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Abstract—Multimedia streaming applications are among the
most energy hungry applications in smartphones. The energy
consumption mostly depends on the delivery techniques and on
the power management techniques of wireless interfaces (Wi-Fi
and 3G). In order to provide insights on what kind of streaming
techniques exist, how they work on different mobile platforms,
and what is their impact on the energy consumption of mobile
phones, we have done a large set of active measurements with
several smartphones having both Wi-Fi and cellular network
access. Our analysis reveals five different techniques to deliver
the content to the video players. The selection of a technique
depends on the device, player, quality, and service. The results
from our power measurements allow us to conclude that none
of the identified techniques is optimal because they take none
of the following facts into account: access technology used,
user behaviour, and user preferences concerning data waste.
However, we point out the techniques that provide the most
attractive trade-offs in particular situations. Furthermore, we
make several observations on the energy consumption of different
players, containers, and video qualities that should be taken into
consideration when optimizing the energy consumption.

I. INTRODUCTION

The present mobile market is filled with smartphones of
Android, iOS, Windows, and other platforms. These devices
have full functionality to play multimedia content from dif-
ferent streaming services such as YouTube, Vimeo and Dai-
lymotion. In 2011 YouTube had more than 1 trillion global
views and 10% of it was accessed via mobile phones or
tablets [1]. Vimeo and Dailymotion are also gaining popularity
on mobiles. Therefore, digital video content is increasingly
consumed in mobile devices [2]. At the same time battery
life of smartphones has become a critical factor in user
satisfaction [3]. Consequently, it is essential that mobile video
streaming not only provides a good viewing experience but
also avoids excessive energy consumption.

Multimedia streaming services consider a number of chal-
lenges while sending content to the streaming clients, such
as initial playback delay, clients with different kinds of con-
nectivity and the bandwidth between a server and a client, in
order to provide smooth playback [4]. With recent evolution in
mobile phone industry and mobile broadband networks, energy
consumption of smartphones is also considered as an important
issue. To that extent, a significant number of research work
focused on reducing energy consumption of mobile devices
while using streaming applications [5]. The aforementioned
streaming services have adopted various techniques to deliver
video content to mobile users, such as Bitrate streaming,

Bitrate Throttling, ON-OFF, Dynamic Adaptive Streaming
over HTTP (DASH) [6] and Fast Caching. Bitrate streaming is
used to deliver content at the encoding rate. Throttling and Fast
Caching send video content at a higher rate than the encoding
rate. ON-OFF mechanism works based on the playback buffer
status of a client and the client receives content from the
server only during an ON period. DASH adapts video quality
according to the end-to-end bandwidth between a server and
the client.

There has been work on analyzing the merits of these
streaming techniques from the server performance point of
view. For example, Fast Caching reduces startup delay at
the client and guards against bandwidth fluctuation, but it
also consumes a lot of CPU and memory at the streaming
server [4]. Although most of the techniques are understood
by research community, a thorough study of these stream-
ing techniques is still required from mobile communication
perspective. Even though some studies have looked at video
streaming techniques with Android, iOS devices and desktop
users [7], [8], [9], at present it is not well understood how the
different techniques are chosen, how they compare to each
other, and what are the optimal techniques to use in different
contexts. Most importantly, the effect of these streaming
techniques on Wi-Fi and cellular network usage and on the
energy consumption of mobile devices is yet to be studied.
Such knowledge is imperative before one can design an energy
optimal streaming service.

For this reason, we study three popular video streaming
services, YouTube, Dailymotion and Vimeo, in six different
smartphones covering five major mobile platforms. We ac-
tively captured traffic of approximately 450 video sessions via
Wi-Fi and 3G, and measured energy consumption during those
sessions. Our main observations are the following:

• In general, Fast Caching and Throttling are applied by
the server, whereas video players employ Bitrate and
ON-OFF mechanisms by exploiting TCP flow control
mechanism over Fast Caching and Throttling respectively.
In Bitrate streaming, the player unintentionally triggers
TCP flow control because the player has too small
playback buffer compared to the amount of content the
server offers. In ON-OFF, the player deliberately pauses
and resumes download, and this technique is applied only
in Android phones. (Section IV)

• Our analysis reveals that in smartphones different tech-
niques are applied with little or no consensus: different
techniques are used by different clients to access the
same service in the same context. For example, An-978-1-4673-5828-6/13/$31.00 c© 2013 IEEE
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Fig. 1. 3G RRC state machine with CELL DCH, CELL FACH, CELL PCH
states.

droid devices use three different techniques for YouTube
videos. The selection of those techniques depends on the
quality of the video and the player. However, the strategy
selection does not depend on the wireless interface being
used for streaming and thus, network operators do not
play any role. (Section IV)

• When watching a complete video, Fast Caching is the
most energy efficient technique for both Wi-Fi and 3G
access. If the user is likely to interrupt the video viewing,
ON-OFF streaming is more attractive, but the ON period
duration should be adjusted to match Fast Start period
in order to avoid server rate throttling. However, none of
the identified techniques is optimal because they do not
adapt to the wireless access technology, user behaviour,
and preferences. (Section V-C)

• There is a large variation in playback energy consumption
between different types of player and containers on the
same device. The differences are due to inefficient player
implementation. However, the video quality (resolution)
does not seem to have a large impact. (Section V-A
and V-B)

We structure our paper as follows. In the next section,
we briefly describe the energy consumption characteristics
of wireless communication in smartphones and explain how
mobile streaming services work. In Section III, we describe
our methodology. In Section IV, we investigate the different
streaming techniques. Section V is devoted to presenting
the results from the energy consumption measurements. In
section VI, we outline the potential future work in mobile
multimedia streaming. Finally, we contrast our work with
earlier research in Section VII before concluding the paper.

