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Linearization Based Gaussian Approximation

Problem: Determine the mean and covariance of y :

x ∼ N(µ, σ2)

y = sin(x)

Linearization based approximation:

y = sin(µ) +
∂ sin(µ)

∂µ
(x − µ) + . . .

which gives

E[y ] ≈ E[sin(µ) + cos(µ)(x − µ)] = sin(µ)

Cov[y ] ≈ E[(sin(µ) + cos(µ)(x − µ) − sin(µ))2] = cos2(µ)σ2.
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Principle of Unscented Transform [1/3]

Form 3 sigma points as follows:

X0 = µ

X1 = µ + σ

X2 = µ − σ.

We may now select some weights W0, W1, W2 such that

the original mean and (co)variance can be always

recovered by

µ =
∑

i

Wi xi

σ2 =
∑

i

Wi (Xi − µ)2.
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Principle of Unscented Transform [2/3]

Use the same formula for approximating the distribution of

y = sin(x) as follows:

µy =
∑

i

Wi sin(Xi)

σ2
y =

∑

i

Wi (sin(Xi) − µy )2.

For vectors x ∼ N(m, P) the generalization of standard

deviation σ is the Cholesky factor L =
√

P:

P = L LT .

The sigma points can be formed using columns of L (here

c is a suitable positive constant):

X0 = m

Xi = m + c Li

Xn+i = m − c Li
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Principle of Unscented Transform [3/3]

For transformation y = g(x) the approximation is:

µy =
∑

i

Wi g(Xi)

Σy =
∑

i

Wi (g(Xi) − µy ) (g(Xi) − µy )T .

Joint distribution of x and y = g(x) + q is then given as

E

[(
x

g(x) + q

) ∣
∣
∣ q

]

≈
∑

i

Wi

(
Xi

g(Xi)

)

=

(
m

µy

)

Cov

[(
x

g(x) + q

) ∣
∣
∣ q

]

≈
∑

i

Wi

(
(Xi − m) (Xi − m)T (Xi − m) (g(Xi) − µy )T

(g(Xi) − µy ) (Xi − m)T (g(Xi) − µy ) (g(Xi) − µy )T

)

Simo Särkkä Lecture 5: UKF and PF



Unscented Transform Approximation of Non-Linear

Transforms [1/3]

Unscented transform

The unscented transform approximation to the joint distribution

of x and y = g(x) + q where x ∼ N(m, P) and q ∼ N(0, Q) is

(
x

y

)

∼ N

((
m

µU

)

,

(
P CU

CT
U SU

))

,

The sub-matrices are formed as follows:

1 Form the matrix of sigma points X as

X =
[
m · · · m

]
+

√
n + λ

[

0
√

P −
√

P
]
,

[continues in the next slide. . . ]
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Unscented Transform Approximation of Non-Linear

Transforms [2/3]

Unscented transform (cont.)

2 Propagate the sigma points through g(·):

Yi = g(Xi), i = 1 . . . 2n + 1,

3 The sub-matrices are then given as:

µU =
∑

i

W
(m)
i−1 Yi

SU =
∑

i

W
(c)
i−1 (Yi − µU) (Yi − µU)T + Q

CU =
∑

i

W
(c)
i−1 (Xi − m) (Yi − µU)T ,
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Unscented Transform Approximation of Non-Linear

Transforms [3/3]

Unscented transform (cont.)

λ is a scaling parameter defined as λ = α2 (n + κ) − n.

α and κ determine the spread of the sigma points.

Weights W
(m)
i and W

(c)
i are given as follows:

W
(m)
0 = λ/(n + λ)

W
(c)
0 = λ/(n + λ) + (1 − α2 + β)

W
(m)
i = 1/{2(n + λ)}, i = 1, . . . , 2n

W
(c)
i = 1/{2(n + λ)}, i = 1, . . . , 2n,

β can be used for incorporating prior information on the

(non-Gaussian) distribution of x.
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Linearization/UT Example

=⇒

(
x1

x2

)

∼ N

((
0

0

)

,

(
2 −2

−2 3

))
dy1

dt
= exp(−y1), y1(0) = x1

dy2

dt
= −1

2
y3

2 , y2(0) = x2

Simo Särkkä Lecture 5: UKF and PF



Linearization Approximation

=⇒
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UT Approximation

=⇒
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Unscented Kalman Filter (UKF): Derivation [1/4]

