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Abstract—Wireless data transmission consumes a significant part of the overall energy consumption of smartphones, due to the
popularity of Internet applications. In this paper we investigate the energy consumption characteristics of data transmission over Wi-Fi,
focusing on the effect of Internet flow characteristics and network environment. We present deterministic models that describe the
energy consumption of Wi-Fi data transmission with traffic burstiness, network performance metrics like throughput and retransmission
rate, and parameters of the power saving mechanisms in use. Our models are practical because their inputs are easily available
on mobile platforms without modifying low-level software or hardware components. We demonstrate the practice of model-based
energy profiling on Maemo, Symbian and Android phones, and evaluate the accuracy with physical power measurement of applications
including file transfer, web browsing, video streaming and instant messaging. Our experimental results show that our models are of

adequate accuracy for energy profiling and are easy to apply.

Index Terms—Power modeling, Wi-Fi, smartphone

1 INTRODUCTION

NERGY consumption caused by wireless data trans-

mission on smartphones is increasing rapidly with
the growing popularity of applications that require net-
work connectivity. This results in shrinking battery life,
as the development of battery technology is unable to
keep up with the energy demand of applications. While
waiting for breakthroughs in battery technology, we can
try and make the networked applications more energy-
efficient.

In order to develop energy-efficient networked appli-
cations on smartphones, the developers need to know
the factors that affect the energy-efficiency in wireless
data transmission and to be able to evaluate the joint
effects of these factors on battery life. Although many
of these factors, such as the inactivity timers in 3G
networks [1], the network throughput [2], and the traffic
patterns [3], have been identified through measurement
studies, the joint impact of these factors has not been
thoroughly quantified. We still lack models that can
accurately estimate the data-transmission-related energy
consumption of wireless applications in varying network
environments.

To remedy the situation, we have built practical power
models that utilize traffic characteristics to estimate the
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energy consumption of Wi-Fi data transmission. Our
models can be used for power analysis of network
applications, as well as for runtime power estimation in
energy-aware applications that utilize technologies such
as computation offloading [4], [5] or traffic shaping [6],
[7].

We base our models on deterministic power modeling
where the basic idea is to estimate the energy con-
sumption of hardware components with the help of pre-
defined state machines. In our case, we have build a state
machine that models the standard behavior of an 802.11
WNI. Since the operating systems on most commercial
devices do not expose the durations the WNI spends
in each power state, we propose using traffic traces to
estimate these durations.

The inputs of our models, mainly the traffic statis-
tics such as the burst durations and sizes, are accessi-
ble without modifying low-level hardware or software
components. While exploring the trade-off between the
model accuracy and the granularity of the inputs we
find that the burst-level traffic information is enough
for power modeling purposes. When high-sampling-
frequency power meters are not available, burst-level
analysis becomes especially interesting as means of re-
ducing the negative impact of the the low sampling fre-
quency on the accuracy of model-based energy profiling.

Our models are applicable to both TCP and UDP
transmission. Due to limited space, we use the more
complex TCP transmission in model evaluation. This
choice can also be justified by the fact that more than 70%
of all IP traffic has been measured to be TCP-based [8].
We evaluate our models with TCP download/upload at
different data rates in both fairly and heavily congested
networks. Our test cases cover the scenarios where the
data is delivered in regularly repeated bursts as often



seen in streaming applications, as well as the scenarios
where the data is delivered in bursts with random sizes
and intervals as seen in web browsing and instant mes-
saging. We compare the estimation of our models against
physical power measurement on Nokia N810, Nokia
N95, HTC G1, and Samsung Nexus S. The experimental
results show that the Mean Absolute Percentage Error
(MAPE) of our estimation varies between 1.1% and 9.1%.

Our contributions presented in this paper include:

o Presenting simple and practical power models of
Wi-Fi data transmission based on Internet flow char-
acteristics and network environment context.

o Evaluating the proposed power models through
thorough empirical experiments on three mobile
platforms and in different network environments.

Compared to the preliminary version of this paper [9],

this extended version includes significant new results.
We have extended our models to profile the transmission
energy consumption of traffic that does not show regular
patterns, and to estimate the overhead caused by MAC
layer retransmissions in congested networks. Moreover,
we have analyzed the impact of the choice of the burst
detection threshold and of the the general granularity of
the inputs on the resulting power estimation accuracy.

The rest of this paper is organized as follows. Section 2

covers the relevant background of power modeling. Sec-
tion 3 presents our power models. We discuss the prac-
tical issues of model-based energy profiling in Section 4
and present the evaluation of our models in Section 5.
The applicability of our models to the emerging 802.11
standards is discussed in Section 6 before we conclude
our work in Section 7.

2 BACKGROUND

Power modeling has been widely used for investigating
the factors that influence the energy consumption of
smartphones. In this section, we first introduce the two
main modeling methodologies used in the discipline,
and then introduce the power saving mechanisms that
are often used in Wi-Fi network interfaces (WNIs).

2.1 Statistical Power Modeling of Smartphones

Statistical power modeling employs statistical methods
such as linear regression for estimating the relationship
between the power consumption and some measured
variables such as transmission rate or processor clock
speed. These methods have been applied in analyzing
the power consumption of software components as im-
plemented in PowerScope [10], as well as in model-
ing the system-level power consumption of the smart-
phone hardware. Examples of the latter include Power-
Tutor [11], Sesame [12], and the work presented in [13].

In these system-level power models, power consump-
tion of Wi-Fi data transmission was studied as part of the
overall power consumption. We find that the variables
used in these models for modeling the Wi-Fi data trans-
mission only provide coarse-grained information, such

as uplink channel rate and network throughput, which
cannot well describe the impact from traffic patterns
and the network environment. For example, according
to [11], PowerTutor estimates the power consumption of
the WNI using the model shown in (1).

PWi—Fi - Pbaseline + (48 —0.768 x R(:hannel) X Tdatas (1)

where Pygscrine is the baseline power corresponding to
the power state of the WNI, Rcpanner is uplink channel
rate ranging from 1Mbps to 54Mbps, and 744, is packet
rate. The WNI is assumed to switch between two power
states according to the packet rate of the Wi-Fi data
transmission. Except Ppgseiine Which is constant and
hardware-specific, Rchanner and Tqqtq are collected from
the phones during runtime.

2.2 Deterministic Power Modeling of Smartphones

From software point of view, a hardware component can
conduct different operations, each of which corresponds
to an operating mode. For example, a WNI has at least
three operating modes, corresponding to the operations
of sending, receiving and waiting for traffic, respectively.
In most cases where one operating mode corresponds to
exactly one power state, the power consumption of the
hardware component can be derived from the operating
mode, and vice versa.

