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1. INTRODUCTION
Smartphones are powered up with batteries having limited capacity. Many of the hard-
ware components found inside modern smartphones, namely displays, cameras, radios,
and processors, draw considerable amounts of power. Meanwhile, smartphone applica-
tions today are getting more and more resource hungry. Obviously, in addition to the
energy efficiency of the hardware itself, what matters to the battery life is how the
hardware is used by the applications.

Many kinds of energy management mechanisms have been developed in order to
reduce the energy consumption [Vallina-Rodriguez and Crowcroft 2013]. These mech-
anisms are most often implemented on the operating system (OS) level and designed to
operate without deteriorating or penalizing the application performance or user expe-
rience, hence remaining invisible to application developers. Examples include dynamic

Author’s addresses: Mohammad Ashraful Hoque, Sasu Tarkoma, Computer Science Department, Univer-
sity of Helsinki, emails: firstname.lastname@cs.helsinki.fi; Matti Siekkinen, Kashif Nizam Khan, Yu Xiao,
Computer Science Department, Aalto University, emails: firstname.lastname@aalto.fi
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 0360-0300/2015/10-ART0 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: October 2015.



0:2 Hoque et al.

voltage and frequency scaling (DVFS) of microprocessors and power saving modes of
radios.

Previous studies have shown that in many cases the energy efficiency of a particular
application can be dramatically improved through changes in the program code even in
the presence of such management mechanisms. One reason is that these mechanisms
are application agnostic and, therefore, are usually unable to optimize their way of
working to match the application workload, even if application developers have done
a good job. Streaming traffic scheduling represents a prime example of this kind of op-
timization where the time spent by the radio powered on is minimized through clever
timing of data transmissions and reception [Hoque et al. 2014]. Another reason is that
application developers may simply implement a particular task in an energy inefficient
manner, which may not cause any other visible symptoms than rapidly draining the
battery. Such a sub-optimal piece of code is sometimes called an energy bug [Pathak
et al. 2011].

All of the above means that it is crucial for developers to be aware of the energy
consumption behavior of smartphones when conducting particular operations. With-
out that ability, it is difficult for developers to optimize the program code for energy
efficiency. This paper focuses on software-based solutions for analyzing and estimating
smartphone energy consumption. A basic functionality of these software is to provide
information about battery usage, such as the energy being consumed by the whole
device, by each hardware component such as CPU and display, and/or by each applica-
tion/service running on the device. We call this functionality energy profiling, and the
software with such functionality energy profilers.

Smartphone energy profiling is a multi-faceted problem. The first issue is that the
vast majority of smartphones do not by default even report the total amount of current
the device draws at a particular moment of time. An option is to measure it using exter-
nal instruments, such as Monsoon Power Monitor [Monsoon 2014], BattOr [Schulman
et al. 2011], and NEAT [Brouwers et al. 2014]. However, this method requires opening
the phone and attaching the measurement unit to the phone’s physical battery inter-
face, which is rarely desirable and sometimes very difficult, as is the case with Apple’s
iPhones whose batteries are not easily accessible. Concerning the potential decrease in
output voltage with the remained battery capacity, developers may choose to replace
the battery with external power supply during measurement, which can provide more
accurate measurement but is not portable. To this end, several methods have been pro-
posed to estimate the instantaneous power draw from the smartphone’s battery API
which is typically able to report the voltage and the state of charge at certain intervals.
On a limited number of smartphone models the battery API is able to report current,
which mitigates this part of the profiling problem.

The second challenge in energy profiling is to understand how the total energy con-
sumption is distributed among the different hardware components. The above men-
tioned power measurement methods can tell the total power draw of the device but
cannot tell directly the major underlying power sinks, i.e. the hardware resources be-
ing utilized by the application and their contribution in total power consumption. Al-
though it is possible to extract the contributions of some individual subcomponents
through extensive analysis of the measurement data, the effort requires domain spe-
cific knowledge and it is not always feasible to do so. Overcoming this challenge re-
quires power modeling in most cases. A power model represents the power draw of a
system as a function of subsystem specific variables. These variables are chosen in a
way that their values can be continuously monitored by software, which enables con-
tinuous assessment of the power drawn by the system and subsystems without the
need for external instruments. The research community has taken many different ap-
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proaches to smartphone power modeling, which we will review in detail in the following
sections of the paper.

The final challenge in smartphone energy profiling is to enable attributing the sys-
tem and subsystem energy consumption to different pieces of application program
code. Indeed, an energy profiler that is able to point out the most critical parts of
program code from the energy consumption perspective is clearly more useful to soft-
ware developers than a profiler that can only provide an energy consumption profile
per hardware component. Some of the profilers that we survey in the rest of the pa-
per have this capability. In general, this feature requires the capability of tracing the
execution of applications on a fairly fine granularity and being able to match the in-
stantaneous power draw to specific instances of program code execution.

Our approach in this survey is to take a broad look into different kinds of software-
based energy profilers for smartphones. It is broad in the sense that we survey the
solutions from the most basic ones that are able to just report total instantaneous
system power to the richest kind that are able to provide energy consumption profiling
on the level of application program code.

Besides the actual energy profilers, there are a number of software tools which try
to detect abnormal energy usage by different applications, subcomponents, and the
reasons behind such behavior. We define them as Energy Diagnosis Engines. They
also actively apply or suggest users the prognosis for the energy buggy applications.
However, such a system may depend on an energy profiler, and run on the mobile
device or in a separate system. We discuss theses tools separately in Section 9.

This survey comprises five major parts. First, we familiarize the reader with the
terminologies involved in software-based energy profiling work and used throughout
this survey, in Section 2. Second, power measurement is an integral part of the power
modeling and we present the power measurement methodologies in Section 3. Third,
power modeling is the heart of the software-based profilers and we explain different
power modeling methodologies in Section 4. We next compare the existing power pro-
filers in Section 6, 7, 8, and 9 according a taxonomy presented in Section 5. Finally, we
address the limitations and challenges with the existing profilers from the accuracy
and usability perspectives in Section 10 and 11, which also serve as our suggestions on
how to advance the state of the art of software-based energy profilers for smartphones.

2. MODEL-BASED ENERGY PROFILING
In order to profile the energy consumption of the system, its subcomponents, or specific
applications, power models are needed. A model-based energy profiler provides some
kind of energy consumption profile of the mobile device, one of its subsystems, or a
piece of software running on it. Power measurement is an integral part of building a
power model and can be implemented in alternative ways. In this section, we describe
the anatomy of an energy profiler and the related activities, including power modeling
and measurements.

2.1. Basic terminology
The literature is rich with different kinds of energy profiling solutions. These solutions
are usually presented as unique tools, although they are in fact the combinations of dif-
ferent kinds of underlying techniques. To provide deeper insight into these solutions,
it is essential to identify the key components of each energy profiler and to analyze the
relevance between them. In the literature the terminology has not been consistently
used. For example, in some cases the line separating power measurements and model-
based profiling is thin, while a particular approach to estimating power consumption
could be described using either of the two terms. Hence, it is important that we clearly
define the terminology we use.
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— Power measurement is the act of obtaining power (or current) consumption val-
ues using specific hardware. It involves no models implemented in the software and
calibration. The most common example is power measurement using an external in-
strument, such as Monsoon Power Monitor [Monsoon 2014], connected to the battery
interface of a smartphone. Another example is direct measurement of current from
the smart battery interface of a smartphone implemented with special purpose em-
bedded electronics. Nokia Energy Profiler [Creus and Kuulusa 2007], for instance,
relies on this approach to obtain the current draws.