Assume that the filtering distribution of previous step is

Gaussian

p(xk−1 |y1:k−1) ≈ N(xk−1 |mk−1, Pk−1)

The joint distribution of xk and xk−1 = f(xk−1) + qk−1 can

be approximated with UT as Gaussian

p(xk−1, xk , |y1:k−1) ≈ N

([
xk−1

xk

] ∣
∣
∣

(
m′

1

m′

2

)

,

(
P′

11 P′

12

(P′

12)
T P′

22

))

,

Form the sigma points Xi of xk−1 ∼ N(mk−1, Pk−1) and

compute the transformed sigma points as X̂i = f(Xi).

The expected values can now be expressed as:

m′

1 = mk−1

m′

2 =
∑

i

W
(m)
i−1 X̂i
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Unscented Kalman Filter (UKF): Derivation [2/4]

The blocks of covariance can be expressed as:

P′

11 = Pk

P′

12 =
∑

i

W
(c)
i−1(Xi − mk−1) (X̂i − m′

2)
T

P′

22 =
∑

i

W
(c)
i−1(X̂i − m′

2) (X̂i − m′

2)
T + Qk−1

The prediction mean and covariance of xk are then m′

2 and

P′

22, and thus we get

m−

k =
∑

i

W
(m)
i−1 X̂i

P−

k =
∑

i

W
(c)
i−1(X̂i − m−

k ) (X̂i − m−

k )T + Qk−1
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Unscented Kalman Filter (UKF): Derivation [3/4]

For the joint distribution of xk and yk = h(xk) + rk we

similarly get

p(xk , yk , |y1:k−1) ≈ N

([
xk

yk

] ∣
∣
∣

(
m′′

1

m′′

2

)

,

(
P′′

11 P′′

12

(P′′

12)
T P′′

22

))

,

If X−

i are the sigma points of xk ∼ N(m−

k , P−

k ) and

Ŷi = f(X−

i ), we get:

m′′

1 = m−

k

m′′

2 =
∑

i

W
(m)
i−1 Ŷi

P′′

11 = P−

k

P′′

12 =
∑

i

W
(c)
i−1(X

−

i − m−

k ) (Ŷi − m′′

2)
T

P′′

22 =
∑

i

W
(c)
i−1(Ŷi − m′′

2) (Ŷi − m′′

2)
T + Rk
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Unscented Kalman Filter (UKF): Derivation [4/4]

Recall that if
(

x

y

)

∼ N

((
a

b

)

,

(
A C

CT B

))

,

then

x |y ∼ N(a + C B−1 (y − b), A − C B−1CT ).

Thus we get the conditional mean and covariance:

mk = m−

k + P′′

12 (P′′

22)
−1(yk − m′′

2)

Pk = P−

k − P′′

12 (P′′

22)
−1 (P′′

12)
T .
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Unscented Kalman Filter (UKF): Algorithm [1/3]

Unscented Kalman filter: Prediction step

1 Form the matrix of sigma points:

Xk−1 =
[
mk−1 · · · mk−1

]
+

√
n + λ

[
0

√
Pk−1 −

√
Pk−1

]
.

2 Propagate the sigma points through the dynamic model:

X̂k ,i = f(Xk−1,i), i = 1 . . . 2n + 1.

3 Compute the predicted mean and covariance:

m−

k =
∑

i

W
(m)
i−1 X̂k ,i

P−

k =
∑

i

W
(c)
i−1 (X̂k ,i − m−

k ) (X̂k ,i − m−

k )T + Qk−1.
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Unscented Kalman Filter (UKF): Algorithm [2/3]

Unscented Kalman filter: Update step

1 Form the matrix of sigma points:

X−

k =
[
m−

k · · · m−

k

]
+

√
n + λ

[

0
√

P−

k −
√

P−

k

]

.

2 Propagate sigma points through the measurement model:

Ŷk ,i = h(X−

k ,i), i = 1 . . . 2n + 1.