There are also exceptions where the hardware compo-
nents auto adapt their operation to their current work-
load, and thus something the software sees as one single
operating mode can in fact include several hardware
power states. For example, Pathak et al. [14] observed
that on HTC Tytn2 running Windows Mobile 6, the
WNI can switch to a power state with higher power
consumption when the packet rate gets over 50 packets
per second. Another example is the 802.11 Power Saving
Mode (PSM) [18] which will be described in Section 2.3.

Deterministic power models describe the power con-
sumption behavior of a hardware component with a
power state machine. The total energy cost of a hardware
component over time is composed of the energy that the
component spends in each of its power states and of the
energy spent during the transitions between the power
states. It can be formally presented as follows.

E(t) =Y Ei(t;)+ Y > Ejx x Cix(t), 2)
j ik

where E(t) is the total energy consumed by the hard-
ware component over the duration ¢, t = 3¢, t; is
the duration spent in power state j and FE;(t;) is the
energy spent during t;. Assuming that P;, the rate of
energy consumption in power state j, is constant during
tj, Ej(t;) can be calculated as the product of ¢; and P;.
E; 1, is the overhead caused by the transition from power
state j to k, while C; x(t) shows how many times this
transition has occurred during ¢.

Deterministic power modeling has been used for
studying energy consumption of Wi-Fi [15], 3G [16],



LTE [17] and Bluetooth [2]. The operating mode of a
hardware component can be tracked using three meth-
ods. First is to directly read the information about the op-
erating mode from the hardware component via a device
driver of the OS. For instance, Quanto [19], a network-
wide energy profiler for embedded network devices,
adopts this method. However, as standard device drivers
do not usually expose the operating mode information,
Quanto requires modifications to device drivers.

Second is to estimate the operating mode based on
system call traces, as proposed by Pathak et al. [14].
However, the smartphones must be flashed with cus-
tomized kernel images to enable the system-call tracing.

Third is to derive operating mode from measured
workload. For example, the workload of network trans-
mission can be described with libpcap! packet traces.
These traces can tell if the WNI is sending, receiving or
waiting for packets. Moreover, they can provide traffic
statistics, such as throughput and packet rate, which
are useful for detecting workload-driven power state
transition. In practice, a power state machine of the WNI
can be built by empirically correlating changes in the
packet traces to physically measured changes in power
levels. With the help of such a state machine, t; and
C, k(t) could be derived from a libpcap packet trace. We
adopted the third method in this work.

2.3 Wi-Fi transmission cost

The total energy consumption of Wi-Fi data transmission
consists of two parts, the energy consumption of the
WNI and that of the CPU and memory during data
copying and processing operations [20]. According to
our measurement on Samsung Nexus S, data copying
operations consumed up to 15% of the overall energy
consumption during Wi-Fi data transmission. In this
paper we focus on the former part, also called the
transmission cost.

The power state machine of a hardware component in-
cludes the state transitions defined by the power saving
mechanisms in use. An 802.11 WNI has three default
operating modes, namely, TRANSMIT, RECEIVE and
IDLE. The 802.11 PSM [18] introduces another operating
mode called SLEEP. When the WNI stays in the SLEEP
mode, the WNI only wakes up at a granularity of beacon
intervals (e.g. 100ms) to check for incoming traffic. As
a result, it costs much less energy than in any other
mode. However, it may cause performance degradation,
because the traffic that arrives between beacons is either
buffered at the access point or simply dropped if the
buffer overflows. To solve this issue, an adaptive version
of PSM, also known as PSM Adaptive, has been pro-
posed and widely adopted in commercial products. In
PSM Adaptive, after receiving or transmitting a packet,
the WNI will stay in the IDLE mode for a period of time
before going to sleep. We call the length of this period

1. libpcap is a portable C/C++ library for network traffic capture. It
is available on www.tcpdump.org.

Burst Duration Ts
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|
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Fig. 1. Burst definition.

the PSM timeout, whose default value varies from device
to device. In the remainder of this paper, we will use the
abbreviation PSM to refer to PSM Adaptive.

3 POWER MODELING

Using the method outlined in Section 2.2, we pro-
pose modeling the Wi-Fi transmission cost using easily-
accessible traffic information. As presented in [21], Inter-
net traffic is bursty on a small, typically less than 100-
1000ms scale. We utilize this burstiness phenomenon in
estimating the power state of the WNI, and build power
models that define variables with burst size/duration,
and data rate. The definition of traffic burst is given in
Section 3.1.

We model a complete TCP/UDP session as a combina-
tion of upstream and downstream traffic. We first study
the power consumption of one way traffic (Section 3.2),
and then explain how the combination of the developed
models can be used for modeling power consumption
of TCP download and upload sessions (Section 3.3). We
provide simplified forms of the models in Section 3.4
and discuss the energy consumption overhead caused
by MAC layer retransmission in Section 3.5.

Two important metrics used in this paper are Power
and Energy Utility. Power is the energy consumption per
unit time expressed in Watts, while Energy Utility is the
average throughput per unit energy [22]. The notation
used in this section is summarized in Table 1.

3.1

An Internet flow can be considered as a train of packets.
According to the definition of “train burstiness” in [23],
“a burst can be defined as a train of packets with a packet
interval less than a threshold #”. An Internet flow can
then be divided into bins with one burst in each bin.
One burst includes one or more packets, depending on
the distribution of packet intervals and the value of 6.
Due to the difference in Power between the TRANS-
MIT and the RECEIVE modes, we add one constraint
to the definition of “train burstiness” [23]. We define a
burst as a train of packets with the same transmission
direction and with each packet interval smaller than the
threshold 6. As shown in Fig. 1, burst duration T3 is
“the time elapsed between the first and the last packets
of a burst” [23], while burst size Sp is the amount of
the data sent or received during 7's. Burst interval 77 is
the time elapsed between the last packet of a burst and

Burst Definition



TABLE 1
Summary of notation

SB burst size T burst duration Ty burst interval
Ep energy cost of a bin Eo(r) energy utility at data rate r T bin duration
r bin data rate Pctive average power in active mode Pg power in the SLEEP mode
Pr power in RECEIVE mode Pr power in TRANSMIT mode Pr power in the IDLE mode
Py(r) | power of downlink at data rate r | Py(r) power of uplink at data rate r re threshold of data rate
E energy cost of an Internet flow Tsicep time spent in SLEEP mode within | T} total duration of downlink
a bin bursts

Tu total duration of uplink bursts Sab downlink burst size Sack size of ACK
Ts total duration in SLEEP mode Tiimeout | the value of the PSM timeout Erctransmit | cost of retransmitting packets
R, retransmission ratio T; retransmitted packet interval T throughput over a flow
Tmax maximum processing capacity [ maximum packet interval within

of downstream traffic of WNI a burst

the first packet of the following burst. Bin duration T
includes the burst duration and the burst interval.
Given an Internet flow, we can detect all the bursts and
then use the burst information to calculate the average
network throughput 7 over the Internet flow following

FoxS_ 2.5 3)
YT YT+ Tr
From (3) we can see that given a fixed amount of data
and a fixed data rate limit, the data can be delivered in
different traffic patterns in terms of distributions of burst
size and interval. We use the standard deviation of burst
interval and that of burst size to describe the regularity
of the bursts. If Internet flows consist of bursts with
small standard deviations, such as those caused by audio
streaming, we consider these flows to be regularly bursty
traffic and to be randomly bursty traffic otherwise. We
will describe the power models that fit these two kinds
of traffic in Section 3.2.2.