— Power model is a mathematical representation of power draw. It is a function of
variables that quantifies the impacting factors of power consumption, such as the uti-
lization of a hardware subcomponent and the number of packets delivered through a
wireless network interface, with the desired power draw as output. Usually the val-
ues of these variables can be directly obtained from measurement carried out on the
smartphone or in the network. A power model can characterize a single subsystem,
a combination of them, or even a whole smartphone (system-level model). A simple
example of a subsystem power model is a coarse-grained power model of display that
is a function of a single variable: brightness level.

— Power estimation reports power draw of a smartphone or its subsystem based on
power model(s). The accuracy of the power estimates depends on the accuracy of the
power model in use.

— Power/energy profiler is a system that characterizes power and/or energy con-
sumption of a smartphone. We distinguish profiling from power measurement by
specifying that a profiler relies on power models by definition. Hence, a profiler pro-
vides power or energy estimates as opposed to power measurements which can be
obtained with a power monitor. Furthermore, different profilers work on different
abstraction levels, such as system, application, process, or task, whereas power mea-
surement only provides power consumption of the hardware under measurement,
most often the entire smartphone.

2.2. Constructing an Energy Profiler
Figure 1 illustrates the process of constructing a model-based energy profiler. The fig-
ure divides the process into 4 phases. The process starts with the expert selecting the
modeling method using her domain-specific knowledge. After this, the actual power
modeling phase follows in which variables are selected and the models are trained us-
ing power measurements and system logs. The system logs refer to the actual variables
used in the power models and the training is in essence computing the coefficients of
the model variables. Statistical learning techniques are commonly applied in these
phases. In Section 4, we will examine the different power modeling approaches that
are relevant to these two phases.

The power models are then combined into the actual profiler that monitors the model
variables and provides power consumption estimates. The profiler is evaluated with
the help of additional power measurements that are compared with the power esti-
mates in order to characterize their accuracy. This phase provides valuable input for
the expert overseeing the model generation and usage process. According to the input,
the choice of modeling approach and/or variable selection can be re-evaluated, while
the model can be re-trained with a more comprehensive training data set.

3. OBTAINING SYSTEM-LEVEL POWER CONSUMPTION
We first discuss two alternative ways to measure the overall power consumption of a
smartphone: using external instruments and by means of self metering. The collected
measurements are parts of the input for training power models of the smartphone.
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Fig. 1. The process of energy or power profiling includes modeling, estimation, and a feedback loop through
validation and verification to refine and recalibrate the models.

3.1. Power measurement using external instruments
External instruments, such as the Monsoon Power Monitor, can be used for directly
measuring the current drawn by the smartphone. Another way to use an external
instrument is to connect a voltage meter across a resistor that is connected in series
with the power supply of the smartphone, which allows computing the current from
the change of the measured voltage. It is also possible to perform these measurements
with the original battery as the power supply or using an external power supply. In the
former case, the battery effects, such as impact of the state of charge, are included in
the measurement. The external power monitors are the gold standard for mobile device
power analysis due to their high precision and accuracy. They are limited by requiring
the laboratory settings and are therefore not feasible for large-scale deployment.

3.2. Self metering
The second approach is called self metering, which means that the smartphone is
equipped with sufficient capabilities to infer system-level power consumption without
the help of external instruments.

Battery models, voltage, and state of charge. Let us first briefly introduce three
measurement metrics related to battery characteristics, before we take a closer look
at the different self metering approaches. The metrics include the terminal voltage,
open circuit voltage (OCV), and state of charge (SOC). The terminal voltage is the
measurable voltage of the battery across its terminals, while OCV defines the battery
voltage without load. The terminal voltage (Vt) drops and, hence, differs from the OCV
(VOCV ), when current is drawn from the battery, due to its internal ohmic resistance,
R, as follows:

Vt = VOCV − I ·R (1)

The above is also known as the Rint battery model and the equivalent circuit is
drawn in Figure 2. Compared to that model, the Thevenin model introduces a parallel
RC network in series on top of the Rint model as shown in Figure 2. Accordingly, the
Thevenin model consists of OCV, internal resistances, and the equivalent capacitance.
The internal resistances include the ohomic resistance R and the polarization resis-
tance r. The capacitance CTh describes the transient response of the battery while
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Fig. 2. Open Circuit Voltage estimation models.

charging and discharging. Vc is the voltage across CTh. The Thevenin model can be
expressed as

Vt = VOCV − Vc − I ·R (2)

The above models suggest that the exact OCV can hardly be measured on a powered
up smartphone, however, the measured terminal voltage comes close to it when all of
the hardware components stay in low power mode.

The SOC defines the current charge status of the battery or the remaining battery
capacity in percentage. For example, 0% implies empty battery and 100% implies fully
charged battery. The alternative way to express the remaining capacity is using State
of Discharge (SOD), in which 100% implies an empty battery and 0% implies a fully
charged battery. However, being able to tell the SOC is useful for smartphone users so
that they know when the device battery needs soon to be recharged. In the context of
energy profiling, the SOC plays another important role providing means to estimate
the average dissipation of current given a constant load. It is done so that the SOC is
recorded before and after applying specific load to the smartphone. The change in the
SOC, together with the knowledge of the battery capacity, directly yields the amount of
energy consumed by the phone during the measurement interval from which the aver-
age current drawn by the device while it was under the specific load can be calculated,
as the duration and the OCV are known.

State of Charge estimation. Typically, the SOC cannot be directly measured.
Instead, there are two approaches to estimating it [Rezvanizaniani et al. 2014]: (i)
voltage-based method and (ii) Coulomb counting. The first method method uses either
of the battery models discussed in the earlier section and converts the terminal volt-
age to SOC using OCV lookup tables. It is common to use a so called battery discharge
curve for expressing the relationship between the OCV and the remaining capacity as
the battery discharges over time (see Figure 7 in Section 6.3). This discharge curve is
always a strictly decreasing function. Given a particular value of the OCV, the SOC
can be determined. The drawback is that the mapping varies with battery properties,
such as model and age, which means that for accurate estimation of SOC, a personal-
ized discharge curve must be generated for each device and be updated from time to
time.

The Coulomb counting technique determines the SOC by accumulating the current
drawn by the system over time. This method requires the ability to directly sense the
current, because of which it is counter-intuitive to discuss it here. The reason is that it
is possible that a device that has the capability to sense current drawn from the battery
only uses it to estimate the SOC and does not expose the instantaneous current to the
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applications through the OS. Therefore, an energy profiling application needs to rely
on SOC-based power estimation in such a case. In this case, SOC can be calculated as

SOC = SOCinit −
∫

Ibat
Cusable

dt (3)

where Cusable depends on the battery capacity reduction due to age, temperature,
charging cycles, and losses due to inactivity of the battery.

Since SOC is estimated, terminal voltage, OCV-based, and Coulomb counting ap-
proaches may suffer from error and the profilers which rely on SOC also inherit the
error.

