap filter (also called Condensation) is the simplest
particle filter.
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Particle Filtering: Overview [3/3]

@ The efficiency of particle filter is determined by the
selection of the importance distribution.

@ The importance distribution can be formed by using e.g.
EKF or UKF.

@ Sometimes the optimal importance distribution can be
used, and it minimizes the variance of the weights.

@ Rao-Blackwellization: Some components of the model are
marginalized in closed form =- hybrid particle/Kalman filter.
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Bootstrap Filter: Principle

o State density representation is set of samples
0=, N

@ Bootstrap filter performs optimal filtering update and
prediction steps using Monte Carlo.

@ Prediction step performs prediction for each particle
separately.

@ Equivalent to integrating over the distribution of previous
step (as in Kalman Filter).

@ Update step is implemented with weighting and
resampling.
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Bootstrap Filter: Algorithm

Bootstrap Filter

Q Generate sample from predictive density of each old
sample point xg(’)_1:

)"(f(’) ~ p(Xk | xf(i)_1).
Qo Evaluate and normalize weights for each new sample point
)"(5('): . .
wy) = p(yk | %)).
@ Resample by selecting new samples xff) from set {)”(f(’)}
with probabilities proportional to W,E’).
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Sequential Importance Resampling: Principle

° State density representation is set of weighted samples

{2 wiy : i=1,... N} such that for arbitrary function
d(Xx), we have

Elg(xx) |Y1:4] = Z Wk a( Xk

@ On each step, we first draw samples from an importance

distribution 7(-), which is chosen suitably.
@ The prediction and update steps are combined and consist
of computing new weights from the old ones w,ﬁ’L = ngl).

@ If the “sample diversity” i.e the effective number of different
samples is too low, do resampling.
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Sequential Importance Resampling: Algorithm
Sequential Importance Resampling

@ Draw new point xf(") for each point in the sample set
{xk 1,i=1,..., N} from the importance distribution:

xf(")ww(xk]xf(")_pyhk), i=1,...,N.

@ Calculate new weights

() _ ) P(Y | x ) (xf(') ’xk)— )
Wy

k—1 i:1,...,N.
w(xk’ X yi)

and normalize them to sum to unity.

Q If the effective number of particles is too low, perform
resampling.

4
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Effective Number of Particles and Resampling

The estimate for the effective number of particles can be
computed as:

Negf ~

il\i1 (ng,'))Z’

Resampling

@ Interpret each weight ngi ) as the probability of obtaining
the sample index i in the set {xf(’) |i=1,...,N}

O Draw N samples from that discrete distribution and replace
the old sample set with this new one.

O Set all weights to the constant value w(” = 1/N.
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Constructing the Importance Distribution

@ Use the dynamic model as the importance distribution =
Bootstrap filter.

@ Use the optimal importance distribution

m(Xk | Xk—1,Y1:k) = P(Xk | Xk—1,Y1:)-
@ Approximate the optimal importance distribution by UKF =
unscented particle filter.
@ Instead of UKF also EKF or SLF can be, for example, used.

@ Simulate availability of optimal importance distribution =
auxiliary SIR (ASIR) filter.
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Rao-Blackwellized Particle Filtering: Principle [1/2]

@ Consider a conditionally Gaussian model of the form

Sk ~ P(Sk | Sk-1)
Xk = A(Sk-1)Xk—1 +dk,  dk ~N(0,Q)
Vi = H(sk) Xk + 1, r« ~N(0,R)

@ The model is of the form

P(Xk, Sk|Xk—1,8k—1) = N(Xx | A(Sk—1)Xk—1, Q) p(Sk | Sk—1)
P(Y« | Xk, Sk) = N(y« |H(sk), R)

@ The full model is non-linear and non-Gaussian in general.

@ But given the values s, the model is Gaussian and thus
Kalman filter equations can be used.
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Rao-Blackwellized Particle Filtering: Principle [1/2]

@ The idea of the Rao-Blackwellized particle filter:

@ Use Monte Carlo sampling to the values sk

o Given these values, compute distribution of x, with Kalman
filter equations.

o Result is a Mixture Gaussian distribution, where each
particle consist of value sf(’), associated weight w,ﬁ’) and the

mean and covariance conditional to the history sﬁ’)k

@ The explicit RBPF equations can be found in the lecture
notes.

o If the model is almost conditionally Gaussian, it is also
possible to use EKF, SLF or UKF instead of the linear KF.
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Particle Filter: Advantages

@ No restrictions in model — can be applied to non-Gaussian
models, hierarchical models etc.

@ Global approximation.

@ Approaches the exact solution, when the number of
samples goes to infinity.

@ In its basic form, very easy to implement.

@ Superset of other filtering methods — Kalman filter is a
Rao-Blackwellized particle filter with one particle.
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Particle Filter: Disadvantages

@ Computational requirements much higher than of the
Kalman filters.

@ Problems with nearly noise-free models, especially with
accurate dynamic models.

@ Good importance distributions and efficient
Rao-Blackwellized filters quite tricky to implement.

@ Very hard to find programing errors (i.e., to debug).
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@ Unscented transform (UT) approximates transformations of
Gaussian variables by propagating sigma points through
the non-linearity.

@ In UT the mean and covariance are approximated as linear
combination of the sigma points.

@ The unscented Kalman filter uses unscented transform for
computing the approximate means and covariance in
non-linear filtering problems.

@ Particle filters use weighted set of samples (particles) for
approximating the filtering distributions.

@ Sequential importance resampling (SIR) is the general
framework and bootstrap filter is a simple special case of it.

@ In Rao-Blackwellized particle filters a part of the state is
sampled and part is integrated in closed form with Kalman
filter.
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Matlab Demo

[Tracking of pendulum with EKF, SLF, UKF and BF]
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