3.2 Downlink/Uplink Power Consumption

According to our definition of train burstiness, a down-
link or an uplink flow can be divided into bins. We pro-
pose aggregating the energy spent in each bin (Section
3.2.1) into the transmission cost of a flow (Section 3.2.2).

We assume that the threshold value ¢ is always smaller
than the PSM timeout T};c0ut When the PSM is enabled.
This means that the transition from the IDLE to the
SLEEP mode may only happen during burst intervals.
Let Tsicep be the duration spent in the SLEEP mode
during a burst interval. As described in (4), only when
the value of 77 is greater than that of Timeous can the
WNI switch to the SLEEP mode. Let r be bin data rate.
In (5) we define a threshold r. as the bin data rate when
Tt is equal to Tiimeout-

Tc;leep = TI - 71ti1neouta when TI > 71ti1neout- (4)
Sp
= . 5)
TB + 711£z1neout
To evaluate the effect of the PSM, we define the
following two scenarios. The WNI is expected to always

stay in the IDLE mode during burst intervals in Scenario
1. Thus only in Scenario 2 can the PSM save energy.

Tc

e Scenario 1: PSM is disabled, or r is not smaller than
r. with PSM enabled.
e Scenario 2: r is smaller than r, with PSM enabled.

3.2.1 Energy per bin

We denote by Pr, Pr, Pr and Ps the Power when
the WNI stays in the TRANSMIT, RECEIVE, IDLE
and SLEEP mode, respectively. As some modern smart-
phones may support transmit power control, we make
the simplifying assumption that the transmit power
stays the same within one burst and only can change
between the bursts. We estimate the Power within one
burst to be fixed to either Pr or Pr, depending on the
transmission direction. Our estimation ignores the tran-
sition into the IDLE mode during the packet intervals
smaller than the threshold value 6. The potential error
caused by it will be analyzed in Section 4.

Downlink power consumption is the power consumed
when receiving data. Let Ep denote the transmission
cost of a bin in Joule, and Fy(r) denote the average
downlink Power in Watts. In Scenario 1, the WNI oper-
ates in the RECEIVE mode when receiving data and in
the IDLE mode otherwise. Thus Ep includes the energy
spent in the RECEIVE and the IDLE modes. In Scenario
1, the value of P;(r) can increase linearly with the bin
data rate r, as shown in (6).

Ep  PrTp + P/Ty Tg
(6)

In Scenario 2, T; is divided into two parts, T;imeout and
Tsieep- The WNI can be in the IDLE mode for a duration
of Tiimeoutr after receiving the last packet of data, and
in the SLEEP mode after this until the end of the bin.
Ep can then be divided into 3 parts as shown in (7).
Accordingly, the definition of P,(r) is refined into (8).

Py(r) =

EB = PRTB + PITtimeout + PSTsleep- (7)
T Timeou
Py(r) = P, + r[i(PR — Ps) + tTBt(P, — Ps)]. (8)

3.2.2 Power over an Internet flow

If the bursts included in an Internet flow are regularly
repeated, Sp and Tz can be considered to be fixed, while




the length of the burst interval T varies with the bin rate
r, for example, T; increases when r decreases?. In that
case, the Internet flow can be compared to one single
bin that repeats itself over and over again for the whole
duration of the flow. Thus (6) and (8) can be used for
estimating the average power over the Internet flow by
replacing r with the 7 defined in (3).

According to (6) and (8), Power increases linearly with
data rate for regularly bursty trafficc. We denote the
Energy Utility of the Internet flow by Ey(7) and define
it in (9). Similarly with Power, we can see that Ey(7)
increases with 7, which means it is more energy-efficient
to transfer regularly bursty traffic at a higher rate.

7

If the bursts included in an Internet flow are not
regularly repeated, which means the burst sizes and
intervals vary over time, the total energy consumption
E can be aggregated from the energy spent in each bin.
When the PSM is disabled, FE and P4(7) can be calculated

following (10) and (11) respectively.

E=) Egp=Y» TsPr+)» TIP. (10)
PA(F) = ;T . %?(PR —p). Ay

When the PSM is enabled, let Ts denote the total
duration spent in the SLEEP mode, and c be the total
number of burst intervals. Py;(7) in this case can be
obtained from (12).

T — T T
Py(T) = Pp— ZZIjTS(PR_PI) - Z—ST(PR—PS)7 (12)
where,
TS = ( Z TI) - CTtimeout (]- - Z T[)) (13)
Tr>Ttimeout Tr STtirneout

The above equations (10) - (12) can be applied for
estimating average uplink Power P,(7) by replacing
Pd(F) with P, (7), and Pgr with Pr.

3.3 TCP Download/Upload Power Consumption

We model TCP transmission as a combination of separate
downlink and uplink transmissions. Let r4 be the down-
link data rate, and r, be the uplink data rate. Take TCP
download as example, 74 is the data rate of downloading
the files, while r, is the data rate of sending ACKs.

We first discuss the power consumption of TCP down-
load. We assume that a downlink burst includes n pack-
ets, and is followed by uplink bursts that consists of in
total m ACKs.? Let the downlink burst size be Sy, and

2. Keeping the burst size and burst duration constant and varying
the length of the burst interval according to the desired network
throughput is a data-rate-limiting mechanism utilized in many traffic
shaping utilities such as Trickle [24]

3. Depending on the TCP version, there may be one ACK for each
received packet, or one ACK for multiple received packets. Depending
on the intervals between ACKs and the threshold value in the burst
definition, the ACKs may be divided into more than one uplink burst.

the size of one ACK be S,x. The uplink data rate r,, can
be obtained from (14).

mSackrd
Sap

We extend the definition of a bin here to have a
bin including one downlink burst and all the uplink
bursts sent before the beginning of the next downlink
burst. The bin duration is the duration from the first
packet in the downlink burst until the first packet of the
next downlink burst. We assume that the downlink and
uplink bursts do not overlap.

We denote the downlink burst duration by 7, and
the uplink burst duration by 7. In the cases of TCP
download/upload, we redefine the threshold of network
throughput r. in (15). Having the data rate smaller than
r. is a necessary condition for the WNI to go to sleep
during a bin. Whether the WNI will go to sleep and how
many times the WNI will switch into the SLEEP mode
within a bin depends on each value of the burst intervals
within the bin.