3 Compute the following terms:

µk =
∑

i

W
(m)
i−1 Ŷk ,i

Sk =
∑

i

W
(c)
i−1 (Ŷk ,i − µk ) (Ŷk ,i − µk )T + Rk

Ck =
∑

i

W
(c)
i−1 (X−

k ,i − m−

k ) (Ŷk ,i − µk )T .
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Unscented Kalman Filter (UKF): Algorithm [3/3]

Unscented Kalman filter: Update step (cont.)

4 Compute the filter gain Kk and the filtered state mean mk

and covariance Pk , conditional to the measurement yk :

Kk = Ck S−1
k

mk = m−

k + Kk [yk − µk ]

Pk = P−

k − Kk Sk KT
k .
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Unscented Kalman Filter (UKF): Example

Recall the discretized pendulum model

(
x1

k

x2
k

)

=

(
x1

k−1 + x2
k−1 ∆t

x2
k−1 − g sin(x1

k−1)∆t

)

︸ ︷︷ ︸

f(xk−1)

+

(
0

qk−1

)

yk = sin(x1
k )

︸ ︷︷ ︸

h(xk)

+rk ,

⇒ Matlab demonstration
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Unscented Kalman Filter (UKF): Advantages

No closed form derivatives or expectations needed.

Not a local approximation, but based on values on a larger

area.

Functions f and h do not need to be differentiable.

Theoretically, captures higher order moments of

distribution than linearization.
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Unscented Kalman Filter (UKF): Disadvantage

Not a truly global approximation, based on a small set of

trial points.

Does not work well with nearly singular covariances, i.e.,

with nearly deterministic systems.

Requires more computations than EKF or SLF, e.g.,

Cholesky factorizations on every step.

Can only be applied to models driven by Gaussian noises.
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Particle Filtering: Overview [1/3]

Demo: Kalman vs. Particle Filtering:

Kalman filter animation

Particle filter animation
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Particle Filtering: Overview [2/3]

=⇒

The idea is to form a weighted particle presentation

(x(i), w (i)) of the posterior distribution:

p(x) ≈
∑

i

w (i) δ(x − x(i)).

Particle filtering = Sequential importance sampling, with

additional resampling step.

Bootstrap filter (also called Condensation) is the simplest

particle filter.
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Particle Filtering: Overview [3/3]

The efficiency of particle filter is determined by the

selection of the importance distribution.

The importance distribution can be formed by using e.g.

EKF or UKF.

Sometimes the optimal importance distribution can be

used, and it minimizes the variance of the weights.

Rao-Blackwellization: Some components of the model are

marginalized in closed form ⇒ hybrid particle/Kalman filter.
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Bootstrap Filter: Principle

State density representation is set of samples

{x
(i)
k : i = 1, . . . , N}.

Bootstrap filter performs optimal filtering update and

prediction steps using Monte Carlo.

Prediction step performs prediction for each particle

separately.

Equivalent to integrating over the distribution of previous

step (as in Kalman Filter).

Update step is implemented with weighting and

resampling.
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Bootstrap Filter: Algorithm

Bootstrap Filter

1 Generate sample from predictive density of each old

sample point x
(i)
k−1:

x̃
(i)
k ∼ p(xk | x

(i)
k−1).

2 Evaluate and normalize weights for each new sample point

x̃
(i)
k :

w
(i)
k = p(yk | x̃

(i)
k ).

3 Resample by selecting new samples x
(i)
k from set {x̃

(i)
k }

with probabilities proportional to w
(i)
k .
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Sequential Importance Resampling: Principle

State density representation is set of weighted samples

{(x(i)
k , w

(i)
k ) : i = 1, . . . , N} such that for arbitrary function

g(xk ), we have

E[g(xk ) |y1:k ] ≈
∑

i

w
(i)
k g(x

(i)
k ).

On each step, we first draw samples from an importance

distribution π(·), which is chosen suitably.

The prediction and update steps are combined and consist

of computing new weights from the old ones w
(i)
k−1 → w

(i)
k .

If the “sample diversity” i.e the effective number of different

samples is too low, do resampling.
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Sequential Importance Resampling: Algorithm

Sequential Importance Resampling

1 Draw new point x
(i)
k for each point in the sample set

{x
(i)
k−1, i = 1, . . . , N} from the importance distribution:

x
(i)
k ∼ π(xk | x

(i)
k−1, y1:k), i = 1, . . . , N.

