
Power Management for Wireless Data
Transmission Using Complex Event Processing

Yu Xiao, Wei Li, Matti Siekkinen, Petri Savolainen,

Antti Ylä-Jääski, Member, IEEE, and Pan Hui, Member, IEEE

Abstract—Energy consumption of wireless data transmission, a significant part of the overall energy consumption on a mobile device,

is context-dependent—it depends on both internal and external contexts, such as application workload and wireless signal strength. In

this paper, we propose an event-driven framework that can be used for efficient power management on mobile devices. The framework

adapts the behavior of a device component or an application to the changes in contexts, defined as events, according to developer-

specified event-condition-action (ECA) rules that describe the power management mechanism. In contrast to previous work, our

framework supports complex event processing. By correlating events, complex event processing helps to discover complex events

that are relevant to power consumption. Using our framework developers can implement and configure power management

applications by editing event specifications and ECA rules through XML-based interfaces. We evaluate this framework with two

applications in which the data transmission is adapted to traffic patterns and wireless link quality. These applications can save roughly

12 percent more energy compared to normal operation.

Index Terms—Power management, complex event processing, mobile device, context-aware

Ç

1 INTRODUCTION

ENERGY consumption caused by wireless data transmis-
sion has become a significant component of overall

energy consumption on mobile devices, due to the
increasing popularity of mobile Internet services. Solutions
that can improve the energy efficiency in wireless data
transmission are therefore very much needed for extending
the battery life of mobile devices. In this paper, we focus on
power management software that runs on a mobile device
and helps to reduce energy cost of wireless data transmis-
sion on the device by controlling the behavior of device
components and applications.

Energy consumed in wireless data transmission is heavily
dependent on the situation in which the transmission
happens. The situation includes many factors, such as the
state of the mobile device, the environment of the wireless
network which the mobile device is connected to, and the
patterns of the traffic generated by mobile applications. In
order to manage the transmission cost, power management
software must be able to detect the situational variation
which the behavior of the device components and applica-
tions is adapted to.

As defined in [1], “context is any information that can be
used to characterize the situation of an entity.” The entity can
be a person, a device, a network, or an application. For
example, signal-to-noise ratio (SNR) is context that indicates
the link quality in a wireless network. Changes in context can
be represented as events. For example, an event can be used
for indicating the increase of SNR in a wireless network, or
for indicating an occurrence such as the arrival of a person in
a room. In order to represent concepts on higher abstraction
levels, events can also be derived from other events, and used
to represent patterns in event occurrence.

According to definitions of context and event, each factor
included in the situation can be described with a set of
contexts and/or a sequence of events. For example, the state
of the mobile device can be described with context such as
CPU frequency level and the operating mode of the wireless
network interface, whereas the pattern of the traffic
generated by mobile applications can be represented by a
sequence of events that indicate arrivals of data packets at the
wireless network interface. Thus, the detection of situational
variation becomes an event processing task with a collection
of different events as its input.

In this paper, we present an event-driven framework that
can be used for implementing power management for
wireless data transmission on mobile devices. Even though
the event-driven approach has been adopted in a few power
management systems, such as wake-on-wireless [2] and
process cruise control [3], these systems were mainly
designed with specific scenarios in mind and only supported
simple event processing [4]. Differently from these systems,
our framework supports complex event processing [5].

Developers that use our framework can use event-
condition-action (ECA) rules to describe the power manage-
ment mechanism that explains which actions to invoke upon
the occurrence of an event under certain conditions. As our
framework supports complex event processing, the events

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012 1765

. Y. Xiao, W. Li, and M. Siekkinen are with the Department of Computer
Science and Engineering, Aalto University, PO Box 15400, Aalto 00076,
Finland. E-mail: {yu.xiao, wei.2.li, matti.siekkinen}@aalto.fi.

. P. Savolainen is with Helsinki Institute for Information Technology
(HIIT), University of Helsinki, PO Box 68, FI-00014, Finland.
E-mail: petri.savolainen@hiit.fi.

. A. Ylä-Jääski is with Helsinki Institute for Information Technology, Aalto
University, PO Box 15400, Aalto 00076, Finland.
E-mail: antti.yla-jaaski@aalto.fi.

. P. Hui is with the Deutsche Telekom Laboratories, Ernst-Reuter-Platz 7,
Berlin 10587, Germany. E-mail: pan.hui@telekom.de.

Manuscript received 4 Nov. 2011; revised 29 Feb. 2012; accepted 22 Apr.
2012; published online 29 May 2012.
For information on obtaining reprints of this article, please send e-mail to:
tcsi@computer.org, and reference IEEECS Log Number TCSI-2011-11-0845.
Digital Object Identifier no. 10.1109/TC.2012.113.

0018-9340/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

declared in the ECA rules can also be ones derived from other
events and ones generated by correlating other events. The
rules of the event processing are defined by the developer in
event processing specifications and are parsed by the frame-
work into combinations of event processing functions such as
filtering, pattern matching, and derivation. Developers only
need to define their event processing specifications and ECA
rules using structural XML, and the framework will handle
the rule-based adaptations, including event generation, event
processing, and adaptation scheduling.

We have implemented the framework in C++ on Maemo, a
Linux-based mobile platform. We have also demonstrated
our framework by using it to implement two power manage-
ment applications. The first application focuses on the
adaptations of PSM settings to traffic patterns. We predict
the no-data intervals based on the self-similar burstiness of
network traffic. Our proposal differs from previous work [6],
[7] in not requiring revisions to applications, as it can learn the
traffic pattern online based on traffic statistics. The second
application focuses on the adaptations of network transmis-
sion to SNR in Wi-Fi. Our experimental results show that the
first application saves 11.8 percent of energy in Internet radio
streaming and the second one saves 12.9 percent in TCP file
downloading in a mobile scenario.

In summary, our contributions include:

1. Proposing an event-driven framework for power
management on mobile devices. To the best of our
knowledge, it is the first one that uses complex event
processing for power management.

2. Providing user-friendly interfaces for implementing
and configuring power management applications
and hiding the low-level implementation from
application developers.

3. Demonstrating the usage and effectiveness of the
framework with two power management applica-
tions, one of which is original in itself.

Our framework enables deploying multiple power man-
agement solutions simultaneously on the same device. It can
be therefore used for integrating existing power management
applications and for enabling coordination between them for
additional energy savings. For example, coordinating the
power management of wireless network interface [6] with
application-level traffic adaptations [8] has the potential of
reducing the transmission cost while at the same time
maintaining the application performance.

The rest of the paper is organized as follows: Section 2
briefly introduces techniques of power management on
mobile devices. Section 3 gives an overview of the event-
driven framework. Two example applications that are used
for evaluation are introduced in Section 4. Section 5 describes
the implementation of the framework itself and the example
applications using the framework. The results of our
experimental study are presented in Section 6 followed by
the conclusion of the work.