(14)

Ty =

B Sab

B Td + Tu + Ttimeout .
Let the average Power during the TCP download be

P(rq). It consists of both downlink and uplink power.

In the Scenario 1 defined in Section 3.2, P(ry) can be

calculated based on (6), as follows.

P(Td) - Pd(rd) + Pu(ru) - PI

T
:P[+Tg 4 (Pp— Pr) +

db moack
r
= Pr+ ?L[Td(PR — P[) +Tu(PT —P])].

(15)

Te

Ty Ty

(Pr—Pr)  (16)

In the Scenario 2 defined in Section 3.2, P(r;) can be
estimated following (17).

Td
P(rq) = P, + ~%[Ty(Pg — P,
(ra) + Sdb[ a(Pr ) 17)
+Tu<PT _PS) +aTtimeout(PI _PS>];

where aT}imeout is the total duration the WNI will spend
in the IDLE mode during all the burst intervals within
a bin. The factor « is calculated as follows: Assume that
there are X burst intervals within the bin, out of which
Y intervals are longer than Tiimeout. In the beginning
of each of these Y intervals the WNI stays in the IDLE
mode for the duration of Timeout before going to sleep.
Additionally, the WNI stays in IDLE mode during the
complete duration of the X —Y intervals that are shorter
than T};meout- The factor « is thus:

X-Y
Ti : E < Ttirneout'
i=1

1

Ttimeout

a=Y + (18)

Similarly with the TCP download, the power con-
sumption of the TCP upload can be calculated as pre-
sented in (16) and (17) by replacing rq with r,, and
Sap with the data size of the uplink data burst. When
considering the power consumption of multiple TCP



TABLE 2
Different forms of power models
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connections, the aggregate network data rate has to be
taken into consideration. In practice, we replace the rq4
and 7, in (16) and (17) with the aggregate data rate in
each direction. The extra protocol processing cost of mul-
tiple TCP connections can be ignored when compared to
the uplink and downlink transmission cost.

3.4 Simplified Power Models

As listed in Table 2, the models presented in Section 3.3
require information including packet size, arrival time
and transmission direction. In this section we provide
two simplified power models that require less informa-
tion for the Scenario 1 defined in Section 3.2.

The first one is to estimate the average Power over
the Internet flow based on the average Power in active
mode. Here we define active mode as the operating mode
of the WNI when it stays in either the TRANSMIT or
the RECEIVE mode. We denote the average Power in
active mode by Pytive. It can be calculated based on the
durations of uplink and downlink bursts as shown in
(19). The average Power over the Internet flow can then
be transformed from (11) into (20) by replacing Pr with
Pyctive- (20) can be applied to any traffic pattern and can
be applied for both TCP/UDP download and upload.

ZTu XPT—FZTdXPR

Pac ive — 19

¢ ST, 5> T, (19)
T

P = P(Lctive - %TI, X (Pa,ctive - PI) (20)

The second one is to simplify the power models by
ignoring ACKs. Due to the small sizes of ACKSs, receiv-
ing/sending an ACK in a modern smartphone usually
costs less than 1ms. The energy cost of sending ACKs
is so small compared to the cost of transmismitting data
packets. Thus the energy cost of ACKs can be dropped
from (16) and (17) for practical usage if a higher error
rate is acceptable. In addition, the packet intervals in
each burst are limited by the threshold 6. If we assume
that the packet intervals can be ignored, the data rate of
a downlink burst can be considered to be equal to the
maximum processing capacity of downlink traffic of the
WNIL We denote it by r,,4,. When the PSM is disabled,
(16) can be simplified into (21).

P(rg) = P; + 2

(Pr — Pr). (21)

Tmrm:

Time(s)

Fig. 2. Synchronized I/O graph and power consumption
on Nexus S. The device backlight was turned off.

To calculate the energy consumption of TCP upload,
replace Pr with Pr, rq4 with r,, and 7,4, with the
maximum processing capacity of uplink traffic in (21).

3.5 MAC layer retransmission

From energy viewpoint, retransmitting a packet is not
different from transmitting a “fresh” packet. We ran
Wireshark? on Samsung Nexus S while sending packets
in a congested network, and then synchronized the traf-
fic trace with the power measurement trace. As shown
in Fig. 2, the black line represents the I/O graph with
each spike corresponding to one packet captured by
the Wireshark running on the phone®. The gray line
shows the power consumption of the phone during data
transmission. We can find a lot more spikes in gray color
each of which corresponds to a retransmitted packet.
The overhead caused by MAC layer retransmission
includes two parts. One is the energy spent in retransmit-
ting packets on the sender side. According to the retrans-
mission mechanisms used in 802.11 [18], the sender may
retransmit a packet several times until the transmission
succeeds or until the retransmission limit is reached. Let
T be the interval between a retransmitted packet and its
previous packet. If the value of T}, is not greater than the
threshold value 6 and the previous packet is an uplink
packet, the retransmitted packet can be considered to be
part of the uplink burst the previous packet belongs to.
In other words, the uplink burst duration is increased
by T;,, due to retransmission. We define E(T},) as the
expected value of T;,, and #(retransmit) as the total
number of retransmitted packets. The cost of retransmit-
ting packets E,ctransmit can be calculated as below.

Eretransmit = #(retransmit) x E(T;.) x (Pr — Pr). (22)

Given a packet trace captured on network layer, we
denote its packet count by #(packet). The value of
#(retransmit) can be calculated as below.

R,

#(retransmit) = #(packet) x TR

(23)

4. www.wireshark.org

5. The black line does not include MAC layer retransmission, since
monitoring of retransmission at MAC layer requires the WNI to run
in monitor mode, whereas the WNI cannot be used for transmitting
or receiving data while operating in monitor mode



where R, is the retransmission ratio calculated from
MAC layer traffic information. For example, if we cap-
ture N packets on MAC layer including M retransmis-
sion attempts, the value of R, is equal to %

The other part of the retransmission overhead is
caused by the increase in the baseline cost, due to the
Dynamic Voltage Frequency Scaling (DVFS) mechanism
of CPUs. The basic idea of DVFS is to adapt the CPU
frequency to the processing workload. The extra work-
load caused by retransmission may lead to an increase in
the CPU frequency, with the result that the baseline cost
represented by the values Pr, Pg, P; and Ps increases
accordingly. For example, in Fig. 2, the Power in the
IDLE mode during 0.1s and 0.3s is only 0.177W, whereas
it gets close to 0.5W during the interval between 0.8s and
0.85s. Meanwhile, the Power while sending packets in-
creases by around 0.3W when the retransmission starts.
This change in Power is consistent with the change in
the CPU frequency from 100MHz to 200MHz. Hence,
to estimate the transmission cost in congested networks,
fine-grained CPU frequency measurement is necessary
for providing the right inputs for the power models.