II. BACKGROUND

Smartphones allow users to access Internet via Wi-Fi and
mobile broadband interfaces. Currently WCDMA/HSPA is the
most widely deployed mobile broadband interface in mobile
phones. LTE is the upcoming mobile broadband technology
which is already available in certain markets. In this paper
we focus on WCDMA/HSPA and refer to it as 3G. The
power consumption of these interfaces can be very high even
though there are already existing standard mechanisms for
power saving. The power saving mechanisms of the radio
layers use protocols and state changes independently without
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Fig. 2. Current consumption at different states and state transitions with
Lumia 800.

any knowledge about the applications being used in mobile
devices. In this section, we first review the power consumption
characteristics of Wi-Fi and 3G network interfaces that we use
in this study. Then, we explain the typical characteristics of
mobile streaming services.

A. Power Saving Mechanisms for Wi-Fi
Wi-Fi interface of a smartphone can operate in power saving

mode (802.11 PSM). PSM allows the client to switch the
Wi-Fi radio into sleep mode. The client periodically wakes
up after every 100 ms to receive a traffic indication map
(TIM) message, often called beacon, from the access point
(AP). The beacon tells the client whether the AP has buffered
data for it. If so, the client sends PS-Poll frame to the AP.
Otherwise, the client goes back to sleep until the next beacon.
Modern devices usually implement a timer which keeps the
interface in idle state for a few hundred milliseconds after
the transmission or reception of packets, which improves
especially the performance of short TCP connections.

B. Power Saving Mechanisms for 3G
3GPP standards specify how to control radio resources in

such a manner that mobility and mobile device power con-
sumption can be optimized. From power consumption point of
view, the radio resource control and states and transitions be-
tween states must be understood. Figure 1 shows the states and
the inactivity timers in 3GPP RRC protocol. These timers are
used by the 3G radio network to control the transitions among
different states. Network configuration of these timers has im-
pact on radio resource usage, power consumption, and user ex-
perience. The actual data transmission happens in CELL DCH
state and a mobile phone switches from CELL DCH to the
other states in absence of data transmission. If the mobile
device and network both support standard Fast Dormancy
(FD) [10], CELL DCH→CELL PCH transition happens. For
non standard FD, the transition is CELL DCH→IDLE (Fig-
ure 1) which releases the RRC connection altogether.

RRC protocol has a large impact on energy spending and
the power consumption in different states varies a lot. Figure 2
shows that average current consumption in CELL DCH is
200 mA, in CELL FACH is 150 mA, and in CELL PCH
is 50 mA approximately. The figure also shows that when
T1 expires the state transitions to CELL FACH and so on.
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Fig. 3. Collecting video traffic from 3G network.

These timers are operator controlled. They have static values
and there is no standard procedure on deciding their values.
Network operators use different configurations in their radio
network depending also on the capabilities of the network
equipment provided by vendors. Inactivity timer settings in
live networks vary from few seconds up to tens of seconds. The
potential consequence especially with long inactivity timers is
high power consumption at the mobile device. To learn more
about different cellular network configurations and their effect
on energy consumption, readers can follow [11].

C. Mobile Video Streaming
Today mobile streaming services deliver data using HTTP

over TCP. Smartphone users can access these services using
either a native app or a browser which loads a Flash or
HTML5 player in the beginning of a streaming session.

The quality of the video played is often denoted with a p-
notation, such as 240p, which refers to the resolution of the
video. 240p usually refers to 360x240 resolution. Different
services use also low, standard, and high definition (LD, SD,
HD) notations but the resolutions that each one refers to varies
between services. Therefore, we define 240p videos as LD,
270-480p videos as SD and 720-1080p videos as HD.

A common feature of all streaming services is an initial
buffering of multimedia content at the client, which tries
to ensure smooth playback in the presence of bandwidth
fluctuation and jitter. This buffering is visible to user as start-
up delay and referred to as Fast Start. The name comes from
the fact that this initially buffered data is typically downloaded
using all the available bandwidth, while the rest of the video is
downloaded using one of the techniques; i) Bitrate streaming,
ii) Throttling, iii) ON-OFF, iv) DASH, and v) Fast Caching.
Fast Caching is similar to Fast Start, the only difference
is that Fast Caching lasts longer until the whole content is
downloaded.

III. METHODOLOGY

We studied video traffic from three popular streaming
services, YouTube, Vimeo and Dailymotion, in six different
smartphones covering all major mobile platforms. Most of
these services have their own apps for the smartphone users.
For example, YouTube app exists in five platforms, whereas
Vimeo and Dailymotion do not have any app for the legacy
Symbian and Meego platforms. In Android phones, Nexus S

and Galaxy S3, we used both the app and browser to access
YouTube videos. In browser, the desktop edition of YouTube
was used as it provides the opportunity to use both Flash and
HTML5 players. We also studied the video services in iPhone
4S and Lumia 800 which run iOS and WP 7.5 respectively.