2 BACKGROUND AND RELATED WORK

2.1 Power Management of Wireless Network
Interfaces

Energy consumption of wireless data transmission is mainly
caused by the operations of wireless network interfaces on

mobile devices. Many power management mechanisms for
the wireless network interfaces have been proposed and
some of them have already been successfully commercia-
lized. The commercial ones are usually implemented as part
of hardware resource management in mobile OSs. They
adapt the operating modes to system workload and try to
gain energy savings from the difference in power consump-
tion between the operating modes of hardware components.
In other words, they try to keep the hardware components
in lower-power states as long as possible. For example, the
PSM [9] for Wi-Fi forces the Wi-Fi network interface (WNI)
to go to sleep if there is no data to transmit or to receive. As
listed in Table 1, the power consumed in SLEEP mode is
only 5 percent of that consumed in IDLE mode.

These power management mechanisms have shown
their potential in saving energy. However, there are also
downsides to using them. First, they might cause perfor-
mance degradation, such as increased delay when using
PSM [10], because the incoming packets that arrive when
the WNI is sleeping will be buffered at the access point or
dropped. Second, the transition between operating modes
takes time and costs energy. Sometimes, the overhead can
even overtake the energy savings gained by the transition.

One way to reduce the negative side effect is to improve
the design of the power management itself. For example,
WNIs on commercial devices usually use an adaptive
version of PSM, also known as PSM Adaptive. PSM Adaptive
adopts a timeout mechanism which forces the WNI to wait
for a fixed period of time first, instead of going to sleep
immediately when the WNI becomes idle. The length of this
waiting time, called the PSM timeout, is usually fixed to 100
or 200 ms. Compared with the PSM defined in the IEEE
standard, PSM Adaptive achieves better performance in
terms of delay, whereas the energy savings decreases.

To solve the new problems generated by PSM Adaptive,
some revisions have focused on reducing the energy wasted
in IDLE mode through intelligent control over the transi-
tions between operating modes. Intelligent control is based
on both the adaptation to the traffic characteristics and on
the performance requirements of the mobile applications.
For example, STPM [6] proposed to switch between CAM
and PSM based on two factors: the potential energy savings
and the possible performance degradation. It enabled PSM
only when the energy savings could be achieved while the
latency was tolerable. The results showed that STPM was
better suited for delay-tolerant applications than the delay-
sensitive applications such as streaming.

As oppopsed to STPM, which focused on coarse-
grained adaptation, Liu and Zhong [11] proposed micro
power management (�PM). �PM tries to put the WNI into
power saving mode during idle intervals, which can be as
short as several microseconds. To control the frame delay

1766 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012

TABLE 1
Power Consumption of N900 when

WNI is in Different Operating Modes

During measurement, only the basic components of the device were in
use. The screen backlight, Bluetooth, and WCDMA were also turned off.

and data loss, �PM determined when to wake up the
WNI and how long the WNI should stay awake to receive
any possible retransmitted data. The decisions were made
based on the history-based prediction of the next incom-
ing and outgoing traffic frames and the load of the access
network. The evaluation of �PM through simulation
showed that more than 30 percent of energy could be
reduced without perceptible quality degradation for
certain applications such as audio streaming.

A key issue in the above solutions is the prediction of the
future incoming and outgoing traffic. There are different
ways to implement the prediction. One is to use the hints
disclosed by mobile applications [6]. The hints reveal when
the applications will transfer data, how much data to
transfer, and the maximum delay the applications could
tolerate. Another method is to predict statistically the next
arrival time based on the history of the previous packet
arrival information [11]. The latter one does not require
revision to applications. However, a challenge to the
accuracy of prediction comes from uncertainties such as
the wireless link quality during data transmission and the
workload of the network devices carrying the data through
the network.

In this paper, we present an event-driven framework that
supports complex event processing and propose to imple-
ment power management solutions using this framework.
We evaluate the feasibility of this method with two example
solutions in which the control of wireless network interface
is adapted to the prediction of network traffic and the
prediction of wireless link quality, respectively. The effec-
tiveness of these solutions themselves was evaluated in
terms of energy savings and network transmission perfor-
mance. Compared with previous work on prediction-based
wireless interface control, our work provides a novel traffic
prediction algorithm based on the self-similar burstiness of
Internet traffic. In addition, we provide impact analysis of
prediction accuracy on energy savings and performance.

2.2 System-Level Power Management

Many application-specific solutions have been proposed for
improving the utilization of power management based on
hardware resource management. For example, traffic shap-
ing for streaming applications [12] and web prefetching have
been proposed for reducing the transition overhead caused
by the usage of PSM and increasing the duration spent in the
low-power modes. However, since these solutions adapt to
the changes in contexts individually, it is not clear how these
application-specific solutions could work compatibly with
each other, and collaboratively with the default power
management software installed on the devices. Hence, in
this paper, we look at the system from a holistic perspective
and propose a framework that enables the management of
these mechanisms through predefined rules. The crucial
aspect is that we include the applications and the context in
which the device operates in the overall picture because
knowledge about them allows us to exploit specific power
management mechanisms more efficiently.

Our work provides a platform for application developers
to implement their power management applications on.
There are several systems that also consider the system level
aspect. Koala [13] is a platform that allows policy-based

control over power-performance tradeoffs, but it only
focuses on Dynamic Voltage and Frequency Scaling (DVFS)
for the CPU. Dynamo [8] comes closer to our solution by
considering a cross-layer framework. It optimizes the
energy consumption through dynamic adaptations for the
CPU (through Dynamic Voltage Scaling), the display, and
the network interfaces. However, this solution is designed
only for video streaming. STPM [6] provides a solution
closely resembling our first example application (see
Section 4.1), whereas STPM requires revisions to mobile
applications and does not provide mechanisms for integrat-
ing it with complementary solutions.

A middleware for power management presented in [14]
described the system using several system states, each
corresponding to a unique power state. However, the design
of the middleware was based on the assumption that the real-
time information about the power state of each hardware
component is available, which limits the implementability of
the system. The solution described in [15] is also closely
related to our approach but only focuses on well-defined
enterprise application scenarios of accessing web services
and synchronizing them with a database.

If we try to extend the above systems for the integration
of power management policies on a single device, a
challenge comes from the complexity in policy management.
In this paper, we present an event-driven framework for
power management. In our framework, power management
policies are described as a set of event-driven adaptations.
Our framework provides methods of conflict detection and
resolution in order to avoid conflicts in adaptations. In
addition, thanks to the use of complex event processing, our
framework simplifies the rule evaluation and promotes
separation of concerns by placing the event processing
functionality in the event processing agent.

Some systems take a different approach to the power
management problems. For example, Turducken [16] com-
bines different capacity devices (laptops, PDAs, and sensors)
into a single mobile system, and prolongs the battery life of
the entire system by intelligent workload scheduling among
devices. SleepWell [17] focuses on reducing the energy
consumption of mobile clients by reducing contention
between different access points. The event-driven approach
we propose can be extended to support collaborative power
management between devices in the future, while in this
paper we focus solely on a single-device system.

3 SYSTEM ARCHITECTURE

3.1 Overview

We propose an event-driven framework for power manage-
ment of wireless data transmission on mobile devices. The
architecture of our framework is shown in Fig. 1. The power
management mechanisms compose of event-driven adapta-
tions that are described with ECA rules. The lifecycle of
events consists of three stages: event generation, event
processing, and event consumption. Accordingly, there are
three components in our framework, namely, event gen-
erator, event processing agent, and scheduler.