In case of the voltage-based SOC estimation, the estimation error can be significant,
as the battery voltage varies with load, temperature and age. The Rint model for OCV
does not consider the transient nature of Lithium-Ion batteries and thus error can be
significant under dynamic load of the system.

Due to the dynamic load experienced in a system, there remains the possibility of er-
ror even with sophisticated voltage and load lookup table. For example, in Figure 3 we
can see that battery voltage 3.81 V occurs at 25%, 78% and 40% of the SOC. Figure 4
shows a similar example for OCV-based SOC estimation. We can see that an OCV rep-
resents multiple SOCs while charging (15%) and discharging (90%), and consequently
the SOC error will be significant unless separate OCV lookup tables are maintained
for charging and discharging.

In the case of Coulomb counting, there two sources of error. First, there is an off-
set current accumulation error. The offset current results from the current sense and
Analog-to-Digital conversion [TexasInstruments ]. This accumulation error increases
over time and contributes in inaccuracy of the SOC, unless it is compensated with some
voltage relaxation method such as keeping the device idle for a long time. Second, there
is a usable capacity estimation error which is related to the age of the battery, temper-
ature, and charging or discharging rates. The traditional approaches to estimate the
usable capacity are the charging cycle, and lookup tables with respect to the tempera-
tures and rates [Hoque and Tarkoma 2015].

Fuel Gauge and Battery APIs. The SOC is estimated by a hardware component in
mobile device, called battery Fuel Gauge. The voltage-based Fuel Gauges read battery
voltage from the battery and they are easy to implement. On the other hand, Coulomb
counter-based Fuel Gauges are required to be instrumented with a sense resistor in
the charge/discharge path. Under current flow, an Analog-to-Digital Converter (ADC)
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reads the voltage across the sense resistor and then transfers the current value to a
counter. The timing information is provided by a real time counter in order to integrate
current to Coulomb. The latest phones, such as Nexus 6/9, use Coulomb counter-based
Fuel Gauges [Android 2014a].

From the perspective of an energy profiling application, the self-metered informa-
tion is provided through the smartphone’s battery API which is a way for the operating
system to expose information about the battery status, such as the Android’s Battery-
Manager. The exact information provided by the battery API depends on the device
model and the Fuel Gauge type. In some cases, the API can directly provide informa-
tion about the current draw, battery voltage, and temperature. The API updates this
information periodically and whenever there is a change in the SOC depending on the
Fuel Gauge. The update rates vary from 0.25 Hz to 4 Hz [Zhang et al. 2010]. Later
we will see how the profilers that rely on the self metering approach utilize voltage,
current, or SOC from these updates.

4. POWER MODELING METHODOLOGY
In this section, we take a closer look at the different approaches for smartphone power
modeling.

4.1. Types of power models
The approaches to modeling power consumption of a smartphone can be roughly di-
vided into three categories based on the kind of input variables the model uses:
utilization-based models [Zhang et al. 2010], event-based models [Pathak et al. 2011],
and the ones based on code analysis.

1. Utilization-based models. Utilization based models account the energy usage
of a subcomponent by correlating the power draw of that component with measured
resource usage. For an application or process, its power model includes variables that
reflect the resource consumption of all the different subcomponents that are active
while running that application.

A good example of utilization-based approach is the widely used method for mod-
eling power consumption of the computing subsystem using Hardware Performance
Counters (HPCs). Such method leverages the fact that modern microprocessors expose
their internal activity through a number of event counters including Instructions Per
Cycle (IPC), Fetch Counters, Miss/Hit Counters, and Stalls, for example. The idea is
that the amount of power required for executing a software is proportionate to the
amount of activity that happens inside the microprocessor. Contreras and Martonosi
[2005] relied on counters for modeling both CPU and memory power consumption. For
modeling memory power consumption, the authors considered cache misses and Stall
counters. Li and John [2003] characterized the power behavior of a commercial OS for
a wide range of applications using IPC. Singh et al. [2009] proposed a power model
using counters for an AMD Phenom processor. Bircher and John [2007] explored the
usage of counters to estimate the power consumed by subsystems outside the proces-
sor. An example of mobile device power modeling work based on HPCs is presented in
Joule Watcher [Bellosa 2000].

2. Event-based models. Utilization-based power models are good at capturing lin-
ear relationships between resource and energy consumption of the hardware being
modeled. However, some of the smartphone hardware components exhibit non-linear
energy consumption characteristics. This behavior is often characterized with tail en-
ergy concept which refers to the fact that a specific piece of hardware remains powered
on for some time after it is no longer actively used. For example, wireless radios typi-
cally remain powered on for a particular timer specified amount of time after the last
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Fig. 5. The HSPA cellular network steps involved in data connectivity.

bit has been transmitted or received [Balasubramanian et al. 2009]. For this reason,
event-based modeling has been adopted. Events allow more accurate characterization
of the power in certain cases where utilization-based approach does not perform well.
Obviously a mixture of the two approaches can also be used.

A representative example of an event-based modeling approach is one that builds the
power model based on system calls [Pathak et al. 2011]. Tracking system calls provides
clear indication of which hardware components are used by a specific application or
process and in which way. For example, the tasks related to I/O are exposed through
read and write system calls.

The duration of the active power state of the corresponding hardware subcompo-
nents depends on the volume of the I/O, which are specified in the parameters of these
system calls. When the actual I/O tasks are finished, the tail energy can be estimated
using close like system calls. Pathak et al. [2011] considered the tail energy behavior
of different hardware components.

As another example, the states and the transitions among the Radio Resource Pro-
tocol (RRC) states involved in 3G cellular network communication is presented in Fig-
ure 5. The figure highlights that power consumption is highest at the CELL DCH
state. The amount of time required to be in each state depends on the length of the
timer and the data activity at the moment. The timer lengths in fact depend on how
the network equipment is configured by the operator. If Fast Dormancy (FD) is sup-
ported, the device will directly switch from the CELL DCH to the CELL PCH or the
IDLE state when the FD timer expires. For additional details, we refer the interested
readers to the work presented by Siekkinen et al. [2013].

3. Models Based on Code Analysis. The third category of models relies on the
analysis of the program code to be executed. The advantage of this approach is that it
can estimate energy consumption without even executing the software on a real sys-
tem. This approach is less frequently used, as the energy consumption is often context
dependent, which is difficult to account for without actually running the program code
in a real device. For example, poor wireless link quality that prolongs the transmis-
sion time of a file and affects the energy consumption can be captured by a utility-
based model that tracks the bits transmitted as a function of time but not by means
of code analysis. An example of code analysis approach is an instruction-level model,
which works by associating the power consumption of a piece of software with each
instruction executed and requires the evaluation of power dissipation for each of the
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Table I. Guiding questions for profiler classification

Criteria Choices
What is the level of profiling
granularity?

Whole device(system), subcomponent, application, or API

Where to train power models? On device (requires self metering capability, cf. Section3.2)
Off-device (e.g. on PC, in the cloud)

Where to get the model predic-
tors?

Metrics that measure the utilization of hardware resources, such
as hardware performance counters
Traces of software execution, such as system call trace, traffic
traces
Hardware/Software operating modes

Which modeling methodology White Box
to use? Black Box (e.g. linear regression)

Combination of White Box and Black Box methods
Use physical power meters (e.g. Monsoon Power Monitor)

How to get the power values
for model training?