In Table I, we list the available players, as App, Flash
or HTML5, in smartphones for our target video streaming
services. The default container for these players are mp4,
x-flv and webm respectively. The native app plays also
3gpp videos. Whenever available for the particular smart-
phone and player, we streamed videos of multiple qualities
that range from 240p to 1080p. The average duration of the
videos was 10 minutes.

We streamed the videos from our target video services to
the different devices via both Wi-Fi and 3G. We used a DLink
DIR-300 wireless AP supporting 802.11 b/g (54Mbps), which
was connected to the Internet via 100 Mbps Ethernet. We
captured Wi-Fi traffic using a PC equipped with a traffic
capturing tool called AirPcap [12] in monitoring mode.

We performed 3G measurements in two scenarios. In the
first scenario, we used an HSPA test network which was
provided by Nokia Siemens Networks. The network was
configured according to vendor recommendations. The most
relevant parameters for this study are the inactivity timers (T1
= 8 s, T2 = 3 s and T3 = 29 min) and enabled CELL PCH
state. We captured traffic of the streaming clients from the Gn
interface i.e. between SGSN and GGSN according to Figure 3.
The downlink capacity of the 3G subscription was 6 Mbps.
The results of these measurements are presented in Section IV.
The second set of measurements were also conducted in the
lab environment but with the limited bandwidth and discussed
in Section V-E.

Considering all the combinations of video services, video
quality, smartphones, wireless interfaces and experiment set-
tings, there were approximately 150 actual streaming ses-
sions. Again every streaming session was repeated atleast
three times in order to filter out any measurement anomalies.
Consequently, we had measurement results for 450 streaming
sessions. Since we are interested in popular video services
in the Internet, in this way we also verified that a particular
traffic pattern was not the result of an anomalous behavior of
the client or server.

In order to understand the energy consumption characteris-
tics, we measured the current draw of the smartphones during
the streaming sessions. We used two instruments: Monsoon
Power Monitor [13] and another custom power monitor. One
of these was attached to the phone to measure the current
consumption during a complete video playing period. We
detached the phone batteries and powered the phones directly
from the power monitor (Monsoon) or from an external power
supply. During the power measurements all the devices were
in automatic brightness settings.

IV. TRAFFIC ANALYSIS TO INFER STREAMING
TECHNIQUES

From traffic traces we inferred manually the type of stream-
ing technique used for each of the different combinations of
device, service, stream quality, player type, and access network
type. These findings are summarized in Table I and discussed
below.
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TABLE I
STREAMING TECHNIQUES FOR POPULAR VIDEO STREAMING SERVICES TO MOBILE PHONES OF FIVE PLATFORMS. THE SELECTION OF A STREAMING

TECHNIQUE DOES NOT DEPEND ON THE WIRELESS INTERFACE BEING USED FOR, RATHER DEPENDS ON THE PLAYER, VIDEO QUALITY, DEVICE AND THE
VIDEO SERVICE PROVIDER.

N9 Nokia701 iPhone-4S Nexus S(Android-2.3.6) Galaxy S3(Android-4.0.4) Lumia800
(Meego) (Symbian) (iOS 5.0) (WP7.5)

YouTube
Streaming
Wi-Fi&3G

(App)
Bitrate

(App)
Bitrate

(App)
Throttling
Factor=2.0

(Flash)
Throttling
Factor=1.25

(App&
HTML5)
ON-OFF

(Flash)
Bitrate(HD),
Throttling(<HD)
Factor=1.25

(App&
HTML5)
ON-OFF-M

(App) Fast
Caching

Quality LD(240p),
SD(270p)

LD(240p),
SD(270p)

LD(240p),
SD(360p),
HD(720p)

LD(240p),
SD(360,480p)

LD(240p),
SD(360p)

LD(240p),
SD(360,480p),
HD(720,1080p)

LD(240p),
SD(360,480p),
HD(720p)

LD(240p),
SD(270p)

Container mp4(270p)
3gpp(240p)

mp4(270p)
3gpp(240p)

mp4(360,720p)
3gpp(240p)

xflv mp4(360p)
webm(360p)
3gpp(240p)

xflv mp4(>240p)
webm(>240p)
3gpp(240p)

mp4(270p)
3gpp(240p)

Vimeo
Streaming
Wi-Fi&3G

(App)
Bitrate

(Flash)
Fast
Caching

(App)
DASH

(App)
ON-OFF

(App)
ON-OFF

(App)
Fast
Caching

Quality SD(270p) SD(270p) SD(270,480p),
HD(720p)

SD(270p) SD(270p) SD(270p)

Container mp4 mp4 mp4 mp4 mp4 mp4

Dailymotion
Streaming
Wi-Fi&3G

(Flash)
Throttling
Factor=1.25

– (App)
Throttling
Factor=1.25

(App)
ON-OFF

(App)
Fast Caching(288p),
ON-OFF(>288p)

(App)
Throttling
Factor=1.25

Quality SD(288p) – LD(240),
SD(288,480p)

SD(270p) SD(288,480p),HD(720p) SD(288p)

Container mp4 – mp4 mp4 mp4 mp4

A. Bitrate Streaming
Bitrate technique is used to deliver content at the encoding

rate of the stream. A streaming session begins with Fast Start
and then the player receives content at the encoding rate from
the server. This rate control is applied by a streaming client.
YouTube players in N9, Nokia 701 and Galaxy S3 and the
Dailymotion player in N9 use Bitrate streaming technique. In
these cases, player’s playback buffer and TCP receive buffer
are filled during Fast Start. During playback the player decodes
content at the encoding rate and the corresponding space is
freed from the playback buffer. As a result the player draws
data from TCP receive buffer at the encoding rate and TCP
flow control mandates the sending TCP to follow this rate. The
variation in TCP receive window size, in Figure 4, confirms
that the downloading rate is controlled by the client.