4 PRACTICAL ISSUES

The power models presented in Section 3 require two
different kinds of inputs. The first type are the hardware
parameters such as Pr and Pg, while the other type rep-
resent the burst information derived from traffic traces.
In this section we describe the methods of obtaining
the values of these inputs, and analzye the impact of
these values on the resulting estimation accuracy of
our power models. We will leave the errors of power
meter calibration out of the scope of this work, and will
focus on the errors that come from the processing of the
readings obtained from power meters.
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We measured the values of Pr and Pr and the maximum
throughput of the WNI while sending/receiving back-to-
back packets. First, we sent fixed-size packets as fast as
possible from the phone at a given CPU frequency, and
used the average power over a period (e.g. 60 seconds)
as the corresponding value of Pr. Second, we calculated
the maximum uplink throughput as the packet size
divided by the mean of the measured packet intervals.
Similarly, we measured Pr and the maximum downlink
throughput while receiving packets to the phone.

We measured the power in the IDLE mode of the
WNI, P;, by first transmitting packets from the device,
and then measuring the power after stopping the trans-
mission. On devices with the 802.11 PSM feature, the
WNI went to the SLEEP mode after the PSM timeout
had passed from the stopping of the transmission, and
we could then measure the value of Ps. On the devices
with the DVES feature, such as Samsung Nexus S, the
hardware parameter values needed to be measured for
all the possible CPU frequencies.

Measurement of Hardware Parameters

The way we measure Pr and Pr is based on the
assumption that the WNI always stays in either the
TRANSMIT or the RECEIVE mode during back-to-back
packet delivery. However, due to the delays caused
by the data transmission over the air and the packet
processing, true back-to-back packet delivery of packets
is not possible. This means that there always will be
small intervals between the packets, and it is possible
that the WNI may switch into the IDLE mode during
these small intervals. Because the power consumption
in the IDLE mode is lower than that in the TRANSMIT
or the RECEIVE modes, the measured power may be
lower than the correct value would be.

In order to analyze this measurement error in the
TRANSMIT case, we denote the measured value of Pr
with P}, the duration of the measurement with 7T, and
the actual duration spent in the IDLE mode during T},
with T,.. Now, the proportion d = TT; gives an estimate of
the measurement error. Further, the relationship between
the correct Pp and the measured P, can be expressed as

. Pr(1—d)T,, + PidT,,
P = Prl )T TOm _ p_q(pr— Py, (24)
Similiar analysis can also be applied in the RECEIVE
case, but the equations are omitted due to space restric-

tions.

4.2 Error in Power Estimation of Bursts

When using our power models for runtime power esti-
mation, we make the assumption that the WNI always
stays in the TRANSMIT mode during uplink bursts, and
in the RECEIVE mode during downlink bursts. This
assumption is similar to the assumption that the WNI
always stays in either the TRANSMIT or the RECEIVE
mode during back-to-back packet delivery, which we
made when measuring the hardware parameters. The
similarity of the assumptions implies that they might
also carry a similar error source, and this is indeed the
case. Even within a burst, there are intervals between the
packets, and during these intervals the WNI may enter
the IDLE mode.

We now analyse this error in the case of uplink bursts,
but the analysis can be trivially applied to downlink
bursts as well. The actual energy consumption of WNI
during the total duration of uplink bursts T}, consists of
two parts, the energy spent in the TRANSMIT mode and
the energy spent in the IDLE mode during the packet
intervals. We denote the proportion of the time spent in
the IDLE mode to T, with d' . The actual Power during
uplink bursts can be calculated following (25).

Pr(T, —dT,)+dT,P;

P =
le

=Pp—d (Pr— Pp). (25

Because we use Pj as the value of Pr in our model-
based power estimation, by comparing the values of P,
and P we can get an estimate of the error in power



estimation of uplink bursts. We denote this error with
ey, and it can be calculated following (26).

ew =P —Pp=(d—d)(Pr—Pp). (26)

Similar analysis can also be applied in analyzing eq4,
the error in power estimation of downlink bursts, by
replacing Pr with Pg and d with the proportion of the
time spent in the IDLE mode to Ty in (26).

4.3

A packet trace can be divided into different number
of bursts with different packets included in each burst,
depending on the value of the threshold 6 that is used
for burst detection. The distribution of packet intervals
within bursts and further the value of d' vary with the
value of 6. In an extreme case where the value of 0 is
0, each burst only includes one packet and the value of
d is 0. The probability of getting a higher value of d
increases with the value of 6. According to (26), if we
increase the value of 6 starting from 0, the values of e,
and ey will first decrease until the value of d becomes
equal to that of d. After that, the values increase with 6.

We define the MAPE of the power estimation of a flow
as below.

Impact of the Threshold Value

MAPE — |Pm_Pe| _ ‘euTu+ede|
Pm PmTflow

27)

where P,, is the measured power, P, is the estimated
power, and T¥o, is the flow duration. The burst du-
rations, T,, and T, do not decrease with the value of 0.
However, the values of e, and eq may decrease with 6, if
6 is small enough. In that case, the value of MAPE would
increase or not, depending on whether the increase in T,
and T, can overtake the decrease in ¢, and e¢;. When 6
is big enough, the value of MAPE will always increase
with 6.

To evaluate these features, we take TCP down-
load /upload on Samsung Nexus S as an example. Given
the same set of packet traces and power measurement
results, we tune the value of § and compare the resulting
estimation accuracy. As shown in Fig. 3, the value of
MAPE first decreases together with the value of 6, and
then increases. The threshold value of 5ms provides
generally the best accuracy for all the three cases. Ac-
cording to our experience®, given the same values of
the hardware parameters, a threshold value chosen to
be optimal for one of the test cases (e.g. concurrent TCP
flows) usually also provides reasonable good accuracy
in the other test cases as well.

5 EVALUATION

We chose TCP transmission as an example and evaluated
the power models presented in Section 3 with physical
power measurement on four smartphones, Nokia N810,

6. When evaluating the power models for Samsung Nexus S, we set
the value of 0 to be 5ms for all the test cases.

i

| 2 TCP download flows —K-
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Fig. 3. Comparison of MAPE with different threshold
values in the test case 4) defined in Table 3.
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Fig. 4. Experimental setup.

Nokia N95, HTC G1 and Samsung Nexus S. As listed
in Table 3, we evaluated our models in TCP transmis-
sion scenarios at various data rates with various traffic
patterns and in different network environments. More
specifically, we first conducted the experiments in an
ideal network environment where the processing latency
and packet loss can be ignored. We measured the power
consumption of TCP download/upload with the data
rate ranging from 16KBps to over 2MBps, and repeated
the measurement with the data transmission using a
number of separate TCP flows. After that, we conducted
TCP download/upload experiments in a congested net-
work environment, with the retransmission ratio varying
between 10% and 30%. We also compared our estimation
with the physical measurement of four real Android
applications. The traffic generated by these Android
applications had different characteristics, in terms of
both traffic size and pattern. The experimental setup and
the results of each test case are explained in this section.