The event generator only produces atomic events based
on the context information it obtains from monitoring

XIAO ET AL.: POWER MANAGEMENT FOR WIRELESS DATA TRANSMISSION USING COMPLEX EVENT PROCESSING 1767

daemons and from the context storage. Atomic events are
filtered, partitioned into groups, and/or processed into
more meaningful events according to event processing
specifications by the event processing agent. When the
scheduler receives events from the event processing agent,
it matches the events to the ones defined in the ECA rules,
and validates the conditions required for scheduling the
actions using the available context information. Whenever
an event matches a rule and all the conditions defined in the
rule are satisfied, corresponding actions are scheduled.

The ECA rules and event processing specifications are
stored in the rule base. Event processing states, historical
events, states of the external environment, and other global
state information are stored in a container called context
storage. The contents of the context storage get updated
when the relevant contexts change.

3.2 Complex Event Processing

A key feature of our framework is the support for complex
event processing in the event processing agent. The
difference between simple and complex event processing
systems lies in the functionality that they provide for
processing the events. Whereas most simple event proces-
sing systems only support event filtering, complex event
processing systems can also offer instance partitioning, event
derivation, and pattern matching. Unlike simple event
processing systems, complex event processing systems can
also take into account the history of event occurrences and
generate events of higher abstraction levels based on changes
in the patterns of event occurrences. An example of this in the
power management field is taking network packet arrival
events as input and generating new events that indicate the
beginning and the end of each new burst of traffic.

In a complex event processing framework, event proces-
sing is decoupled from event consumption. The action rules
that are executed can be relatively simple as they are triggered
by events of a higher abstraction level. If the same nontrivial
application is implemented on a simple event processing
framework, the action rules need to incorporate the event
processing that is performed by the event processing agent in
the complex event processing system. This means that a
complex event processing framework allows for better
separation concerns as the event-driven adaptations do not
need to know how to extract meaningful information out of
events of low abstraction levels, and the event processing

specifications can be agnostic of what the events they
generate will be used for. Decoupling of event processing
from event consumption can also lead to reduced computa-
tional overhead as the events of high abstraction level that
the event processing agent generates in a complex event
processing system can be useful to more than just one
adaptation rule. For example, the high-abstraction-level
event that indicates the end of a burst of incoming traffic
can trigger both a rule that pauses an ongoing upload and a
rule that puts the wireless network interface to sleep.

The difference between simple and complex event proces-
sing frameworks is illustrated in Fig. 2. When executing the
same actions, in the simple event processing case the event
processing operations op2(e2, e3) get executed twice,
whereas in the complex event processing case, only once.

3.3 Event Generator

The event generator is the software component that
generates events based on the changes in contexts. The
context information is collected from either the monitoring
daemons or the context storage. The relationship between
context, state, and event is described in the definitions of
atomic state and atomic event below.

Definition 1. An atomic state is a tuple: S = (c, op, val), where c

is the capability value, op is one of the binary operators defined

in a set: f<;>;�;�;¼; 6¼g, and val is the reference value of

the capability.

Definition 2. An atomic event e indicates the change in a state

from S0 to S1. It can be represented as e: S0 ! S1.

As shown in Definition 1, each context variable that can be
monitored is modeled as capability, and the corresponding
context providers are modeled as sensors. A sensor can be a
hardware or software component with sensing capabilities.
By comparing the capability values, an event can be created if
there is a change in the values. In practice, events are only
generated when there is at least one component subscribing
to the event in question. In our system, there can be more than
one event generator, while each event generator can generate
more than one type of event. All the events generated by any
event generator are imported into the same event processing
agent for further processing.

1768 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012

Fig. 1. Architecture of our event-driven framework.

Fig. 2. Comparison between simple event processing and complex
event processing.

Event instances are objects used for exchanging event
information during runtime. An event instance includes the
meta-data of the event such as event type identifier and
occurrence timestamp, and a set of event-specific attributes.
An attribute can be defined as a tuple including a unique
attribute identifier and the indicator of attribute data type.

3.4 Event Processing Agent

Event processing specification written in structural XML is
loaded into the event processing agent and is parsed into
combinations of logical functions. Our event processing
agent provides four logical functions of complex event
processing: filtering, instance partitioning, derivation and
pattern matching.

In event filtering, a filter is applied to event instances of
the same event type in order to divide them into two
distinct groups. Those instances whose attributes and/or
metadata match the filter are submitted to one kind of
processing, while the rest of the instances are submitted to
another kind of processing.

Instance partitioning can be seen as a generalized version of
event filtering. In instance partitioning, the event instances
with the same event type can be divided into N groups
instead of just two. Moreover, the partitioning can be done
based on attribute values and metadata of these event
instances or other factors such as the state of the device.

Event derivation takes one or more event instances as input
and outputs a new event instance. The event instances used
as input can be of different event types, while the event type
of the output is different from that of the inputs. The
attribute values of the new event instance are calculated
from those of the inputs. We call an event that is the result of
computational derivation from other events a derived event.

Pattern matching is a three-stage process for detecting
patterns in an event flow. Event instances are first combined
into intermediate event instance sets that are then fed into
the actual pattern matching. Unlike event filtering and
instance partitioning, pattern matching can involve events
of different types. Algorithms used for grouping event
instances are described in Section 5.3. In the second stage,
the event processing agent applies trend-based pattern
matching and/or threshold-based pattern matching to the
intermediate event instance sets. Trend-based pattern
matching is used for detecting whether an event attribute
is showing an increasing, a decreasing or a stable trend over
time. In threshold-based pattern matching, the pattern is
defined by a binary operator and a threshold value. The
binary operator is used for comparing the threshold to the
input, and if the comparison returns TRUE, the input is
considered to match the pattern. The input can consist of
event attributes, metadata, or statistical data from a set of
event instances. Finally, if the event instances match the
pattern, a new complex event is created in the third stage.

3.5 Scheduler

Event-driven adaptations are defined in ECA rules by
developers. These rules are loaded into the scheduler that
is later responsible for rule evaluation during runtime. When
loading a new rule, the scheduler checks if the newly loaded
rule has any potential conflicts with the previously loaded
rules. If the scheduler detects a potential conflict, it attaches a
conflict resolution policy to the newly loaded rule or refuses
to install the new rule whenever no conflict resolution policy
can be applied. The details of conflict detection and
resolution strategies will be described in Section 5.4.

If the installation of the new rule is successful, the
scheduler will subscribe to the events that may trigger the
new rule from the event processing agent. During runtime,
whenever the scheduler receives a notification of an event
occurrence it has subscribed to, it evaluates the conditions
defined in the rules, and invokes corresponding actions if
the conditions are satisfied.

4 EXAMPLE SCENARIOS

On a mobile device, hardware components, such as wireless
network interfaces, are the actual power consumers. The rate
of power consumption is determined by the physical
characteristics of the hardware, whereas the total amount
of energy consumption also depends on the workload
generated by software. In this section, we propose two
power management applications aiming at energy savings
without performance degradation through workload-aware
hardware control and workload scheduling, respectively.
We use these two applications for evaluating our framework
and also as examples in Section 5 for explaining the
implementation of our framework. The contexts and actions
involved in the two example scenarios are listed in Table 2.