B. Throttling
Throttling refers to the technique which delivers content to

a client at a limited rate but which is higher rate than the
encoding rate. The sending rate is controlled by the server.
For example sending a 300 kbps stream at the rate of 600
kbps. Table I indicates that iPhone 4S, Nexus S and Galaxy S3
receive content at throttled rates from YouTube. Dailymotion
also throttles data rate when sending content to Nokia N9,
iPhone 4S and Lumia 800.

The rate at which the server sends the stream data de-
pends on the case. Typically the client can tell the throt-
tle factor (the ratio of throughput and average encod-
ing rate) to the server in the URL (e.g. for YouTube
algorithm=throttle-factor and factor = 1.25)
or a service specific default throttle factor is used. YouTube
and Dailymotion players commonly request 1.25 as the throt-
tling rate while the iPhone player receives at a factor of 2.0
from the YouTube server.
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Fig. 4. TCP rwnd size (Bytes) advertisements during YouTube video
streaming in Nokia N9.

1) Single TCP connection: In most cases we observed that
a single TCP connection was used to deliver the throttled
content. While throttling, server sends data to the client in
small chunks. Figure 5 shows a CDF plot of the chunk sizes
computed so that packets with interval shorter than 50 ms were
grouped together in a chink. We observed, like the authors
in [14] and [7], that YouTube servers sends 64 KB chunks
periodically to a Flash player in mobile browser. The chunk
size for iPhone is 192 KB when streaming video of 720p
quality. Furthermore, several chunk sizes seem to be used in
the case of Galaxy S3. These chunks are separated from each
other by few hundred milliseconds to 1.2 seconds which is
shown in Figure 6. The interval decreases as the encoding
rate of the video increases. This behavior is irrespective of
using either Wi-Fi or 3G. However, this kind of burstiness
was absent in Dailymotion and Vimeo traffic.

2) Multiple TCP connection: The YouTube app in iPhone
uses multiple TCP connections when streaming HD quality
videos. The player maintains a fixed playback buffer of 25
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Fig. 8. Traffic trace for an ON-OFF streaming session
to Nexus S.

Fig. 9. TCP flow control messages (zwa and zwp)
during an OFF period.
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Fig. 10. In Galaxy S3, the YouTube app receives
a video in multiple TCP connections.

MB and closes the existing TCP connection with the server
whenever this buffer is filled. The player creates TCP connec-
tion with the server when some buffer space is freed. The time
interval between two consecutive connections range between
few hundred milliseconds to maximum three seconds.

We noticed, as did Finamore et al. [8], that the player
receives more data than the actual video size (see Figure 7).
By analysing traffic traces and video frames we identified that
YouTube server sends media content from the beginning of
a key frame for any partial content request. The player does
not track the end position of the current key frame or the
beginning of the next key frame beforehand and it may close
the connection in the middle of a key frame transmission.
Subsequently, the player makes every new request each time
from the beginning of a key frame which was received
partially for the previous request and all the data of that
partially received key frame is wasted. Figure 7 shows that
the consequence of this mismatch is significant data waste
even though a user watches the complete video.

C. ON-OFF

ON-OFF technique is based on the playback buffer status
of a player. When the player has enough content to play,
it informs the server to pause the transmission. The server
resumes data transmission only when the buffer falls below a
threshold at the client.

1) Single Persistent TCP Connection: ON-OFF streaming
generates a traffic pattern consisting of large bursts separated

by correspondingly long idle intervals. One traffic trace is
shown in Figure 8. The bursts are easy to identify. Client player
causes this pattern by reading TCP socket periodically. In
between these reading events, the filled up TCP receive buffer
and flow control make sure that the TCP sender at the server
end must pause the transmission. The behavior is illustrated
more clearly in Figure 9. In between bursts, because the TCP
sender at the server side has data from the server application
buffered to be sent, it sends zero size packets (zwp) in order to
check whether the TCP receiver’s buffer status has changed.
The receiver replies with an ACK with zero window size
(zwa). When the player application realizes that the amount
of buffered stream drops below a certain threshold, it reads
a burst of data from TCP socket again, which allows TCP to
reset the receive window to a higher value and the sender to
resume data transmission.

2) Non-persistent TCP connections (ON-OFF-M): The
YouTube app and HTML5 player in Galaxy S3 use multiple
sequential non-persistent TCP connections to stream a video.
We term this technique ON-OFF-M to distinguish from the
use of a single persistent connection. The player maintains
dynamic low and high level buffer thresholds. When the
playback buffer touches the low level threshold the OFF period
ends and the ON period begins by sending a new request using
HTTP Range: bytes=X-Content-Length header. The
player ceases downloading when the buffer reaches the high
level threshold and the ON period ends. In this way, the player
initiates TCP connections after every 60 second interval as
shown in Figure 10.
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D. DASH
Using any of the streaming techniques, discussed so far, a

client player can play a video of a single quality during a
streaming session. It is possible to change the quality only by
interrupting the playback. DASH, on the other hand, allows
the player to switch the stream quality on the fly in order to
adapt to bandwidth fluctuations. The Vimeo player in iPhone
4S uses Apple’s version of DASH called HTTP Live Streaming
(HLS). The player receives content in chunks and it requests
each chunk separately specifying the quality. We identified that
a chunk contains 10 seconds of playback content.