5.1

Our experimental setup is illustrated in Fig. 4, including
TCP download/upload setup, and power measurement
and traffic capturing tools.

Experimental Setup

5.1.1 TCP download/upload setup

We used an open source TCP utility, netcat’, as the
TCP server running on a Linux server, and our own
custom netcat-based mobile applications as the TCP
clients. To avoid the energy cost of data copy operations,
the downloaded files were written to /dev/null instead
of phone memories, and to the same end, the TCP clients

7. http:/ /netcat.sourceforge.net/



TABLE 3
List of test cases

No. Description No.flows Data rate limit TCP window scaling | Phone models | Equations
1) TCP download/upload with PSM enabled 1 Enabled Disabled N810, N95 17)
2) TCP download/upload 1 Enabled Disabled N810,N95 (16)

HTC G1
3) TCP download/upload 1 Enabled /Disabled Enabled Nexus S (20)
4) Concurrent TCP download/upload 2/4/8 Enabled /Disabled Enabled Nexus S (20)
5) TCP download/upload in congested network 1 Enabled /Disabled Enabled Nexus S (22)
6) Web browser, Fengxing(video streaming), 1 Disabled Enabled Nexus S (16),(17),
Dropbox(file upload), QQ(instant messenger) (21)
TABLE 4 TABLE 5
Experimental setup Parameter values for N810, N95 and G1
Phone model 0OS Power meter Sampling Phone model | Display | Pr(W) | Pr(W) | P1(W) | Ps(W)
frequency Nokia N810 off 1.258 1.181 0.884 0.042
Nokia N810 Maemo 4.1 Fluke 189 logging 20Hzx Nokia N95 off 1.687 1.585 1.038 0.088
multimeter HTC G1 off 1.097 0.900 0.650 -
Nokia N95 Symbian S60 | Nokia Energy Profiler 4Hz
HTC G1 Android 1.6 Fluke 189 logging 20Hzx TABLE 6
multimeter
Samsung Android 2.3 Monsoon Power 5000Hz Parameter values for Nexus S
Nexus S Monitor?
* The Togging interval in FlukeView is 1 second. The system logs the CPU Display | Pr(W) | Pr(W) | P(W) | Data rate
average of the 20 samples taken during each second. frequency (KBps)
100MHz off 1.094 0.867 0.177 < 128
100MHz off 1.130 0.903 0.213 160 - 256
200MHz off 1.245 1.021 0.435 > 512
on the phones generated all the data they uploaded on- 100MHz on 1217 | 0.887 | 0742 512
the-fly instead of reading it from mass memory. 200MHz on 1376 | 1.050 | 0.800 1024
400MHz on 1.549 1.208 0.890 > 1536

The TCP clients always try to send/receive data as
fast as possible if no data rate limit is applied. In that
case, the actual throughput is limited by the available
network bandwidth and the processing capacity of the
smartphones. To conduct data transmission at a fixed
rate, we ran Trickle [24], an utility for bandwidth throt-
tling, on the same Linux server with the TCP server. In
addition, apart from Nexus S, the TCP window scaling
option was disabled and the MTU was set to 1500 Bytes,
so that the protocol processing cost for each packet could
be considered to be fixed [25]. Moreover, disabling the
TCP window scaling can increase the probability that
the transmission rate would be limited by the receiver
window, and hence, maximum window size would be
used and that would generate bursts of equivalent size.

5.1.2 Power measurement

As described in Table 4, apart from Nokia N95, for which
we used the power measurement software, Nokia En-
ergy Profiler®, we connected all the other tested phones
to an external DC power supply and used physical
power meters to measure the instant power consump-
tion. The readings of the physical meters were logged
from the PC software provided by the manufacturers.
We measured the power consumption with the WNI
operating in different states, as described in Section 4.1.
The results are listed in Tables 5 and 6. During the
measurements, only the basic components of the devices

8. http:/ /www.developer.nokia.com/Resources/Tools_and_
downloads/Other/Nokia_Energy_Profiler/

were in use. We also note that the measured values of Pr
and Pg include the cost of network protocol processing.

Because the Android phones we used did not provide
any interface for adjusting PSM parameters, we mea-
sured them using the default settings. The measurement
results seem to fit the “PSM disabled” version of our
power models. Therefore, we did not provide the value
of Ps for these Android phones. In addition, we ob-
served from Nexus S that its CPU frequency varied with
the transmission rate. For instance, when the display was
turned off, the CPU frequency increased from 100MHz
to 200MHz whenever the data sending rate of the phone
increased from 256KBps to 512KBps!?. Therefore, we list
in Table 6 the parameter values separately for each CPU
frequency. The listed data rate information is to show
which values were used in our calculations. They are
not necessarily the exact thresholds used in DVES.

5.1.3 Traffic capturing

The smartphones were connected to 802.11g access
points (APs) with beacon intervals set to 100ms. On the
phones that support fine-tuning the PSM settings, Nokia
N810 and N95, the PSM timeout was set to be 100m:s.
During the experiments of TCP download/upload, the
network traffic was monitored by running Wireshark
on the Linux server that the smartphones connected to.

10. Due to the partial wake up mechanism in Android, the CPU
worked at a reduced frequency when the display was turned off.




Except in the test case 5), the cross traffic in our APs
was assumed to be insignificant. In the test case 5),
we ran Kismet!! on a separate laptop to capture MAC
layer traffic information from the WNI operating in the
monitor mode. The captured information was later used
for calculating MAC layer retransmission rate and the
expected value of the packet retransmission interval.

5.2 TCP download/upload with a Single Flow

We first evaluated our models with regularly repeated
bursty traffic. On N810, N95 and G1, we repeated TCP
download /upload with data rate ranging from 16KBps
to 256KBps. The traffic was shaped by Trickle into regu-
lar bursts with size of 4KB. As N810 and N95 supports
PSM, we measured their power consumption with PSM
enabled and disabled, respectively. The measured values
were compared with the model-based estimation from
the traffic captured from the Linux server.

We empirically set the threshold value for burst de-
tection in our models to be between 6 and 10ms, in
order to minimize the standard deviation of the detected
burst sizes. This allowed us to use 4KB as the data burst
size estimate for both TCP download and TCP upload.
We calculated the average downlink and uplink burst
durations over the detected bursts. The burst durations
are listed in Table 7. For N810 and N95 that support
PSM, the burst size and duration information was used
for calculating the threshold value of the network data
rate r., as described in (15). The value of r. was 37KBps
for N810 and 36KBps for N95 in both TCP download
and upload cases.