4.1 Traffic-Aware WNI Control

Alice is listening to an internet radio channel on her mobile phone
through Wi-Fi. A traffic sniffer is running on the phone capturing
packet information such as packet timestamps and sizes. At the
same time, power management software is analyzing the statistics
of packet information based on which it classifies the radio stream
as self-similar bursty traffic, and starts to predict the occurrences
of bursts. Whenever a burst is predicted to end, the power
management software informs the WNI to go to sleep.

In this scenario, power management software learns the
traffic patterns online and adapts the WNI operating mode to
the discovered patterns. Our proposal improves PSM
Adaptive, a variant of PSM that is widely used on commercial
devices, by taking traffic patterns into account. The motiva-
tion comes from the fact that PSM Adaptive is inefficient for
many applications, since the fixed PSM timeout used on

XIAO ET AL.: POWER MANAGEMENT FOR WIRELESS DATA TRANSMISSION USING COMPLEX EVENT PROCESSING 1769

TABLE 2
Contexts and Actions Included in Example Scenarios

commercial devices is longer than most interpacket intervals
in Internet traffic. For example, according to our measure-
ment, 95.3 percent of packet intervals included in an Internet
radio stream are smaller than 100 ms. During 75.5 percent of
the aggregate interpacket intervals the active WNI is in
IDLE mode, which wastes energy. Hence, apart from shaping
the traffic patterns, we argue that it is necessary to make
changes to PSM Adaptive in order to adapt the operating
mode of the WNI to the patterns of the traffic in a more
energy-efficient manner.

We predict the traffic intervals during runtime and
adjust the PSM timeout dynamically with the traffic
intervals, taking the constraints of performance and energy
overhead into account. We predict the traffic intervals based
on the self-similar burstiness of Internet traffic [18], without
revisions to mobile applications or access points. According
to the definition of “train burstiness” in [19], “a burst can be
defined as a train of packets with a packet interval less than
a threshold.” We call this threshold the packet interval
threshold. As the no-data interval separating two bursts is by
definition bigger than the packet interval threshold, pre-
dicting the beginning of a no-data interval bigger than the
packet interval threshold is equivalent to predicting the
ending of a burst.

We use a threshold of burst size, called burst size
threshold, to predict the end of a burst. The burst size is
equal to the total size of all the packets included in the
burst. A variable that holds the size of the current burst is
updated every time a new packet arrives. When the current
burst size variable reaches the burst threshold, the packet
that has just arrived is considered to be the last packet of the
burst. In other words, a new burst interval is estimated to
have begun.

We apply the moving average algorithm for calculating
the burst size threshold. Given the sizes of the previous
N bursts, the burst size threshold is set to the mean of these
burst sizes. To gain high prediction accuracy, we use
standard deviation of burst size to evaluate the self-
similarity of burst size. Only when the standard deviation
of the previous M burst sizes is smaller than a threshold,
called standard deviation threshold, do we start to run the
prediction. The implementation of this application using
our framework will be detailed in Section 5.

4.2 SNR-Based Transmission Adaptation

Alice is downloading a file from a TCP server to her mobile phone
through Wi-Fi. As she is moving with the phone, the wireless link
quality is not stable. A network monitor running on the phone is
monitoring the wireless link quality in terms of SNR. Based on the
history, the network monitor predicts the change in the wireless link
quality in the next time slot. When the wireless link quality becomes
unacceptable, the phone pauses the file transmission, until the
wireless link quality becomes sufficiently good again.

In this scenario, the power management software adapts
the network transmission to the wireless link quality for
saving energy. We measure the wireless link quality using
SNR, as it has been previously proved to be a good indicator
of the wireless link quality [20]. Energy efficiency of network
transmission in WLAN increases when network throughput
gets higher [21], [22], and the network throughput is at its
best when the link quality is good. Hence, it is more energy
efficient to conduct data transmission when the link quality
is good.

We adopt a threshold-based method for adaptation
scheduling based on the prediction of SNR. Previous work
has proposed several SNR prediction algorithms based on
statistical models like Autoregressive integrated moving
average (ARIMA) [23] and Markov chains [24]. Most of
these models require complex offline model training. In this
work, we show that with our simple online prediction
algorithm it is still possible to gain energy savings that are
comparable to those obtained with more complex methods.

Our simple online prediction algorithm works as follows:
we monitor SNR at a fixed frequency, so that a time series can
be divided into time slots with a fixed length. The length of
the time slot is chosen so that the measured SNR value does
not change more than once during one time slot. For
example, according to our SNR measurement sampled at
10 Hz, in the scenarios where the phones move with the
mobile users at walking speed, the measured SNR does not
change more than once in one second. Hence, it would be
accurate enough to sample SNR at 1 Hz in those scenarios.
Let the monitored SNR at time x be m(x) and the predicted
SNR at time ðxþ 1Þ be pðxþ 1Þ. So our prediction algorithm
can be simply defined as pðxþ 1Þ ¼ mðxÞ.

5 IMPLEMENTATION

We implemented the framework and the two applications in
C++ on Maemo 5, a Linux-based OS. In this section, we will
describe the implementation of each component. Among
them, event generators work closely with the context
monitoring utilities which are platform-specific. Depending
on the context information needed, event generation can be
implemented as several event generators each of which
handles a set of context information. The event processing
agent and the scheduler are platform-independent. To better
explain the implementation of these components, we use the
two scenarios introduced in Section 4 as examples. The
events used in these scenarios are summarized in Table 3.

5.1 Event Generators

We implemented two event generators, the traffic monitor
and the network monitor. The traffic monitor provides the
atomic events, which indicate the arrivals of data packets and
changes in the status of UDP flows and TCP connections. The
network monitor generates events for the changes in the
network environment such as the changes in SNR. As an
event can be something that has happened in physical reality
or something that we predict will happen in the near future,
the event generators can provide events indicating the
changes in the monitored context like SNR as well as the
changes predicted to happen in near future, such as the
predicted traffic intervals. The subscription of atomic events
and the related context information is managed by the event
generator in question.

5.1.1 Traffic Monitor

The traffic monitor generates events based on real-time
packet information. We implemented packet sniffing in a
kernel module using Netfilter.1 Netfilter is a set of hooks in
the Linux kernel. For each hook, there is a callback function
to be invoked whenever a packet traverses the hook in the

1770 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012

1. http://www.netfilter.org.

network stack. We utilized two existing Netfilter hooks,

hook_local_in and hook_local_out, which handle outgoing and

incoming traffic, respectively. We customized their callback

functions so that the packet information can be sent to the

user space. In addition, we added a list to the kernel module

for managing the identifiers of the ongoing flows and

connections. The identifier is the combination of the IP and

port of the source and the destination, or simply just the

local port in the case of a TCP connection. We utilized the

handshake messages to detect the change in connection

state. For example, when an ACK responding to SYN is

detected and the connection identifier is not included in the

list, a new connection is considered to be established.
The traffic monitor running in the user space opens a

Netfilter socket for the incoming messages from the kernel

module. For each message, the first byte states the

message type, such as “connection opened,” “connection

disconnected,” or “packet arrived.” The traffic monitor

also maintains a list for managing the information on

existing connections. An event instance with a type called

FIRST_CONNECTION will be generated, if the connection

count changes from 0 to 1. Conversely, one with a type

called NO_CONNECTION will be generated if the count

changes from 1 to 0. For the message about a new packet,

the traffic monitor generates an event instance with a type

called NEW_PACKET and copies the packet information

into the event attribute fields.
The traffic monitor can also generate atomic events using

filtering on a single packet attribute. For example, it

generates event instances with a type called NEW_BURST

based on the packet interval with the previous packet that

belongs to the same connection and has the same transmis-

sion direction.