From traffic traces we identified that the Vimeo player
in iPhone always keeps 60 seconds playback content in the
buffer when streaming via W-Fi. Whenever the player switches
to a higher quality, this buffered content is wasted by the
player for the shake of providing faster response to quality
change. One such scenario is presented in Figure 11 where the
player switches from 360p to 720p at 232 s and downloads
from 23rd to 29th segments of 720p quality. In the case of
3G, the player wastes 20 seconds equivalent content. This
observation can change with bandwidth variation. Although
both ON-OFF-M and DASH exhibit bursty traffic behavior,
in ON-OFF-M mechanism a streaming client receives content
at server throttled rate, while iPhone 4S receives each burst
using maximum bandwidth when applying DASH.

E. Fast Caching
Fast Caching refers to downloading the whole video using

the maximum bandwidth. The client player decodes content
at the encoding rate and at the same time maintains a large
growing buffer. We found that Lumia 800 downloads YouTube
and Vimeo videos and Nokia 701 Vimeo videos in this way.
In the case of YouTube, the player uses ratebypass=yes
parameter in the HTTP request to deactivate any rate control at
the server side. For example, the YouTube player of Lumia 800
downloaded a 10-minute long 270p video within 120 seconds
via 3G in our experiments.

F. Summary
Table I summarizes our findings on the usage of different

techniques in different mobile platforms using the three video
services. In our repeated experiments, we did not find any
exceptions which confirms that these techniques are the results
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Fig. 12. The choice of a streaming technique by the client player.

of the described behavior of the video streaming services.
Figure 12 illustrates how the client app behaviour leads to
the choice of particular streaming technique. We sum up our
main observations below:

• There is no systematic use of a given technique by a given
streaming service. Neither is a particular technique tied
to specific mobile platforms. Instead, the technique used
depends on their combination plus the stream quality and
the player type. It is notable that the used wireless inter-
face does not influence streaming technique selection.

• Streaming servers use either throttling or Fast Caching to
deliver video to mobile devices. The choice between these
two is influenced by client player’s request. Some native
mobile apps continuously pause and resume downloading
leading to ON-OFF traffic pattern. ON-OFF-M uses non-
persistent connections and each new byte range request
begins with Fast Start followed by throttling phase if
the requested range exceeds Fast Start phase. Bitrate
streaming is the result of small playback buffer at the
client buffer.

• The amount of data wasted by the YouTube player in
iPhone is significant even when a user watches the
complete video. This data waste could be a problem for
users with quota based mobile broadband subscriptions.
However, this problem could be solved with a smarter
player implementation.

• ON-OFF mechanism with persistent TCP connection
forces the sending TCP to pause sending data which
keeps piling up in the send buffer. Many such clients
simultaneously can generate significant memory pressure
for a streaming server making it undesirable from service
provider’s perspective.

V. STREAMING SERVICES AND POWER CONSUMPTION

We also measured the current consumed by the smartphones
during the streaming sessions. The measured value was for
the entire device but we separated the total current drawn
into the average video playback and wireless interface cur-
rent consumption. The playback current consumption includes
decoding and display current. We can identify this current
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draw at the end of the power trace of each streaming session
when the content has been fully delivered but playback still
continues since some of content is always buffered at the end
regardless of streaming technique used. During this time the
Wi-Fi or 3G interface is in PSM sleep or CELL PCH/IDLE
mode. We computed the average wireless communication
current, which we refer to as streaming current, by subtracting
the average playback current from the average total current.
The results presented in this section are the average of repeated
measurements.

A. Impact of Video Quality, Player and Container
1) Video Quality: In Figure 13, we can see that playback

current draw of Galaxy S3 increases as the quality of YouTube
video increases as long as the same container is used. We also
observed similar pattern for watching Dailymotion videos in
iPhone 4S and Galaxy S3. It is logical that high quality videos
have more information to present than low quality videos and,
therefore, more current is drawn. However, in some cases even
doubling the resolution adds a relatively small increment to the
average playback current.

2) Video Player: In order to play YouTube LD, SD and HD
videos, the browser loads a Flash player. Flash has support
for different kind of codecs and containers, such as x-flv,
mp4 and H.264. The bowser loads HTML5 player to play
webm videos. Figure 13 compares the energy consumption
when using different players for streaming. It is noticeable that
the native YouTube application consumes the least amount of
energy. In contrast, browser-based players can draw even more
than the double current compared to the app when playing the
same video. We discovered that during playback the Flash
player does not leverage any native system support to decode
the video but consumes a significant amount of more CPU than
the native application (see Figure 14). Although the HTML5
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Fig. 16. Avg. playback current draw in different smartphones during the
playback of a Vimeo and a YouTube video.

player takes native system support, it consumes 60% of CPU
even during the playback of a 480p video. It seems that
HTML5 player is required to go through further optimization
to be used in mobile platforms.