We estimated the transmission cost from the burst
information and the parameter values listed in Table 5.
The estimated values were calculated following (16) or
(17), depending on which conditions of the two scenarios
defined in Section 3.2 were satisfied. The value of « in
(17) was set to 2 when estimating the power consump-
tion of N95 at the data rate of 16KBps'?. In all other
cases, it was set to 1.

On Nexus S we enabled the TCP window scaling to
allow the burst sizes and burst intervals to vary. We
used the traffic traces collected from our Linux server
as input and calculated the aggregated energy cost with
the threshold value of burst definition set to 5 ms. This
threshold value was chosen as described in Section 4.3.
We applied the model presented in (20) to estimate the
power consumption from the burst information and the
hardware parameter values listed in Table 6.

11. http:/ /www.kismetwireless.net/

12. In the case of TCP download at 16KBps we observed from the
traffic trace of N95 that there were two uplink bursts in a bin with
the interval bigger than one PSM timeout. In the case of TCP upload
at 16KBps on N95, the intervals between ACK and the following
data packet was longer than the ACK timeout, which caused the
retransmission of ACK. The retransmission wakes up the WNI and
increases the duration spent in the IDLE mode. In both cases, the
duration spent in the IDLE mode is longer than the PSM timeout, but
no bigger than twice of the PSM timeout. For the sake of simplicity,
we set the value of « to 2.

10

TABLE 7
Burst durations observed on N810, N95 and G1

Test case Link N810(ms) | N95(ms) | G1(ms)
TCP download | downlink 8 10 10
uplink 0.5 0.35 0.5
TCP upload uplink 6 12 8
downlink 0.1 0.2 0.1
TABLE 8
MAPE of power models for N810, N95 and G1
Test case PSM N810 N95 G1
TCP download On 4.3%%59% | 4.9%+7.3% -
(single flow) Off 1.1%=40.7% | 1.8%+£2.9% | 4.8%%2.7%
TCP upload On 5.7%+4.9% | 3.9%+5.5% -
(single flow) Off 22%+1.7% | 2.3%+2.3% | 1.3%=%1.4%

We compared the estimated Power with the physical
power measurement, and measured the estimation accu-
racy using MAPE as a metric. As listed in Table 8 and
9, the average MAPE of TCP download/upload with a
single flow was at most 5.7%. We note that the results of
Nexus S include the measurements in scenarios where
the data is delivered with/without data rate limit.

We also calculated the energy utility for each test case
following (9). As shown in Fig. 5 and 6, the energy utility
of TCP download/upload is nearly proportional to the
network data rate. Thus it is more energy-efficient to
transmit/receive data at a higher rate. In addition, when
sending data at a rate lower than 7., it is more energy-
efficient if the PSM is enabled.

5.3 TCP Download/Upload with Multiple Flows

Since there can be one or multiple TCP flows transferring
data from/to a mobile device, we extended our experi-
ment from single TCP flow to multiple flows. According
to the burst definitions in Section 3, packets belonging
to different TCP flows are included in the same burst
if they satisfy the two conditions of packet interval and
transmission direction.

Assuming that there are N TCP flows running on one
phone, we measured the power consumption of Nexus
S in the following three scenarios: 1. All N flows down-
loading, 2. all N flows uploading, and 3. half of the flows
downloading, other half uploading. For each scenario,
we first ran the experiments without any data rate limit.
After that, we used Trickle to set the limit of aggregate
data rate to various values ranging from 512KBps to
2048KBps. The display was turned on with brightness set
to 30% during the experiments. The experiments were
repeated with N set to 2, 4 and 8, respectively.

We estimated the Power following (20), using the
aggregated traffic information as input. The MAPE of
our estimation was at most 9.1%, as shown in Table 9.
We also calculated the mean and standard deviation
of the energy utility at each data rate. Each data set
corresponding to a data rate included all the results from
the experiments using 2, 4 and 8 TCP flows respectively.
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TABLE 9
MAPE of power models for Nexus S
No. No. MAPE No. No. MAPE
downlink | uplink (%) downlink | uplink (%)

T 0 3.4£2.0% 0 T 2.6£1.5%
42417 41444

2 0 33E17% 0 2 2.9£2.0%
24+1.1 0 2 5.1+4.0

4 0 2.942.0 0 4 51+15
8 0 22+1.4 0 8 5.9£138
T T 2.1+1.8% 1 T 2.7¥19
2 2 5.0+2.38 4 4 48%2.1

* The display was turned off. The data rate was between 16 and
256KBps.

As shown in Fig. 7, the standard deviation is very small
compared to the value of the mean. As the processing
overhead for maintaining more TCP flows is included
in the measured Power, the small standard deviation of
the measured Power shows that the processing overhead
can be safely ignored. Fig. 7 also shows that the power
models presented in Section 3 can provide generally ac-
curate energy estimation of TCP transmission, regardless

of the number of TCP flows.

5.4 TCP Download/Upload in Congested Network

We connected the Nexus S to a public AP in our cam-
pus and measured the power consumption during TCP
download and upload. The phone tried to send/receive
data as fast as possible without any data rate limit or
traffic shaping. Due to the interference caused by the
neighbouring APs, MAC layer retransmissions could
not be left ignored. Based on the collected MAC layer
traffic traces, we calculated the retransmission ratio R,
and the expected value of retransmitted packet interval
E(T;;). The samples of retransmitted packet intervals
used for calculating E(T;,) seem to follow the Inverse
Gaussian distribution. The overhead of retransmitting
packets was computed following (22). Because the CPU
frequency was always 400MHz during the measurement,
no extra cost was caused by DVFS. The final results
are shown in Table 10. In upload cases, taking into
account the retransmission overhead can improve the
power estimation accuracy by almost 50%.
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TABLE 11
Description of the experiments with Android apps

App Description Display | Throughput(KBps) | Duration(s) | App overhead(mW)x | MAPE
Fengxing video player | Stream videos from youku.com on 7.9 3054 103 5.4%
Dropbox android app Upload files to dropbox.com on 18.9 1578 112 5.3%

Web browser Open web pages on dalong.net off 13.8 509 41 4.3%
QQ instant messenger | Receive random text messages off 0.04 1068 127 8.6%

* when the CPU is active

TABLE 10
MAPE of power estimation in congested networks
Test case R,-(%) E(T;,)(ms) MAPE(%)
Download | 11.24+1.5 - 24+1.2
Upload | 20.6¥2.3 | 08+02 | 52+4.1 (11L.0£1.4%)

* The retransmission overhead is not counted.