5.1.2 Network Monitor

The network monitor was implemented in a different way
than the traffic monitor. The network monitor does not
passively listen for messages coming from other compo-
nents. Instead, it periodically pulls information directly
through OS APIs. For example, it gets the signal strength
and noise level every 1 second through ioctl functions.

The network monitor generates events that indicate
changes in the predicted SNR. For example, LOW TO
HIGH SNR for the change from a value lower than the
threshold to one higher than that. We use only the predicted
SNR here, because the predicted SNR for the current time
slot implies the current state of network transmission. For
example, when the SNR in the current time slot was earlier
predicted to be lower than the threshold, even if the actual
measured SNR went over the threshold, the network
transmission would have been paused in accordance with
our adaptation rules.

5.2 Event Specification and ECA Rules

Event processing specifications define rules for event
processing in the event processing agent, while ECA rules
define event-driven adaptations to be scheduled by the
scheduler. We use structural XML to represent these two
types of rules. Each rule type includes four types of XML
elements, as listed in Table 4.

If the input of event processing includes different types of
events, the corresponding event processing rule can have
more than one <on> elements each of which corresponds to
one type of event. If the input has to be partitioned or
combined into groups of event instances for further proces-
sing, <on> elements can be replaced with <window>
elements. A <window> element can define a time window
or a moving window used for selecting event instances that
satisfy some criterias. Examples of <window> elements will
be given in Fig. 4.

XIAO ET AL.: POWER MANAGEMENT FOR WIRELESS DATA TRANSMISSION USING COMPLEX EVENT PROCESSING 1771

TABLE 3
Description of Events Used in Our Example Scenarios

TABLE 4
Description of XML Elements in Event Processing and ECA Rules

Both event processing rules and ECA rules include the
<if> element. The<if>describes the conditions that must be
satisfied for executing actions defined in the<do> elements.
The conditions are defined as a complex state, which is
basically a combination of atomic states and other complex
states formed with logical operators AND, OR, and NOT.
During runtime, the condition expression can be parsed into a
tree structure. The leaf nodes are capability values and their
reference values. The nonleaf nodes are binary operators if
their children are leaf nodes, or logical operators if their
children are nonleaf nodes. We use a tree-traversal algorithm
to implement the evaluation of the conditions.

The<do> and<elsedo> elements define actions that may
be invoked. We define an action as a tuple: (type, target, name,
paramlist), where type denotes the type of the action,
component is the identifier of the target hardware or software
component, name is the identifier of the target attribute
within the component and paramlist is a set of parameters for
the action.

There are three operation types, set, subscribe, and unsub-
scribe. “Set” operations set hardware and software para-
meters and generate new event instances, while “subscribe”
and “unsubscribe” operations subscribe and unsubscribe
events, respectively.

5.3 Event Processing Agent

Event generators and the event processing agent share an
event queue. Event generators only push event instances into
the queue, while the event processing agent can get them out
of the queue and also push back events that are generated
during event processing for further processing.

In this section, we present the implementation of event
processing agent using traffic-aware WNI control as an
example. The logical functions used in the example are shown
in Fig. 3. When loading event specification into the event
processing agent, different combinations of XML elements
are mapped to logical functions according to Table 5.

Instance partitioning is divided into two types, segmen-
tation-oriented partitioning and temporal-oriented parti-
tioning. Segmentation-oriented partitioning classifies the
event instances based on a certain event attribute. As shown

in Fig. 3, the events accepted by the input filter are first
partitioned based on the connection identifier. It means that
the events related to different connections will be processed
independently. The difference between filtering and seg-
mentation-oriented partitioning in XML elements is that the
event attributes used for differing event instances in
segmentation-oriented partitioning are defined in the
attributes of the <on> element.

Temporal-oriented partitioning divides the input into
groups based on the timestamps of the event occurrence. As
shown in Fig. 3, in branch a0, temporal-oriented partitioning
is applied to the events with a type called NEW_PACKET.
We implement temporal-oriented partitioning with a time
window. Only the events with their occurrence timestamps
covered by the time window will be included. The time
window is usually defined using the beginning and ending
points in time. However, in this case, these points in time are
uncertain, because the time window is initialized or closed
only when a certain event occurs. Hence, we define the time
window using the events that initiate or terminate the time
window, and call them initiator and terminator, respec-
tively. If a time window already exists when an initiator
occurs, there are different ways to handle the new initiator.
The initiator can be either ignored or interpreted as a signal
to create a new time window. The new time window can
then replace the old one, or coexist with the old one,
depending on the usage scenarios. In our example, as shown
in Fig. 4, a new event instance with type of NEW_BURST
will refresh the time window. It means that the related burst
statistics will be updated. For example, the size of current
burst will be reset to 0.

1772 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012

Fig. 3. Complex event processing in traffic-aware WNI control.

TABLE 5
Mapping XML Elements to Logical Functions

Besides time window, moving window is another kind of
window defined in <window> elements. Moving window is
used for selecting event instances for pattern matching in the
example. In the sequence starting from a2 in Fig. 3, the
standard deviation of the last 10 burst sizes is used when
doing threshold pattern matching. As shown in Fig. 4, a
moving window with fixed size of 10 is used for selecting the
previous 10 NEW_BURST event instances as input.

5.4 Conflict Detection and Resolution

The scheduler checks for potential conflicts whenever
loading a new rule. Given two rules, as described in
Fig. 5, it first parses the actions defined in the new rule into
operations to be applied to certain hardware/software
components. After that, it searches for the previously
loaded rules that may execute operations to the same
component. If another rule that tries to set different values to
the same parameter of the same component is found, there
might be a conflict, and further investigation is needed. In
this case, the scheduler parses the events defined in the two
rules into tree structures according to their event specifica-
tions. If either of the resulting trees is a subtree of the other,
the scheduler assigns a specificity-based conflict resolution
policy to the rules as shown in Fig. 5. If neither of the trees is
a subtree of the other, the scheduler checks whether the
two events may occur at the same time. If simultaneous
occurrence is possible, the scheduler will refuse to install the
new rule and will ask the developer to set priorities to the
conflicting rules. The information about which rules may
cause conflict and which conflict resolution policy should be
used is saved in the scheduler and is used for solving
conflicts during runtime.

6 EVALUATION

We evaluated the gained energy savings, the energy
consumption overhead caused by power management itself,
and the impact of running power management on the
system performance.

6.1 Experimental Setup

We ran the test on a Nokia N900. As shown in Fig. 6, the
device was connected to a public 802.11 b/g access point,
whose beacon interval was 100 ms. It means the mobile
device woke up every 100 ms to check for incoming data,

whenever it was in SLEEP mode. Throughout the experi-
ments we collected power consumption and traffic traces.