3) Video Container: We have already shown how the
videos of different quality and different players affect the
energy consumption of smartphones. In Figure 13, we can
see that playback of a 240p 3gpp video requires less energy
than that of an x-flv video of the same quality. It is also
illustrated that the same 240p x-flv requires more current
than a 720p mp4 video. Although from Figure 13 we can
infer that 3gpp is the least and webm is the most energy
consuming containers, it is difficult to isolate the effect of
the corresponding video containers since some videos can be
played only using browsers. Besides, the energy consumption
of the browser-based players are very high. Therefore, we
downloaded some YouTube videos of x-flv and webm
formats and then measured energy consumption during play-
back. The results are shown in Figure 15. This figure also
illustrates that playback energy consumption does not change
significantly when the quality of video changes with the same
container category.

B. Display Variation
Our overall observation is that the average playback current

consumption of the same video among multiple smartphones
varies significantly, as expected. This variation could be caused
by the display resolution, display type or display size. The
resolution is unlikely to be the main cause because iPhone 4S
has a higher resolution display than any other phones except
Galaxy S3 and still iPhone is among the least playback current
consuming devices. If we consider the display types, from
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Figure 16 we notice that iPhone with an IPS LCD display con-
sumes least current and Nexus S which has a Super AMOLED
display consumes a little bit more. Compared to these two,
Galaxy S3 consumes more current with a Super AMOLED
Plus. The reason can be the larger display. Contrastingly,
Nokia N9 and Lumia 800 have smaller displays than Galaxy
S3 but their current consumption is higher. Although the kind
of content displayed on the screen has an impact on current
consumption, from the above observations we can say that
AMOLED display consumes more energy than the other kinds
when viewing videos.

C. Impact of Streaming Techniques

In this section we discuss the effect of different streaming
techniques on the energy consumption in smartphones. Since
all the techniques are not available in a single platform, it is
difficult to compare the energy efficiency of the techniques we
identified. Therefore, we compare only the current consumed
by the wireless interfaces of the smartphones and exclude the
playback current in order to provide a comparison ground. We
compare them in Figure 17 and 18.

1) Bitrate Streaming: In this case, the content is delivered
continuously throughout the entire streaming session and
the wireless interface is active all the time. For example,
downloading a 6 minute video would require approximately
six minutes. As a consequence, the average streaming cur-
rent drawn by Galaxy S3 and Nokia N9 is very high for
the YouTube videos. Figure 17 also shows that Galaxy S3
consumes around 30 mA for Wi-Fi and 200 mA for 3G
(HD video using browser). The high current consumption
of 3G is expected since the interface is constantly in the
highest power consuming CELL DCH state. However, power
consumption over Wi-Fi is low with respect to the usage of the
interface. It could be that the smartphones use some physical
layer mechanism, such as dynamic modulation scaling, where
power consumption of the interface is dynamically controlled
according to the bit rate [5].

2) Throttling: When throttling is used by the server, the
length of the video delivery phase depends on the throttle
factor, which in turn determines how long the 3G or Wi-
Fi radio will be powered on. Energy consumption for three
throttled session is presented in Figure 17. The first one is
of Nokia N9 for streaming from Dailymotion. The second
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Fig. 18. Avg. streaming current consumption using ON-OFF, ON-OFF-M
and DASH. Nexus S and Galaxy stream from YouTube and iPhone streams
from Vimeo using the native applications. In each connection, Galaxy S3
receives content at a throttling factor of 2.0 after Fast Start.

session is of Galaxy S3, where the browser is used to stream
LD videos from YouTube. Both exhibit comparatively high
current consumption over 3G, but Galaxy S3 draws clearly
less current than N9 when streaming over Wi-Fi. The reason
is that unlike Dailymotion and Vimeo the YouTube server
sends traffic in small chunks, as we explained in Section IV-B,
and Wi-Fi interface manages to transition to sleep state in
between the chunks due to the short timeout (200 ms). On the
contrary, the 3G interface cannot leverage these small intervals
because of the much longer inactivity timer values. In these
two cases, throttle factor is 1.25 and we observe that current
consumption is reduced by 50 mA over Bitrate streaming via
3G. The third case is shown for iPhone 4S which consumes
even less current for both Wi-Fi and 3G. The obvious reason
is the faster download at twice the encoding rate. Therefore,
throttling delivers energy savings over Bitrate streaming as
interface usage time is reduced to half of the total video
duration.

3) ON-OFF: Figure 18 shows that Nexus S consumes very
little current for streaming via Wi-Fi. In contrast, it uses a
lot over 3G and almost is in the level of Bitrate streaming
as shown in Figure 17. The reason is the use of a single
persistent TCP connection which sends the TCP zero win
advertisements and probes constantly and keeps the 3G inter-
face in CELL DCH state all the time. From traffic traces we
computed that the maximum interval between the packets can
be 5 seconds, while the 3G’s T1 timer is set to 8 s. Wi-Fi can
sleep most of the intervals in between these control packets.
The same figure also includes a case where Galaxy S3 applies
the ON-OFF-M technique using multiple TCP connections in
between which there are no packets exchanged. Even though in
both cases energy is saved over Wi-Fi compared to encoding
rate streaming, Galaxy S3 saves more than 50% in average
current when streaming over 3G compared to Nexus S and
other Bitrate streaming sessions.