Do self metering

instruction of the software considered. Similar method can be applied also for a func-
tion, procedure, or a subroutine.

4.2. White Box vs. Black Box Modeling
The modeling approaches can be further distinguished by the amount of available a-
priori information about a hardware component being modeled. Purely black box ap-
proach, as the name suggests, has no a-priori information about the hardware compo-
nent’s power consumption behavior, whereas in case of white box modeling, the behav-
ior is well understood.

White box power modeling typically captures the power consumption behavior of
the hardware using finite state machines (FSMs) that describe the power states of the
system and transitions between power states. This approach requires precise under-
standing of the power consumption behavior of the hardware. Specifically, the events
that trigger a transition from one power state to another must be known and well
understood. Training of the model is not required beyond simply measuring the abso-
lute power draw of the hardware at different power states. This approach works well
when modeling the power consumption of the wireless communication subsystems of
a smartphone. The power draw of a radio can be abstracted accurately enough using a
simple set of power states that correspond to the fraction of time the radio is fully pow-
ered on. Transitions between power states depend on the link layer protocols used but
they are usually triggered by inactivity timers and thresholds associated with trans-
mission data rate. Examples of such modeling are presented in [Xiao et al. 2014; Hoque
et al. 2013].

In contrast, black box modeling always requires model training. The main method
is regression analysis and, in particular, linear regression. A model based on regres-
sion analysis captures the relationship between an input workload described with re-
gression variables and the power consumption. Typically some a-priori knowledge is
available, which helps, for example, select the regression variables. Linear regression
is a natural choice when constructing an utility-based power model where CPU usage,
screen brightness, and network activity could be captured by regression variables [Xiao
et al. 2010]. It is simple and efficient but also limited by the linearity assumption, but
transformations can overcome this limitation sometimes. Examples of profilers which
use linear regression are DevScope [Jung et al. 2012] and V-edge [Xu et al. 2013]. There
are some profilers which do both white and black box modeling, such as the profilers
proposed by Banerjee et al. [2014].
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Table II. Classification of the Energy Profilers

Profiler name
/ Author

Profiling Granularity Model Type Model
Construction

Deployment
Type

Nokia Energy
Profiler

System level Not Applicable

Trepn Profiler System, subcomponent and
application levels

Not Applicable

PowerBooter System level Linear regression
Sesame System and subcomponent

levels
Linear regression,
Utilization

DevScope System and subcomponent
levels

FSM, Linear re-
gression

On-Device On-Device

AppScope Application level DevScope models
V-edge System and subcomponent

levels
Linear regression

Android Power
Profiler

System, subcomponent, and
application levels

Utilization

PowerTutor System, subcomponent, and
application levels

FSM Off-Device On-Device

PowerProf API level Genetic model
PowerScope Process and procedure level Code analysis
Joule Watcher Thread level Utilization (Hard-

ware Performance
Counter)

Eprof System, subcomponent, and
application levels

System call tracing
and FSM

Off-Device Off-Device

Banerjee et al.
[2014]

System, subcomponent, and
application levels

System call trac-
ing, Linear regres-
sion

Shye et al.
[2009]

System and subcomponent
level

Utilization, Linear
regression

5. TAXONOMY OF MODEL-BASED ENERGY PROFILERS
As explained in Section 2 and 4, an energy profiler is a piece of software that measures
and monitors the energy consumed by a subcomponent of a mobile device, the whole
device, or an application. Table I summarizes the aspects of model-based power pro-
filers which we have discussed in the previous sections. The power or energy can be
modeled as a linear or nonlinear function of a number of variables. The computation of
the variables can be conducted on a desktop computer or in cloud, or even on the mo-
bile device itself. The data, defining the variables in the model, may include hardware
resource utilization statistics, a system call trace, and operating or power states of dif-
ferent hardware components. The modeling methodology can be white or black box, or
a combination of the two. The power model may depend on the measured power val-
ues which can be measured from the smart battery interface or using physical power
measurement tools such as a power meter.

Table II illustrates a classification of the existing power profilers. The two main
axes along which we differentiate the profilers are whether the model construction
and training happens on the smartphone or not and whether the profiler runs on the
phone or not. As a result, we identify three main categories of profilers as follows.

— On-Device Profilers with On-Device Model Construction: These profilers do
not need offline tuning, measurement or pre-training of power models. Rather, they
generate power models at run time based on the information gathered from the sys-
tem, hence relying on self metering. On-device models are important for two reasons.
First, the hardware component of a mobile device may change. For example, a mem-
ory card is plugged into a phone or the device may change and power consumption
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of the subcomponents may vary among the devices of the same model or different
models. Second, the usage of the system or applications may be different for different
users and users’ behavior evolve with time [Falaki et al. 2010]. Therefore, on-device
models enable not only avoiding complex device instrumentation but also enable de-
vice and usage agnostic energy profiling.

— On-Device Profilers with Off-Device Model Construction: Also these profilers
run on mobile devices but rely on power models that have been pre-trained in lab-
oratory settings. They use these models with the on-device information in order to
characterize the energy consumption. For example, the power consumption of differ-
ent subcomponents are modeled beforehand using an external power measurement
tool, and later on the on-device usage statistics are used for estimating the energy
consumption. Unlike the previous category, the models of these profilers are device
specific and thus their accuracy may vary significantly among different devices.

— Off-Device Profilers: These profilers estimate the energy consumption of applica-
tions or hardware components of mobile devices on a desktop machine or in the cloud
rather than in a mobile device. Their profiling models are developed in the laboratory
with the help of some external power monitoring tools such as the Power Monitor or
any simulation tool. Therefore, these profilers can often characterize the power con-
sumption of the device, applications, and subcomponents more accurately or in a finer
granularity, such as per method call instead of an entire application. In general, this
kind of profilers are mostly useful for application developers and system architects
but not for regular users.

There is also a fourth category, namely off-device profilers with on-device model con-
struction but we exclude it since we are not aware of any such work. In most cases,
if the model construction can be performed on device, it makes sense to do the profil-
ing on device as well instead of transferring the input required by the model from the
device to external profiler.

The profiling granularity of the different profilers varies. Granularity in this con-
text refers to the capability of a profiler to dissect the total energy consumption of
the smartphone. Subcomponent and application level profiling is more complex than
system-level profiling simply because more detailed information is required about the
underlying system behavior and application execution. For example, PowerTutor uti-
lizes the component-level power models provided by the PowerBooter to estimate the
application specific energy consumption by attributing subcomponent specific energy
consumption to the application.

In the upcoming sections, we present the different energy profilers according to
the three categories mentioned above. The description of the profilers also follow the
chronological order as illustrated in Table II.

6. ON-DEVICE PROFILERS WITH ON-DEVICE MODEL CONSTRUCTION
The profilers of this category do not require the offline support for measurements
or model calibration. They overcome these limitations by replacing the instrumen-
tal power measurements with self metering. Examples include Nokia Energy Profiler,
Trepn Profiler, PowerProf, PowerBooter, DevScope, AppScope, and V-edge. In this sec-
tion, we first describe these energy profilers and then explore their similarities and
differences.