Power consumption traces: We used a Monsoon power
monitor2 to measure the power consumption during runtime.
The sampling frequency of the power monitor was set to
1 MHz. The power monitor itself combines the functionalities
of a DC power supply and a power meter. We replaced the
battery of the N900 with an electrical circuit, through which
the N900 was powered by the DC power supply of the power
monitor.

Traffic traces: We ran Wireshark3 directly on the N900,
and on the TCP server if the N900 was connected to it, to
capture the packet information.

In the test cases where the network data rates needed to
be specified, we used Trickle,4 a bandwidth throttling
software, to limit the data rate on the TCP servers.

6.2 Baseline Power Consumption

We first measured the power consumption of the N900
when the embedded WNI was in different operating
modes. The results are listed in Table 1. After that, we
measured the energy consumption overhead caused by our
power management system, which includes the overhead of
SNR monitoring, traffic sniffing, and event handling. As
shown in Table 6, the overhead caused by the event
handling, which includes all the operations except the event
generation and the actions invoked by the scheduler, was
about 1 percent of PS . SNR monitoring and traffic sniffing
were only used when there was network transmission
going on. Compared with PR or PI , the energy consumption
overhead of SNR monitoring and traffic sniffing was less
than 2 percent.

XIAO ET AL.: POWER MANAGEMENT FOR WIRELESS DATA TRANSMISSION USING COMPLEX EVENT PROCESSING 1773

2. http://www.msoon.com/LabEquipment/PowerMonitor/.
3. http://www.wireshark.org.
4. http://monkey.org/~marius/pages/?page=trickle.

Fig. 4. Examples of windows used in event processing.

Fig. 5. Conflict detection and resolution.

6.3 Internet Radio Streaming and File Download

We used the embedded media player on the N900 to

connect to an Internet radio station, called The Voice.5 The

real-time radio stream was delivered to the mobile through

HTTP/TCP. Our power management system was running

on the mobile device, independently of the media player.
We loaded the rules below during the initialization of

our power management software. In practice, these rules

were written as structural XML following the rule specifica-

tions. The events defined in these rules were processed

automatically, as shown in Fig. 3.

1. When START PREDICTION occurs, start predicting
the ending of each burst.

2. When STOP_PREDICTION occurs, stop predicting
the burst endings.

3. When END_BURST occurs, set PSM timeout to 0 ms.
4. When NEW_BURST occurs and if the prediction of

burst endings is enabled, set PSM timeout to 10 ms.
5. When WRONG_END occurs, double the burst size

threshold.

In addition, WRONG_END_AGAIN and MISS_NEW are

only used for analyzing prediction accuracy. When they

occur, the relevant statistics are updated.
We measured the power consumption of listening to

Internet radio in two scenarios where our power manage-

ment application was turned either on or off. When the power

management application was turned off, the PSM was

enabled with the PSM timeout set to 100 ms. When the power

management was running, we first initialized the burst size

threshold to 4,000 Bytes. This threshold was updated with

the unweighted mean of the previous five burst sizes. The

exception was that when WRONG_END event occurred,

which means the actual burst size is bigger than the threshold,

the burst size threshold would be doubled. The standard

deviation threshold was set to 5,000 Bytes during initializa-

tion. It was updated with the simple moving average over the

previous 10 burst sizes. We set the packet interval threshold to

10 ms. Choosing this particular setting was based on the

observations we had made of the Internet traffic. In our

measurements, 61.6 percent of the packet intervals were

smaller than 10 ms and would thus be included inside bursts.

We repeated the experiments five times. Each run lasted
for 4 minutes. The results, as listed in Table 7, show that the
average power consumption of the device was 11.9 percent
less with the power management system turned on.

Next we downloaded a 3,400 KB file using wget6 from a
Linux server to the N900. The file was saved to/dev/null
in order to avoid the writes to persistent memory affecting
the measurement results. The traffic was shaped into 4 KB
bursts on the server using Trickle. However, the shape and
the duration of the bursts were not constant, because the
traffic passed through both wired and wireless networks
after leaving the Trickle traffic shaper. The average data
rate during the file transmission was 15.97 KB/s. With the
adaptations turned on, the energy consumed during the
file download decreased by 13.6 percent from 87.37 to
76.94 J, at the cost of a 2 percent increase in download time.
The decrease in energy consumption during the file
download was a little higher than in the case of Internet
radio. One reason for the difference is that the traffic
prediction accuracy was much higher in the file download
case, as shown in Table 8.

We calculated the accuracy of our traffic predictions
based on the event counts. Two types of prediction errors
were identified in the experiments. In the first case an event
instance with a type called END_BURST was generated
before the burst had actually ended. However, even in this
case the remaining packets in the burst might still arrive on
time, if they arrived during the 6 ms it took the WNI to
switch to SLEEP mode. If a packet was received by the WNI
during this transition period, our traffic monitor generated
an event instance with type of WRONG_END. We then
used the number of these event instances with type of
WRONG_END for calculating the frequency of this first
type of prediction errors.

1774 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012

TABLE 6
Total Overhead Caused by Power Management

The overhead of SNR monitoring was measured when the SNR was
collected every 1 second. The overhead of traffic sniffing was measured
when Internet radio streaming was running.

TABLE 7
The Power Consumption of Listening to Internet Radio

with and without Power Management

5. http://83.145.249.98:80/. 6. http://www.gnu.org/s/wget/.

Fig. 6. Experimental setup.

TABLE 8
Accuracy of Burst Prediction for Internet Radio

Streaming and TCP File Download

If packets arrive after the WNI has already fallen

asleep, the packets will be buffered in the access point

until the WNI wakes up. The average additional delay for

these packets would be 50 ms if connected to an access

point with a beacon interval of 100 ms. The average

network throughput in our Internet radio experiment was

22.17 KB/s, which is fairly close to the encoding rate of

the Internet radio stream. The first big burst of data that

arrived after the connection was established was mea-

sured to be about 250 KB in size. From this information,

we could calculate that a delay less than 10 second was

unlikely to have effect on playback quality, which was

confirmed by the fact that no break during playback was

empirically observed during our measurements.
The other prediction error happened, when the burst

finished, but the power management system had failed to

predict the ending of the burst and no adaptations could be

invoked during the no-data interval. This kind of errors

have a negative effect on energy savings, but they do not

cause any additional delay.

6.4 SNR-Based Adaptive Network Transmission

We tested the file download from a remote server to the

mobile on the move. We moved the mobile device along a

straight line away from the access point and then took the

device back at a stable walking speed. The sampling

frequency of SNR was 1 Hz. As shown in Fig. 7, the SNR

was uniformly distributed with a mean of 17 and a standard

deviation of 9. We set the SNR threshold to 15 for generating

LOW_TO_HIGH_SNR and HIGH_TO_LOW_SNR.
We evaluated the quality of our SNR prediction

algorithm by comparing the predicted values with the
measured ones. As evaluation metrics we used the mean
squared error (MSE), which is the sum of the squares of
prediction errors. The MSE of our predictions turned out to
be 34.87, which is relatively good compared with [23]. A file
with size of 39.3 MB was downloaded from a TCP server to
the mobile device. The data rate was limited to 512 KBps on
server side. We adopted the following adaptation rules:

1. LOW_TO_HIGH_SNR and HIGH_TO_LOW_SNR
events are subscribed when FIRST_CONNECTION
occurs, and unsubscribed when NO_CONNECTION
occurs.