5.5 Real life applications

We evaluated the accuracy of the complete power mod-
els (Eq.(16), (17)), and the simplified one (Eq.(21)) with
four real-life applications running on Nexus S. Accord-
ing to our measurements, the phone does not seem to
implement the traditional 802.11 PSM/PSM adaptive
with the WNI SLEEP mode, but does instead have a
DVFS-induced low-power state that is entered upon
expiration of an inactivity timer. This mechanism works
in a manner similar enough to the 802.11 PSM that Eq.
(17) can be applied with good results by replacing Pg
with the measured power of the DVFS-induced low-
power state, and the value of PSM timeout with the
length of the inactivity timer.

The descriptions of the tested applications are listed in
Table 11 along with experiment parameters and results.
During the experiments, we ran Wireshark directly on
the phone to capture the network layer traffic traces. The
packet interval threshold used for burst detection was
set to 5ms, and the overhead caused by the applications
themselves!'® was included in the estimated values. We
determined empirically the length of the inactivity timer
to be about 1.35s when the display was off, and to be
400ms when the display was on. As shown in Fig. 8, all
the models gave reasonable results, except in the case
of the QQ messenger where only model (17) was able to
estimate the power with good accuracy. This was caused
by the exceptionally long burst intervals in the QQ
messenger traffic, during which the DVFS put the phone
into the low-power-state, which was only accounted for
in model (17). Indeed, the traffic generated by the other
3 applications had at least 87% of the burst intervals
shorter than 400ms. In the case of QQ messenger, only
21% of burst intervals were shorter than 400ms, while
the WNI was estimated to stay in the SLEEP mode for
more than 22% of the burst intervals.

5.6 Comparsion with PowerTutor

We chose the test case 3) defined in Table 3 as example
and compared the accuracy of our approach with that

13. Measured Power with the app running without any data transfer.

of the readings from the PowerTutor [11] Android ap-
plication. From Fig. 9 and 10 we can see that whereas
the estimations of our model closely predict the mea-
sured values, the original PowerTutor readings deviate
from the absolute measured values, and fail to follow
the trends seen in the physical measurement. The high
error rate can be explained by the fact the PowerTutor
models had not been trained for the device in question
(Nexus S), with the result that the value of the hardware-
specific parameter Ppgseiine might have been incorrect.
Additionally, PowerTutor did not take into account the
impact of CPU DVFS on the baseline power consump-
tion. To reduce the bias caused by inaccurate Ppgseline,
we calibrated PowerTutor by configuring the value of
Pyaseline, which is hardcoded in the PowerTutor android
application, with the values of P listed in Table 6. When
the display was turned on, the PowerTutor android
application estimated the power consumption of the
display to be 183.6mW in our test cases. Because the
power consumption of the display if available is already
included in the value of P;, we deducted 183.6mW from
the calibrated results of PowerTutor in cases where the
display was turned on.

Although the calibrated results of PowerTutor pro-
vided much better accuracy than the original ones, they
still under-estimated the proportional effect of data rate
on the power consumption. The MAPE of the calibrated
PowerTutor readings is 20.74+12.96% in download cases
and 12.93+10.86% in upload cases, which is higher than
the MAPE of our models as listed in Table 9. This might
indicate that the Wi-Fi power model of PowerTutor that
according to [11] only takes into account the packet
rate and the uplink channel rate as measured variables
is too minimalistic to accurately describe the power
consumption behaviour of real-life data transfer, where
other variables such as traffic shape and CPU frequency
also matter.

6 DISCUSSION

The most recently commercialized standard 802.11n
features several new features and enhancements com-
pared to 802.11g. These features include MIMO support,
channel bonding, and two power-saving mechanisms,
namely Spatial Multiplexing Power Save (SMPS) and
Power Save Multi-Poll (PSMP).

MIMO can be used either for spatial diversity by
simultaneously transmitting redundant data streams en-
coded in a special way in order to increase range and ro-
bustness of data transmission or for spatial multiplexing
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by transmitting multiple separate spatial data streams
simultaneously in order to increase the transmission rate.
n [26], the authors measured the energy consumption
of 802.11n and discovered that only the number of
active RF chains has a significant impact on the power
draw and it does not matter much whether they are
used for spatial diversity or multiplexing. Therefore, it
is necessary to add the number of RF chains active at
a given time instant as a parameter to capture MIMO
characteristics in a power model.

Channel bonding allows to combine two adjacent 20
MHz channels into a single 40 MHz channel thereby
doubling the bandwidth and transmission rate. Using
a wider channel in this way has negligible impact on
power consumption according to [26], which means that
this feature can be also neglected by power models.

SMPS and PSMP do not alter the basic behaviour of
the power saving mechanism of 802.11. Both reduce the
energy consumed during idle periods. SMPS reduces the
power draw when client is not receiving by switching off
all but one RF chain. PSMP effectively makes it possible
for the client to sleep as much of the idle time as possible.
Considering our models, the impact of both of these
mechanisms is reflected in the power levels measured
for idle and sleep states and do not require specific
modifications to the models.

The upcoming 802.11ac standard promises data rates
beyond a gigabit per second which are achieved by
taking advantage of more of the same above mentioned
features of 802.11n. Specifically, 802.11ac can use wider
channels (up to 160 MHz) and up to 8 spatial streams for
MIMO operations. Thus, we have reason to expect that
the same modelling approach will work for this family
of products as well.

Our power models would serve well also in network
simulators, such as NS-3. Integrating the models into
such discrete event simulators is possible since the basic
input to the models, namely packet headers, are readily
available in such simulators. However, the support for
accurate node models is presently limited [27]. For this
reason, it is not possible to directly obtain DVFS related
information of the simulated node. However, the differ-
ent CPU frequency and voltage levels could be mapped
to other measurable variables such as MAC level frame
transmission/reception rate which the authors in [28]
found to be highly accurate. Such mapping requires

Data rate(KB/s)

Data rate(KB/s)

Power consumption of TCP Fig. 10. Power consumption of TCP
download with single flow on Nexus S. upload with single flow on Nexus S.

specific calibration for each different node device.

7 CONCLUSION

In this paper we present accurate and practical power
models of Wi-Fi data transmission in infrastructure
mode. To the best of our knowledge, our work is the first
one that introduces traffic burstiness into power model-
ing of Wi-Fi data transmission. Our models quantify the
impact from traffic patterns and network performance on
the transmission cost, mainly caused by the operations
of the WNI. These models can be used for estimating the
power consumption of various network applications that
are implemented with one to multiple TCP/UDP flows
while being executed in varying network environments.
We evaluate our models with physical power mea-
surement of TCP-based data transmission on Maemo,
Symbian and Android phones. The experimental re-
sults show that the MAPE of our power models is
at most 9.1%, which is high enough for practical use.
Furthremore, the characteristics of the transmission cost
revealed in our power models do provide necessary
motivation and insight into new solutions of energy-
efficient Wi-Fi data transmission.
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