From Figure 18, we also observe that Galaxy S3 consumes
almost the same amount of current while streaming a 720p and
a 360p video via 3G. Considering the bit rate of the streams,
this result also reflects the fact that energy consumption in
CELL DCH state remains stable regardless of the data rate.
However, if we compare iPhone with throttling (Figure 17) and
Galaxy S3 with ON-OFF-M (Figure 18), it can be seen that
ON-OFF-M does not outperform throttling in energy savings
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Fig. 20. ON-OFF-M provides the most attractive
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Fig. 21. Fast Caching is energy efficient over 3G
access but potential data waste is high.
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threshold increases average current.
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Fig. 19. Average draw of current as a function of viewing time for 3G
access.

as the player receives data in each connection at the same
throttled rate. Therefore, from the energy savings perspective
both are of the same potential.

4) DASH: Only the Vimeo player in iPhone 4S uses HTTP
rate adaptive streaming. The player receives video content
as chunks of roughly 10 seconds which enables the wireless
interfaces to consume less current. The Wi-Fi interface can
sleep in between the chunks. In this case, iPhone consumes
even less current than Galaxy S3 over 3G. The reason is that
iPhone triggers Fast Dormancy after receiving a chunk which
cuts the tail energy by half.

5) Fast Caching: Fast caching is used to download content
at the client with as high throughput as possible. As a result
the wireless interface is maximally utilized for as little time
as possible. Figure 17 shows the current draw for two such
example sessions in Lumia 800 for YouTube and Vimeo. We
notice that Lumia 800 consumes less current than the other
smartphones presented in Figure 17 and 18.

D. Energy vs. Possible Data Waste

Throttling, ON-OFF-M, and Fast Caching seem to consume
the least energy compared to the other techniques. However,

if the user does not watch the whole video, the data is
wasted and the energy is also wasted to retrieve that unwanted
content. Furthermore, using the cellular access to download
unnecessarily content is problematic for users having small
quota in their data plan and for network resources.

For example, in [8] Finamore et al. analyzed YouTube traffic
to desktop computers and iOS devices accessed via Wi-Fi and
discovered that 60% of videos were watched for less than 20%
of their duration. Therefore the impact of interrupted streaming
sessions can be significant.

In Figure 19, we plot the average current draw for example
cases of the aforementioned three techniques as a function
of percentage of watched video computed out of the complete
power traces. We see that interrupting the video watching early
on would cause a hefty penalty in terms of wasted energy in
both cases but the penalty gets smaller faster with the ON-
OFF-M streaming making it a more attractive technique since
it is common to not watch the video completely. To better
understand the trade-offs, we derived simple models of the
power consumption vs. data and energy waste. We assume
constant power draw during download of data depends on
inactivity timers, as explained in Section II. Based on observed
power traces, we can assume constant power draw for 3G’s
CELL DCH (during tail, no data transfer), CELL FACH, and
CELL PCH states, and for Wi-Fi’s idle and sleep states. The
power values are extracted from the Galaxy S3 measurements
(results would somewhat vary between devices). Wi-Fi is
assumed to transition from idle to sleep mode after no packets
have been observed during 200 ms. As for 3G, we use typical
inactivity timer values (T1=8 s, T2=3 s, T3=29 min) and
assume no delay in state transitions.

Figures 20 and 21 plot the data waste and average cur-
rent draw as a function of viewing time for three different
strategies. Clearly, ON-OFF-M streaming is the most attractive
for Wi-Fi from both energy and data waste point of view.
However, given the much larger tail energy with 3G access,
Fast Caching appears beneficial from the energy consumption
perspective if the user watches the complete video. Intuitively,
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using a larger burst size with ON-OFF-M technique would be
useful. Figure 22 shows that it is not the case when server
uses throttling. The reason is that if a burst is larger than
what is delivered during the Fast Start phase (in this case 40
s worth of content), the rest is streamed at a server throttled
rate which is less energy efficient, as we explained in Section
V-C3. However, this limitation does not exist when server uses
Fast Caching. In this case, higher burst size can be chosen and
energy consumption can be reduced further with the increasing
risk of more data waste.

E. Impact of Network Conditions

We obtained our results in “ideal” conditions in an isolated
RF room. This approach was necessary because otherwise
it would have been difficult to obtain comparable results.
However, we also did a second set of measurement for most
of the services and devices where we limited the available
bandwidth close to the video encoding rate using a software
based rate limiter. In this way we emulated a case of a loaded
cell in 3G network. The main observation is that throttling
and ON-OFF techniques are visible in the traffic pattern as
long as available bandwidth is at least twice the encoding
rate. After that if the bandwidth reduces further, different
techniques start to resemble encoding rate streaming which
is expected since there is no longer leftover bandwidth to
leverage. Signal strength can also vary depending on the user’s
location within a cell. We estimate that in such a case all
the techniques would be penalized by having to use more
transmit power and to amplify more the received signal. Such
situation would hurt more the techniques that need to keep
radio in rx/tx mode longer time meaning that the difference
in average current consumption between the most and least
energy efficient techniques would increase.