2. Upon the occurrence of HIGH_TO_LOW_SNR, in
case of TCP connection, it will be paused by setting
the TCP receive window size to 0.

3. Upon the occurrence of LOW_TO_HIGH_SNR, in
case of TCP connection, it will continue by resuming
the TCP receive window size to its default value.

As shown in Fig. 8, the download duration measured
from the arrival of the first packet to the arrival of last packet
was 161.97 seconds without adaptations, and 229.15 seconds
with adaptations. Without adaptations, the TCP connection
was disconnected due to the low SNR for 29.80 seconds
between the 108th and 138th seconds. With adaptations, the
download was paused by adaptations for 122.04 seconds.
The WNI was put into SLEEP mode instead of letting it
work inefficiently in RECEIVE mode. Hence, our adapta-
tions reduced the time spent in RECEIVE or IDLE modes by
20 percent from 132.18 to 107.12 seconds.

As it proved unfeasible to conduct the physical power
measurement of a moving device with the hardware we had
at our disposal, we had to resort to calculating the energy
consumption based on the traffic traces with the power
models shown below.

T1 ¼
X

i�0:1

ðiÞ þ#ðbursts j i > 0:1Þ � Ttimeout; ð1Þ

T2 ¼ T �
X
ðiÞ � S=R; ð2Þ

Energy ¼ ðPR � PSÞ � S=Rþ ðPI � PSÞ � ðT1 þ T2Þ; ð3Þ

where T is the total duration of file transmission, T1 is the
sum of burst intervals, and T2 is the sum of the packet
intervals which are smaller than the packet interval thresh-
old. In addition, i is the burst interval in seconds,Ttimeout is the
PSM timeout, S is the total traffic size, and R is the maximum
throughput of the WNI. PR, PS , and PI are the power
consumption with WNI in RECEIVE, SLEEP, and IDLE
mode, respectively.

Our models are derived from the ones presented in [22]
and [21]. We assume that the WNI is in RECEIVE mode
during transmission and in IDLE mode during the interval if
the interval is shorter than the PSM timeout. For the intervals
longer than the PSM timeout, WNI stays in IDLE mode until
the timer expires and then switches into SLEEP mode.

There are two kinds of intervals, burst intervals, and the
packet intervals inside bursts. The former are always bigger
than the packet interval threshold, whereas the latter are
smaller than it. In our measurement, we set the PSM
timeout to 100 ms and packet interval threshold to 10 ms.

XIAO ET AL.: POWER MANAGEMENT FOR WIRELESS DATA TRANSMISSION USING COMPLEX EVENT PROCESSING 1775

Fig. 7. Cumulative distribution of SNR.

Fig. 8. Comparison of network throughput with/without adaptation.

Hence, WNI only stays in IDLE mode during the intervals
inside bursts, whereas it might go into SLEEP mode if the
burst intervals are bigger than 100 ms. We calculated the
total duration of WNI processing as the total traffic size
divided by the maximum throughput of the WNI. Accord-
ing to our measurement, the maximum throughput was
1.328 Mbps.

The values listed in Table 1 were used for our calculation.
On average, it costs 93.68 J to download the file without
adaptations, whereas it costs only 81.64 J with adaptations.
With the adaptations, 12.85 percent less energy was con-
sumed. To explain the energy savings achieved by our
adaptation, we choose two samples. One is from the result
without adaptation, and the other one from the result with
adaptation. As shown in Table 9, the majority of savings come
from the reduction in the energy used during burst intervals.

7 CONCLUSION

In this paper, we proposed an event-driven framework for
rule-based power management for wireless data transmis-
sion on mobile devices. The framework supports complex
event processing, which helps in decoupling event proces-
sing from event consumption and has the potential for
reducing the event processing overhead if compared to
simple event processing. We demonstrated the framework by
using it to implement two power-saving applications, a
traffic-aware WNI control application and a SNR-based
transmission adaptation application. Measurements showed
on average 12 percent of energy savings in both cases.

In the future, we see the potential of extending our
framework toward collaborative power management be-
tween mobile devices. Contextual information collected from
mobile devices can be shared to other mobile devices using
central web services or peer-to-peer mechanisms. Our event-
driven framework presented in this paper can be extended to
support the collection and sharing of context data between
mobile devices and also to utilize the context data that the
other users produce for saving energy. The sharing of context
information, such as traces of SNR measured in different
locations, can help reduce the energy consumption spent in
context monitoring and processing.

ACKNOWLEDGMENTS

This work was supported by the Academy of Finland,
grants number 253860 and 135230, and by TEKES as part of
the Future Internet program of TIVIT (Finnish Strategic
Centre for Science, Technology and Innovation in the field
of ICT). The authors also would like to thank Thomas
Plagemann, and Vera Goebel for their valuable comments.

REFERENCES

[1] G.D. Abowd, A.K. Dey, P.J. Brownd, N. Davies, M. Smith, and P.
Steggles, “Towards a Better Understanding of Context and
Context-Awareness,” Proc. First Int’l Symp. Handheld and Ubiqui-
tous Computing, pp. 304-307, http://dl.acm.org/citation.cfm?id=
647985.743843, 1999.

[2] E. Shih, P. Bahl, and M.J. Sinclair, “Wake on Wireless: An Event
Driven Energy Saving Strategy for Battery Operated Devices,”
Proc. MobiCom ’02, pp. 160-171, http://dx.doi.org/10.1145/
570645.570666, 2002.

[3] A. Weissel and F. Bellosa, “Process Cruise Control: Event-
Driven Clock Scaling for Dynamic Power Management,” Proc.
Int’l Conf. Compilers, Architecture, and Synthesis for Embedded
Systems (CASES ’02), pp. 238-246, http://doi.acm.org/10.1145/
581630.581668, 2002.

[4] B. Michelson, “Event-Driven Architecture Overview,” Patricia
Seybold Group, Feb. 2006.

[5] O. Etzion and P. Niblett, Event Processing in Action. Manning
Publications, 2011.

[6] M. Anand, E.B. Nightingale, and J. Flinn, “Self-Tuning Wireless
Network Power Management,” Wireless Networks, vol. 11, pp. 451-
469, July 2005.

[7] D. Bertozzi, L. Benini, and B. Ricco, “Power Aware Network
Interface Management for Streaming Multimedia,” Proc. IEEE
Wireless Comm. and Networking Conf. (WCNC), vol. 2, pp. 926-930,
Mar. 2002.

[8] S. Mohapatra, N. Dutt, A. Nicolau, and N. Venkatasubramanian,
“Dynamo: A Cross-Layer Framework for End-to-End Qos and
Energy Optimization in Mobile Handheld Devices,” IEEE J. Selected
Areas in Comm., vol. 25, no. 4, pp. 722-737, May 2007.