2 Calculate new weights

w
(i)
k = w

(i)
k−1

p(yk | x
(i)
k ) p(x

(i)
k | x

(i)
k−1)

π(x
(i)
k | x

(i)
k−1, y1:k )

, i = 1, . . . , N.

and normalize them to sum to unity.

3 If the effective number of particles is too low, perform

resampling.
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Effective Number of Particles and Resampling

The estimate for the effective number of particles can be

computed as:

neff ≈
1

∑N
i=1

(

w
(i)
k

)2
,

Resampling

1 Interpret each weight w
(i)
k as the probability of obtaining

the sample index i in the set {x
(i)
k | i = 1, . . . , N}.

2 Draw N samples from that discrete distribution and replace

the old sample set with this new one.

3 Set all weights to the constant value w
(i)
k = 1/N.
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Constructing the Importance Distribution

Use the dynamic model as the importance distribution ⇒
Bootstrap filter.

Use the optimal importance distribution

π(xk | xk−1, y1:k) = p(xk | xk−1, y1:k).

Approximate the optimal importance distribution by UKF ⇒
unscented particle filter.

Instead of UKF also EKF or SLF can be, for example, used.

Simulate availability of optimal importance distribution ⇒
auxiliary SIR (ASIR) filter.
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Rao-Blackwellized Particle Filtering: Principle [1/2]

Consider a conditionally Gaussian model of the form

sk ∼ p(sk |sk−1)

xk = A(sk−1) xk−1 + qk , qk ∼ N(0, Q)

yk = H(sk) xk + rk , rk ∼ N(0, R)

The model is of the form

p(xk , sk |xk−1, sk−1) = N(xk |A(sk−1)xk−1, Q) p(sk |sk−1)

p(yk |xk , sk ) = N(yk |H(sk ), R)

The full model is non-linear and non-Gaussian in general.

But given the values sk the model is Gaussian and thus

Kalman filter equations can be used.
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Rao-Blackwellized Particle Filtering: Principle [1/2]

The idea of the Rao-Blackwellized particle filter:

Use Monte Carlo sampling to the values sk

Given these values, compute distribution of xk with Kalman

filter equations.

Result is a Mixture Gaussian distribution, where each
particle consist of value s

(i)
k , associated weight w

(i)
k and the

mean and covariance conditional to the history s
(i)
1:k

The explicit RBPF equations can be found in the lecture

notes.

If the model is almost conditionally Gaussian, it is also

possible to use EKF, SLF or UKF instead of the linear KF.
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Particle Filter: Advantages

No restrictions in model – can be applied to non-Gaussian

models, hierarchical models etc.

Global approximation.

Approaches the exact solution, when the number of

samples goes to infinity.

In its basic form, very easy to implement.

Superset of other filtering methods – Kalman filter is a

Rao-Blackwellized particle filter with one particle.
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Particle Filter: Disadvantages

Computational requirements much higher than of the

Kalman filters.

Problems with nearly noise-free models, especially with

accurate dynamic models.

Good importance distributions and efficient

Rao-Blackwellized filters quite tricky to implement.

Very hard to find programing errors (i.e., to debug).
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Summary

Unscented transform (UT) approximates transformations of

Gaussian variables by propagating sigma points through

the non-linearity.

In UT the mean and covariance are approximated as linear

combination of the sigma points.

The unscented Kalman filter uses unscented transform for

computing the approximate means and covariance in

non-linear filtering problems.

Particle filters use weighted set of samples (particles) for

approximating the filtering distributions.

Sequential importance resampling (SIR) is the general

framework and bootstrap filter is a simple special case of it.

In Rao-Blackwellized particle filters a part of the state is

sampled and part is integrated in closed form with Kalman

filter.
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Matlab Demo

[Tracking of pendulum with EKF, SLF, UKF and BF]

Simo Särkkä Lecture 5: UKF and PF


	Idea of Unscented Transform
	Unscented Transform
	Unscented Kalman Filter Algorithm
	Unscented Kalman Filter Properties
	Particle Filtering
	Particle Filtering Properties
	Summary and Demonstration