6.1. Nokia Energy Profiler
The Nokia Energy Profiler (NEP) is a standalone on-device power measurement soft-
ware. It is one of the pioneers in the current trend of on-device power profiling. How-
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ever, NEP is only available on Nokia’s Symbian devices that are no longer in the mar-
ket because of which it has no longer any practical relevance. It displays the run-time
energy consumption of the system in Watt and Ampere by monitoring system and
networking activities. Simultaneously, NEP can monitor the network signal strength
and the cellular network connectivity status of the mobile devices [Creus and Kuulusa
2007]. It also displays the voltage discharge curve. Most of the information is displayed
as temporal graphs and can be exported as CSV files. The smart battery interface of
Nokia Symbian devices provides both voltage and current sensor readings and NEP’s
power measurement is implemented based on these two.

This tool is manually used by a user. Once activated, it starts profiling the system.
The idea is that the user will run some testing applications and then visit the NEP
interface to examine the energy usage of the target applications. The user can examine
the total power consumption and the network usage of the applications as well. NEP’s
sampling frequency has been limited to 4 Hz in order to curb the resource consumption
of the profiler itself.

6.2. Trepn Profiler
Trepn Profiler [Qualcomm 2014b] is akin to Nokia Energy profiler for profiling the
hardware usage and energy consumption. Trepn is developed by the Qualcomm com-
munity and works on devices with Snapdragon chipset-based Android devices. It is a
user space application and can profile the usage and power consumption of CPU, GPU,
Wi-Fi, wakelocks, memory, SD card, Audio and also the run-time energy consumption
of the whole device. Unlike NEP, it can provide fine grained subcomponent specific
energy consumption. However, Trepn requires additional hardware instrumentation
in the device, called Mobile Development Platform (MDP). MDP is powered with Em-
bedded Power Management SOC which collects readings from the sense resistors and
converts to current for individual hardware components [Qualcomm 2014a], such as
CPU, GPU, and Wi-Fi. Trepn also depends on special Fuel Gauge chip with the inte-
grated power management IC which controls the distribution of power from the bat-
tery [Qualcomm 2014a]. For the usage statistics of different hardware components,
Trepn depends on the proc and other system files. Although Trepn samples informa-
tion after every 100ms, it can adapt the sampling rate to the system load in order to
avoid the overhead of the sampling.

Similar to NEP, it also offers different modes of information visualization. Trepn also
provides an overlay view of different graphs and charts in the foreground so that the
application developers can associate the performance of applications with the resource
utilization and energy consumption at run time. Meanwhile, it allows exporting the
real time raw data for offline analysis. Trepn further enables debugging the application
performance by catching the Android Intents and logging the application states along
with other data points. Finally, Trepn can be controlled from an external application
and thus facilitates automated profiling.

6.3. PowerBooter
PowerBooter [Zhang et al. 2010] automatically generates power consumption models
by correlating the power consumption of individual subcomponents with the state of
the battery with regression. Figure 6 illustrates the key steps involved in the model
generation mechanism: obtaining battery discharge curves for individual hardware
components, measuring power consumption of the components, and generating models.

The first step is to construct the discharge curves for each individual components.
For that PowerBooter uses the battery interface update. Figure 7 illustrates one exam-
ple curve, which is a monotonically decreasing curve and expresses the relationship be-
tween the battery voltage and the state of discharge (SOD). The steepness of this curve
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depends on the discharge current, the room temperature, and the age of the battery. In
addition, different batteries may produce different curves. Consequently, PowerBooter
characterizes individual batteries by discharging a fully charged battery completely
with constant current, and maintains a linear relationship between the SOD and the
discharge time. Note that it applies piece-wise linear functions to represent the rela-
tionship between SOD and uses the battery output voltage.

The energy consumption measurements are carried in the second phase. In this
phase, the states of an individual component is tuned, while keeping the other compo-
nents in lower power states or in some static configurations. For example, while deter-
mining the power consumption of CPU at different frequencies, the display, Wi-Fi, GPS
and the Cellular interface are disabled. The battery is discharged for 15 minutes, and
the device is kept idle for one minute before and after the discharge interval. During
the measurements, the inter-dependencies among different subcomponents are also
considered, such as the interdependency between Wi-Fi and CPU power consumption,
by monitoring the power states of the other components while exercising a particular
component.

In the third phase, the power consumption of the components are derived from the
measurements done in the second phase. The activities over this interval are mapped
to the change in the SOD, which in turn is converted to the energy consumption. The
energy consumption during an interval is calculated as P × (t2− t1) = E× (SOD(V2)−
SOD(V1)), where P is the average power consumption over time interval [t1, t2], E is
the related battery energy with respect to the battery capacity, and SOD(V1), SOD(V2)
are the states of discharge at voltage V1 and V2, respectively, as illustrated in Figure 7.
Finally, the regression is applied to generate power models.

6.4. Sesame
Sesame [Dong and Zhong 2011] also uses self metering for generating the power model
automatically. Differently from PowerBooter [Zhang et al. 2010], Sesame relies on get-
ting instantaneous current readings directly without the need to resort to SOC based
estimation while generating the power models. This design decision limits the usage of
Sesame to the phones that have OCV-based Fuel Gauge chips. The main novelty com-
pared to PowerBooter is that Sesame uses statistical learning for generating power
models that have higher accuracy and rate compared to the battery interface. Figure 8
illustrates Sesame’s architecture. It has three subcomponents: a data collector, a model
constructor and a model generator.
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In addition to the battery interface, the data collector collects data about the usage
of different subcomponents from a number of sources, such as proc and dev system
files. Sesame further considers the power status of different hardware components.
However, different sources have different update rates which may also depend on other
activities. Therefore, reading from these sources at a higher rate or lower rate than
the actual update rates of the sources will generate error. For example, the processor’s
P-state (P0-P5) residency is updated at 250 Hz and reading this P-state at 100 Hz
produces 20% error, as the data collector may miss intermediate state changes. In
addition, there can be delay between the predictor value update and the actual task
performed. Accessing some data sources, such as reading the battery interface, also
introduces overheads. Sesame reduces these overheads by adapting access rate to the
source update rate. If the source’s update rate is higher than the Sesame’s update rate,
then it polls. Otherwise, Sesame waits for the changes in the dependent sources. In
addition, Sesame introduces a new system call which can read multiple data structures
of subcomponents at a time from OS.

The model constructor is the heart of Sesame. In order to generate a model with
improved accuracy and update rate, Sesame applies model molding. Model molding
works in two steps. The first step is called stretching, which involves constructing a
model of the highest accuracy with a lower update rate than the target rate. This
accurate model is constructed by averaging several readings and the rationale is based
on the observation that accuracy is higher when the battery interface readings are
averaged over a longer period of time. For example, if the battery update rate is 0.5
Hz, then a 0.01 Hz rate model will be constructed by averaging consecutive 50 battery
interface readings and the accuracy will be higher. In the second step, the low-rate
accurate model is compressed to construct a high rate model which is achieved by
applying the linear regression coefficients in calculating the energy consumption for
the desired time interval.