[9] IEEE Standard for Information Technology - Telecomm. and Information
Exchange Between Systems - Local and Metropolitan Area Networks-
Specific Requirements - Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications, IEEE Standard
802.11-2007, Revision of IEEE Std 802.11-1999, p. C1-1184, June
2007.

[10] R. Krashinsky and H. Balakrishnan, “Minimizing Energy for
Wireless Web Access with Bounded Slowdown,” Wireless Net-
works, vol. 11, pp. 135-148, http://dx.doi.org/10.1007/s11276-
004-4751-z, Jan. 2005.

[11] J. Liu and L. Zhong, “Micro Power Management of Active 802.11
Interfaces,” Proc. Sixth Int’l Conf. Mobile Systems, Applications, and
Services (MobiSys ’08), pp. 146-159, http://doi.acm.org/10.1145/
1378600.1378617, 2008.

[12] F.R. Dogar, P. Steenkiste, and K. Papagiannaki, “Catnap: Exploit-
ing High Bandwidth Wireless Interfaces to Save Energy for Mobile
Devices,” Proc. Eighth Int’l Conf. Mobile Systems, Applications, and
Services (MobiSys ’10), pp. 107-122, http://doi.acm.org/10.1145/
1814433.1814446, 2010.

[13] D.C. Snowdon, E. Le Sueur, S.M. Petters, and G. Heiser,
“Koala: A Platform for OS-Level Power Management,” Proc.
Fourth ACM European Conf. Computer Systems (EuroSys ’09),
pp. 289-302, 2009.

[14] H.S. Ashwini, A. Thawani, and Y.N. Srikant, “Middleware for
Efficient Power Management in Mobile Devices,” Proc. Third Int’l
Conf. Mobile Technology, Applications and Systems (Mobility ’06),
2006.

[15] A.B. Lago and I. Larizgoitia, “An Application-Aware Approach
to Efficient Power Management in Mobile Devices,” Proc.
Fourth Int’l ICST Conf. Comm. System Software and Middleware
(COMSWARE ’09), pp. 11:1-11:10, 2009.

[16] J. Sorber, N. Banerjee, M.D. Corner, and S. Rollins, “Turducken:
Hierarchical Power Management for Mobile Devices,” Proc. Third
Int’l Conf. Mobile Systems, Applications, and Services (MobiSys ’05),
pp. 261-274, 2005.

[17] J. Manweiler and R. Roy Choudhury, “Avoiding the Rush Hours:
Wifi Energy Management via Traffic Isolation,” Proc. Ninth Int’l
Conf. Mobile Systems, Applications, and Services (MobiSys), pp. 253-
266, http://doi.acm.org/10.1145/1999995.2000020, 2011.

[18] M. Grossglauser and J.-C. Bolot, “On the Relevance of Long-Range
Dependence in Network Traffic,” IEEE/ACM Trans. Networks,
vol. 7, no. 5, pp. 629-640, http://dx.doi.org/10.1109/90.803379,
Oct. 1999.

[19] K.-c. Lan and J. Heidemann, “A Measurement Study of
Correlations of Internet Flow Characteristics,” Computer Net-
works, vol. 50, pp. 46-62, http://portal.acm.org/citation.cfm?id=
1119569.1648543, Jan. 2006.

1776 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012

TABLE 9
Power Analysis of SNR-Based Transmission Adaptation

[20] A. Schulman, V. Navda, R. Ramjee, N. Spring, P. Deshpande, C.
Grunewald, K. Jain, and V.N. Padmanabhan, “Bartendr: A
Practical Approach to Energy-Aware Cellular Data Scheduling,”
Proc. MobiCom ’10, pp. 85-96, http://doi.acm.org/10.1145/
1859995.1860006, 2010.

[21] R. Friedman, A. Kogan, and K. Yevgeny, “On Power and
Throughput Tradeoffs of Wifi and Bluetooth in Smartphones,”
Proc. INFOCOM ’11, Apr. 2011.

[22] Y. Xiao, P. Savolainen, A. Karpanen, M. Siekkinen, and A. Ylä-
Jääski, “Practical Power Modeling of Data Transmission over
802.11g for Wireless Applications,” Proc. First Int’l Conf. Energy-
Efficient Computing and Networking E-Energy, pp. 75-84, 2010.

[23] R. Sri Kalyanaraman, Y. Xiao, and A. Ylä-Jääski, “Network
Prediction for Energy-Aware Transmission in Mobile Applica-
tioins,” J. Advances in Telecomm., vol. 3, pp. 72-82, Nov. 2010.

[24] G. Osman and S. Hasan, and C.M. Rahman, “Prediction of State of
Wireless Network Using Markov and Hidden Markov Model,”
Networks, vol. 4, no. 10, pp. 976-984, 2009.

Yu Xiao received the MSc degree in computer
science from Beijing University of Posts and
Telecommunications in 2007, and the PhD
degree in computer science from Aalto Univer-
sity in 2012. She is currently a postdoctoral
researcher at the Department of Computer
Science and Engineering, Aalto University. Her
current research interests include energy-effi-
cient wireless networking, crowd-sensing, and
mobile cloud computing.

Wei Li received the BS degree in communica-
tions engineering from Nankai University, China
in 2007 and the MS degree in digital signal
processing from Aalto university, Finland in
2011. His current research interest include event
processing on complex systems, mathematical
modeling on computer as well as mobile plat-
form programming.

Matti Siekkinen received the MSc degree in
computer science from Helsinki University of
Technology and in Networks and Distributed
Systems from University of Nice Sophia-Anti-
polis in 2003, and PhD degree from Eurecom/
University of Nice Sophia-Antipolis in 2006. He
is currently a senior research scientist at the
Department of Computer Science and Engineer-
ing, Aalto University. His research interests
include energy efficiency in ICT, network mea-
surements, and Internet protocols.

Petri Savolainen received the MSc degree in
computer science from the University of Helsinki
in 2004. He is currently a doctoral student at the
Department of Computer Science, University of
Helsinki and also a researcher at Helsinki
Institute for Information Technology. His current
research interests include peer-to-peer network-
ing, energy-efficient computing, and mesh net-
working.

Antti Ylä-Jääski received the PhD degree in
ETH Zuerich 1993. He has worked with Nokia
1994-2009 in several research and research
management positions with focus on future
Internet, mobile networks, applications, services
and service architectures. He has been a
professor for Telecommunications Software,
Department of Computer Science and Engineer-
ing, Aalto University since 2004. His current
research interests include green ICT, mobile

computing, service, and service architecture. He is a member of the
IEEE and the IEEE Computer Society.

Pan Hui received the PhD degree in computer
science from the University of Cambridge, and
the BEng and MPhil degrees both from the
University of Hong Kong. He is a senior research
scientist and principal investigator at Deutsche
Telekom Laboratories (T-labs) Germany and an
adjunct professor at Aalto University Finland. He
was also an affiliated researcher with Intel
Research Cambridge. His current research
interests include social networking and comput-

ing, cloud computing, mobile and pervasive systems, mining of large-
scale mobility data, and the application of complex network science in
communication systems design. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

XIAO ET AL.: POWER MANAGEMENT FOR WIRELESS DATA TRANSMISSION USING COMPLEX EVENT PROCESSING 1777

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