VI. LESSONS LEARNED AND FUTURE WORK

A. Streaming Techniques

The main lesson concerning the different streaming tech-
niques is that none of the identified ones is able to provide a
minimal energy consumption in all situations. In case of Wi-Fi
access, ON-OFF provides the best trade-off between energy
consumption and data waste given that users often interrupt
streaming sessions. For 3G, Fast Caching is a competitive
technique from the energy consumption perspective but not
from the data waste perspective. An effective ON-OFF stream-
ing technique should use non-persistent TCP connections and
a burst size which does not exceed the amount of content
delivered by the server during the Fast Start period in order
to avoid server throttling phase. While server throttling could
be a useful mechanism for the service provider to manage
bandwidth demand and provisioning, it is undesirable from
the clients perspective due to the increasing effect on the en-
ergy consumption. Bitrate streaming causes clearly the largest
amount of energy consumption and should be considered as an
unintended result of the client buffer being too small. DASH
is similar to ON-OFF-M but higher chunk size would reduce
energy consumption more.

LTE power consumption closely resembles 3G when dis-
continuous reception (DRX) is not supported. Then it exhibits

a long tail energy (e.g. 10s). If DRX is supported, the tail
energy is reduced and the power characteristics begin to re-
semble more Wi-Fi. Consequently, ON-OFF-M would be most
attractive option for DRX supported LTE and Fast Caching for
certain situations where DRX is not supported.

An energy optimal streaming technique would adapt the
download strategy to access network type and user behaviour,
none of which the identified techniques do. Furthermore, a
technique that also balances the data waste and energy con-
sumption would consider user preferences. GreenTube takes
the first step towards this direction [15] but, unfortunately
it does not take the harmful impact of server throttling into
account, and only considers local user viewing history in
predicting the interrupt time which is also likely to depend
on the content being viewed.

B. Player and Video Characteristics
We learned that using native apps is highly recommended

because their implementations exhibit a much more optimized
use of computational resources. Flash seems to be giving way
to HTML5 which is likely to be an important technology
in the future. Hence, optimizing the HTML5-based player
implementations would be important future work.

According to our measurements, the video container/codec
can have a significant impact on the energy consumption
(3gpp seems more efficient than mp4), while video quality
has a small impact. As a consequence, it makes little sense
to try to reduce energy consumption by trading off video
quality but the focus should rather be on choosing optimal
container/codec. Even the impact on transmission energy is
small in our measurements if the two video streaming sessions
of different qualities use the same streaming technique. Having
said that, an interesting question for future work would be to
study how the user perceives different quality video streams on
mobile devices. It is a waste of bandwidth to stream “too high”
quality video when user detects no difference to a lower quality
stream. Many factors play a role here, such as subjective
opinion, video content, and display technology.

VII. RELATED WORK

The diverse nature of existing popular mobile streaming
services and the resulting energy consumption characteristics
have so far not been completely uncovered. Many papers have
studied the energy efficiency of multimedia streaming over Wi-
Fi and developed custom protocols or scheduling mechanisms
to optimize the behavior. Examples of such work range from
proxy based traffic shaping and scheduling to traffic prediction
and adaptive buffer management [5]. However, streaming over
3G and the specific nature of the streaming services and
client apps provide new challenges that these solutions cannot
overcome. Balasubramanian et al. [16] studied 3G power
characteristics in general and quantified the so called tail
energy concept.

The most popular streaming services, especially YouTube,
have been subject to numerous measurement studies in recent
few years. Xiao et al. [17] measured the energy consumption of
different Symbian based Nokia devices while using a YouTube
application over both Wi-Fi and 3G access. A similar study
was done by Trestian et al. [18] for Android platform. They
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investigated energy consumption while streaming over Wi-Fi
at different network conditions and studied the effect of video
quality on energy consumption. However, these studies did not
consider the details of traffic patterns and their impact on the
energy consumption.

In a measurement study, Rao et al. [7] studied YouTube
and Netflix traffic to different smartphones (iOS and Android)
and web browsers accessed via Wi-Fi interface. They found
three different traffic patterns of YouTube. In a similar passive
measurement study, Finamore et al. [8] also analyzed YouTube
traffic to PCs and iOS devices accessed via Wi-Fi and demon-
strated that iPhone and iPad employ chunk based streaming.
Qian et al. [19] explored RRC state machine settings in terms
of inactivity timers using real network traces from different
operators and proposed a traffic shaping solution for YouTube
which closely resembles the ON-OFF streaming technique.

Liu et al. [20] studied power consumption of different
streaming services. However, the scope of their study is
considerably different from ours. They limit their study to
streaming over Wi-Fi and performed experiments with only
iPod, while we explored all the major mobile platforms
and contrasted Wi-Fi with 3G. Our methodology is centered
around fine grained power measurements with external instru-
ments in controlled environment.

In contrast to these studies, we investigated which charac-
teristics influence the choice of the streaming technique and
quantified their impact on the energy consumption on different
smartphones using both Wi-Fi and 3G. We also studied the
effect of video qualities, video containers, players, and display
types on playback energy consumption.

VIII. CONCLUSIONS

We analyzed the performance, and especially the energy
consumption, of mobile video streaming. Based on mea-
surements with six smartphones and three popular services
we identified five different streaming techniques. The used
technique depends on the service, client device, player type,
and video quality. In general, we can say that in most
cases the video streaming energy consumption is far from
optimal. Specifically, our results demonstrate that none of
the used stream delivery techniques is optimal but there are
clear winners and losers. We pointed out several concrete
suggestions on how the energy consumption, and also potential
data waste, could be easily optimized using current techniques,
also considering the player, codec, and video quality. Finally,
our study paves the way for designing an optimized video
streaming service.
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