Since the energy consumption models depend on the usage of different subcompo-
nents or predictors, such as CPU frequency and power states, a number of such pre-
dictors can be large. Therefore, it is a challenge to find the actual predictors. For that
Sesame applies transformation on the predictors using Principle Component Analysis
(PCA) [Smith 2002]. The model molding and PCA together improve the accuracy of the
model. However, the model constructor may generate models for three categories of
system configurations: (i) information about the hardware and manufacturer, (ii) soft-
ware settings, such DVS enabled or disabled, and (iii) user controlled settings, such as
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states realized by DevScope from the periodic battery interface update.

brightness and volume. Finally, the model manager adapts the model to the run-time
system configuration. It compares the energy readings from the active model with the
low rate version of the model obtained from the battery interface. If the error is beyond
a threshold, the model constructor generates a new model with new predictors. In this
ways, the model manager adapts with the system usage.

6.5. DevScope
DevScope [Jung et al. 2012] also uses battery interface updates to overcome the practi-
cal measurement requirements. Subsequently, it faces a similar challenge to Sesame,
the low update rate of the battery interface. DevScope has four components: a battery
update event monitor unit, a timing controller, a component controller, and a power
model generator. DevScope first finds the hardware components available in the sys-
tem and their configurations. The battery event monitor collects the discharging cur-
rent information. The timing controller unit estimates the update rate of the battery
interface. It also informs the component controller when to begin and terminate a test.
The component controller generates and performs component specific test scenarios ac-
cordingly. Finally, the power model generator analyses the test results and generates
the power model coefficients.

Since the update rate of the battery interface can vary and it cannot be controlled,
DevScope adopts an event-driven approach which considers the battery update as an
event. The battery monitoring unit keeps a timestamp record for every such event and
the timing controller finds the update rate from these timestamps. After calculating
the update rate, the timing controller triggers a test scenario and in this way the test
scenarios are synced according to the battery interface update.

DevScope considers another challenge in recognizing the power states of the subcom-
ponents, such as Wi-Fi and cellular network interfaces. However, recognizing state
transition is difficult and requires the knowledge about the durations of different
power states. In some cases, these transitions are governed by the work load and op-
erating conditions. Consequently, DevScope employs different workloads repeatedly to
determine the threshold which causes the power state transition and update in the
battery interface. Figure 9 shows the actual power states of a subcomponent and the
measurements realized by DevScope.

6.6. AppScope
The authors of DevScope proposed an application framework for energy profiling of
the applications in mobile devices called AppScope [Yoon et al. 2012]. It depends on
the DevScope power models. The power profiling of AppScope works in three phases. In
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the first phase, AppScope requests the detected hardware components. The second step
involves the analysis of the usage of these subcomponents and their status changes.
Finally, the energy consumption of an application is estimated by summing up the
usage statistics of the subcomponents used by the applications.

One common limitation of the earlier described approaches is that they cannot iso-
late the usage of shared resources, such as display usage per application. AppScope
does not rely on the system files for usage statistics of such shared subcomponents.
Rather, it uses Android RPC with a binder RPC protocol [OpenBinder 2005; Schreiber
2011] and other debugging tools such as Kprobe [Keniston et al. 2011]. Kprobe moni-
tors the events related to hardware component requests and analyzes the usage statis-
tics which are required for applying power models. Subcomponent-specific functions
are used for collecting data, for example, Linux CPU Governor interface is used for
collecting the CPU usage and frequency information. The Wi-Fi usage is detected from
the lower layer function calls in the Linux kernel. Then the power state is determined
using the packet rate, and the energy consumption is computed from the active time
duration of the interface. In the case of 3G, the RPC binder is used for detecting the
hardware operation. The changes in the network connectivity is detected based on the
radio interface layer inter process communication data. In the case of display, the App-
Scope uses Android ActivityManager to find the application running in the foreground
and tracks that activity until another activity is brought in the foreground or the dis-
play is turned off. Finally, the usage of GPS is tracked through the calls to the Loca-
tionManager. AppScope counts such calls during the GPS is activated and distributes
the energy consumption according to the number of calls by different applications.

6.7. V-edge
Similar to the previously described on-device power profilers, V-edge [Xu et al. 2013]
aims to generate power models through self metering. Its working principle is close to
PowerBooter. The major difference with PowerBooter and other SOC-based approaches
is that V-edge uses the changes in the instantaneous terminal voltage of the battery to
infer current draw, whereas the SOC-based methods avoid such instantaneous voltage
drop to reduce the SOC estimation error. Figure 10 shows how the instantaneous volt-
age can mislead the SOC estimation and how V-edge exploits it. However, the main
effect of this difference is a speed-up in power model generation compared to Power-
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Booter. To understand why, recall that PowerBooter needs to keep the phone in a par-
ticular constant power state long enough so that the SOC value changes, whereas
V-edge can measure the current almost instantaneously. Therefore, any OCV-based
battery model, such as the Rint or Thevenin model, can be plugged-in to infer the dis-
charge current (see Section 3.2). V-edge effectively utilizes the current draw across the
internal, R, resistor. The equations of the Thevenin model can be written as

Vt = OCV − Vc −4I ×R

Vt = OCV − Vc − Vedge

Vedge = R×4I = R× I −R× I0

I =
1

R
× Vedge + I0

When there is noticeable amount of current change, OCV and Vc remain same for a
short period of time. In Figure 10, we notice that there is a sharp change in the voltage
when there is a current draw. This instantaneous voltage drop is caused by the inter-
nal resistance. After that the voltage drops slowly because of the current discharge
on the battery. The instantaneous voltage drop (R × 4I) is defined as V-edge in the
above equation. I0 refers to the baseline current consumption which can be achieved
by starting all the training from the same baseline while generating the power models.

In order to find such V-edges, Xu et al. [2013] applied an approach similar to DevS-
cope. First, a mobile device is kept idle for a longer period than the battery interface
update interval. Then the CPU utilization is increased for a while and the voltage is
sampled at 1 Hz. The CPU is kept idle when there is a voltage drop. The sampling is
stopped, when there is an update in the voltage. The interval between these two volt-
age drop and update incidents facilitates the detection of V-edge and thus the current
measurement as illustrated in the figure.

The system architecture of V-edge consists of a data collector, a model generator,
and a power profiler. The data collector collects battery voltage information for gener-
ating power model, the utilization statistics of different subcomponents for estimating
the power consumption of applications, such as CPU, screen, Wi-Fi, and GPS. The
component specific power models are built on top of the V-edge by running a set of
corresponding training programs. The training begins from the initial power state of
the subcomponents to ensure the consistency in their V-edge values. Finally, the power
estimation is done using the collected resource utilization statistics.

6.8. Summary
These on-device profilers rely on the smart battery interface updates for power con-
sumption measurements. They do not require any external device or calibration ex-
cept NEP. NEP uses certain feature calibration but it still belongs to this category,
since it does not require any external device measurements. Majority of the on-device
profilers use simple linear regression models, except NEP and Trepn, and their model
generation is conducted automatically. They profile the energy consumption of subcom-
ponents and the whole device as well, while running applications. For that they rely
on the support of the operating system for collecting the utilization statistics of each
component.

Every profiler is unique in some aspects. For example, NEP can trace the cellu-
lar network interface connectivity status in addition to power consumption, which
makes NEP different from other tools. Trepn requires the support of special compo-
nent specific special sense resistors and power management IC. PowerBooter is the
first of the on-device model-based profilers, which depends on the changes in the SOC
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Table III. On-device Energy Profilers without Offline support and their comparison

Name/
Author

Profiling
Coverage

Model Type Battery Inter-
face Reading

Accuracy

NEP On-device standalone
profiler

Not Applicable Voltage, Current 99%

Trepn Profiler for device
and subcomponents

Not Applicable Current Close to
NEP or
Monsoon

PowerBooter Profiler for device
and subcomponents

FSM, Linear regres-
sion

SOD 96%

Sesame Profiler for device
and subcomponents

Linear regression,
utilization

Current 86% (1 Hz)
& 82% (100
Hz)

DevScope Profiler for device
and subcomponents

FSM, Linear regres-
sion model and Uti-
lization

Current 95%

AppScope Profiler for compo-
nent usage and en-
ergy consumption of
Applications

Built on DevScope,
linear model

Current 92%

V-edge Model for device and
subcomponents

Utilization, linear
model

Instantaneous
Voltage

86%

and thus takes very long time for model generation. Sesame, on the other hand, di-
rectly reads from the battery interface and thus, its model generation takes shorter
time than PowerBooter. DevScope and AppScope also rely on the current readings.
However, DevScope is unique in a way that it recognizes the power states from the
battery updates. AppScope depends on the DevScope power models and emphasizes
the energy consumption of the applications using shared resources. Unlike the other
profilers, AppScope uses Android RCP binder and Kprobe for collecting fine-grained
component use statistics by the applications. Finally, V-edge uses instantaneous volt-
age drop to measure the current draw from the battery and generates model faster
than PowerBooter.

With respect to accuracy, NEP and Trepn provide the highest measurement accu-
racy. NEP measures energy consumption within the range of 3 mA and thus its accu-
racy is close to the measurement with the Power Monitor like devices [Microsoft 2010].
In the case of Trepn, we assume the highest accuracy as it senses current draw directly
from the component specific sense resistors. Since only voltage can be sensed across a
sense resistor, Trepn suffers from offset current and ADC conversion error. The rest of
the profilers depend on battery interface updates and the update rate poses a potential
challenge in minimizing the error rate and improving the accuracy of the power mod-
els. Sesame acknowledges this issue by taking an average over a number of samples. In
Table III, we can see that the accuracy of Sesame is higher with model constructed at
lower rate and the profiler suffers from 14% error with the models with higher update
rate. This error is mostly caused by the extra access overhead. On the contrary, DevS-
cope proposes to synchronize the smart battery update events with the subcomponent
tests in order to deal with the slow update rate of smart battery interface.

7. ON-DEVICE PROFILERS WITH OFF-DEVICE MODEL CONSTRUCTION
Unlike the pure on-device profilers described in Section 6, these applications require
offline calibration and power measurement phases. Sometimes, these applications are
developed by the mobile vendors and come as an integral part of the mobile systems.
In this section, we describe the power profilers which belong to this category and at
the end we summarize their key similarities and differences.
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7.1. Android Power Profiler
The Android OS has its own energy models and profilers for estimating the energy
consumption of different applications and components. The complete profiling system
is based on three subcomponents: BatteryStats, a list of power consumption values
of the hardware components (power profile), and the power models. The BatteryStats
depends on the power profiles and models to estimate the power consumption. We
examine this service in detail in the following sections.

1. BatteryStats. BatteryStats is responsible for tracking the usage of hardware
components, such as CPU, GSP, Wi-Fi, wakelocks, GSM radio scanning, Phone call,
and Bluetooth. The usage information of these components are recorded along with the
timestamp. BatteryStats does not directly measure the energy draw from the battery.
Rather, it calculates the total utilization of different hardwares from the timestamps
and estimates the energy consumption. BatteryStats collects the statistics in two dif-
ferent ways; different services push the component state changes to the BatteryStats
or it collects the information of CPU and other components used by the applications
periodically from the proc system files. BatteryStats stores the statistics for thirty
minutes so that data is not lost when there is a sudden reboot or failure of the sys-
tem. Most of the other power profilers, such as PowerBooter, AppScope, receive these
statistics from the BatteryStats or directly retrieve them from the proc system files.
BatteryStats also serves these statistics to other requesting services. Therefore, reg-
istering with BatteryStats is safer, as the locations of the stat files can be different
in different devices. The recent Android Lollipop provides a tool to extract the Bat-
teryStats from mobile devices for off-device analysis with Battery Historian [Android
2014b].

2. Power Profile Values. In order to estimate the energy or power consumption,
BatteryStats depends on pre-measured power values of different hardware compo-
nents. These are essentially pre-trained power model coefficients. The values come
with the Android Framework application and are stored in an xml file [Android 2014a].
The file contains information about the power states supported by CPU, GSM radio,
Wi-Fi, display, bluetooth, audio and video DSP unit. The file also includes the current
drawn, in mA, by these components at those states, which are very specific to the corre-
sponding device models provided by the manufacturers. For example, the file contains
the clock speeds supported by the CPU and the current drawn at each clock speed. The
Android power profiler assumes that all the cores share homogeneous frequency and
power consumption characteristics [Android 2014a].

3. Power Models. Once the subcomponent usage statistics and the basic power
drawn by them are known, BatteryStats can easily compute the energy consumed us-
ing some basic models. In Table IV, we present a list of power models used by BatteryS-
tats in Android devices, which we extracted from the Android framework source code.
We can see that these are simple utilization based models. BatteryStats first computes
the time span of the hardware resource utilization and then computes the energy con-
sumption according to the power states. For wireless communication, it first calculates
the transmission or reception speed in bytes/sec and then calculates the energy per
byte. Finally, the system attributes the energy consumption to an application simply
by summing up the energy drawn by the components utilized by the application.

Some of the resources can be concurrently used by multiple applications and Bat-
teryStats makes an additional effort to distribute the cost between those applications.
In this case, wakelocks are useful and a wakelock for a component can be set by more
than one application. After that those applications which have set the wakelock share
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Table IV. Android Subcomponent and Application Specific Energy Profiling Models

Subcomponent/
Application

Statistical
Variable

Models

Screen Time spent at brightness level
i, Tbri−i

EScreen =
∑N

i=1(Pbrightness × Tbri−i)

System Idle The total duration Ttotal; Time
spent when the screen is on,
TscreenOn

EIdle = PcpuIdle × (Ttotal − TscreenOn)

Radio (Cell
Standby)

Time spent when signal
strength is i, Tstr−i; Total
Time spent in scanning Tscan

EmobileStandby = (
∑N

i=1 Pstrength×Tstr−i)+
PradioScan × Tscan)

Phone (Call) Duration of a call, i, Tcall−i Ecall =
∑N

i=1(Pcall × Tcall)
Bluetooth TbluetoothOn, P ingcount EBluetooth = (PbluetoothOn × TbluetoothOn) +

(Pingcount × PatCommand)
Wi-FiApp Total duration an App, i, uses

Wi-Fi, TwifiApp−i; Scan time
for the App TwifiScan−i

EwifiApp = TwifiApp−i × PwifiOn +
TwifiScan−i × PwifiScan

Wi-FinoApps Total Wi-Fi usage time
(TwifiGlobal); Wi-Fi Us-
age time by an App, i,
(TwifiApp−i)

EwifinoApps = (TwifiGlobal −∑N
i=1 TwifiApp−i)× PwifiOn

CPUApp Time spent at speed, i,
Tspeed−i; Time spent in
executing App code TappCode;
Time spent to execute System
code TsysCode

EcpuApp =
∑N

i=1
Tspeed−i∑N

i=1 Tspeed−i
×(TappCode+

TsysCode)× Pspeed−i

Wakelock Wakelock Time, (TwakeLock) EwakeLock = (PwakeLock × TwakeLock)
GPS GSP usage Time, Tgps Egps = (Tgps × Pgps)
Mobile Data
(Byte/Sec)

Radio Active Time,
TradioActive

mobileBps = (mobileData ×
1000/TradioActive)

Wi-Fi Data
(Byte/Sec)

Wi-Fi Active Time, TwifiActive wifiBps = (wifiData× 1000/TwifiActive)

Average Energy
Cost per Byte

Ebyte = (
PwifiActive

wifiBps
× wifiData +

PradioActive
mobileBps

× mobileData)/(wifiData +

mobileData)
App EApp = EcpuApp + EwakeLock + EwifiApp +

Egps + (tcpBytesReceived+ tcpBytesSent)×
Ebyte

the power cost. The amount of time the applications are tied up with the wakelock
determines their partial costs.

7.2. PowerTutor
PowerTutor [2009] is a power profiling application, developed based on the Power-
Booter model, for Android mobile devices. However, the model depends on off-device
power measurement of subcomponents. The application estimates the power consump-
tion of different hardware components and applications. PowerTutor illustrates the
share of energy consumed by display, CPU, Wi-Fi, GPS, and 3G using a pie chart. It
also uses line graphs to describe the run-time power consumption of these components
in Joules. For that PowerTutor depends on fine-tuned power measurements of the com-
ponents at different power states and on the usage statistics collected from the proc
system files and Android BatteryStats.

Similar to Android Power Profiler, PowerTutor also estimates application specific
energy consumption. This enables the application developers to visualize the energy
consumption of their applications and thus enables further optimization. At the same
time, the users can understand the impact of their interaction on the battery life of
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their mobile devices. However, it is challenging to estimate the power consumption of
those applications, when more than one application is running at the same time and
using or sharing common resources. In these situations, it is not clear how to divide
the hardware energy consumption. PowerTutor solves this by estimating the cost for
a single application, requiring that it has been the only application running at that
time.

7.3. PowerProf
PowerProf [Kjrgaard and Blunck 2012] is an unsupervised power model generation
mechanism which applies a genetic algorithm. It requires a set of training measure-
ments to build the power models. The training can be initiated when the device is idle
or even during the installation process of the application.

PowerProf system architecture consists of measurement data collection through the
NEP APIs. Then the genetic algorithm, hosted in a separate computer, crunches this
data to generate the power models. The steps involved in the process are the follow-
ing. At first, a request is sent to the battery interface for providing power measure-
ments with timestamps. The specific phone features are exercised and the correspond-
ing timestamps are logged for the beginning and ending of the exercise. Then some
obvious characteristics are determined, such as the background power consumption.
Next, the genetic algorithm is applied to find the optional parameters required for the
power models. The fitness function of the algorithm calculates the distance between
the power consumption measured by the API and the model. Finally, the parameter
values which minimize the fitness function are used in the final model. The final power
model is a conditional function of four time parameters, which resembles four power
states of an individual component.

7.4. Summary
We have found that Android system energy profiler and PowerTutor depend on pre-
measured power consumption values. In the case of Android Power Profiler, the com-
ponent specific power values comes from the vendors. However, it is possible to have
incorrect power measurement values in the power profile file, which may provide mis-
leading estimates of the energy consumed by the applications or devices. For instance,
we notice that the battery sizes of two devices may be claimed to be the same in the
power profile files although they are different from each other.

The other profiler, PowerTutor, has more component and application coverage than
Android Power Profiler. For power consumption of individual hardware components
and their state timer values like Wi-Fi, 3G, and others, PowerTutor depends on pre-
measured constant values. Therefore, the accuracy of PowerTutor is 97.5%. At the be-
ginning, the target devices for power models were HTC G1, G2 and Nexus One devices.
However, it also works on other devices with rough estimates, as the power consump-
tion of the hardware components vary. PowerProf stands out from all of the on-device
profilers in applying genetic algorithms to build the power models.

8. OFF-DEVICE ENERGY PROFILING IN A LABORATORY
In this section, we examine off-device energy profilers. They profile resource utilized
by applications, perform code analysis of the applications in a device or in an emulator
and then map such activities to energy consumption with external power measurement
tools in order to generate power models. This method typically supports fine-grained
and accurate characterization of the energy consumption of the target application,
subsystem components, or the device. Consequently, they are suitable for debugging
applications.
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8.1. PowerScope
PowerScope [Flinn and Satyanarayanan 1999] is one of the early energy profilers. It
uses both off-device and on-device profiling of the application. The profiling of the ap-
plications and data collection take place on-device. The energy profiling is done off-
device. Two on-device components, a System Monitor and an Energy Monitor, share
the responsibility of data collection and run in two different systems. The System Mon-
itor is hosted in the profiling computer system. The sample collection is triggered by a
digital multimeter. The profiling sample consists of the program counter and the IDs
of the running processes. The profiler also records some additional information such as
whether the system is handling any interrupt or not, the path name associated with
the execution of the current process, and loading of the shared libraries.

The Energy Monitor runs in the data collection system. It communicates and con-
figures the digital multimeter to sample the current drawn from the external power
source. The output of the on-device profiling stage is a sequence of current samples
and a correlated sequence of program counter and process identifier samples. Next the
off-device component, the energy analyzer, generates activity-based energy profiles by
integrating the product of the supply voltage and instantaneous current over time.
The current values It are sampled at a periodic interval of ∆t. Since the supply voltage
from an external source is almost constant, then the energy over n samples using a
single voltage measurement value, Vm, is given by

E ≈ Vm

n∑
t=0

It∆t. (4)

This technique requires the drawn current to be sampled with intervals of ∆t. How-
ever, the energy analyzer then reads the data collected by the monitors and correlates
each system sample with the current sample. If the system sample belongs to a pro-
cess, it assigns the sample to a process bucket using the process ID value. For an
asynchronous interrupt, the sample is assigned to an interrupt specific bucket. If no
process has been executing, the taken sample is attributed to the kernel bucket. Then
energy usage for each process or interrupt is calculated using the previous equation.
Finally, it generates an energy profile consisting of the CPU time, the total energy, and
the average energy consumption of each process and corresponding procedures.

8.2. Joule Watcher
JouleWatcher [Bellosa 2000] modified the context switch routines and data structures
in the Linux kernel to record the values of hardware performance counters. The re-
lation between the number of events and power consumption is linear. The profil-
ing system first generates micro-benchmarks of power consumption for four kinds of
events: micro instruction execution, floating point operation, layer 2 cache access, and
main memory access. The energy consumption is determined with an external power
monitor device. Then a regression based power model is built based on the micro-
benchmarks. This approach is limited for three reasons. First, the number of events
that can be profiled is limited by the number of counters, which in turn depends on
the architecture. Second, the power model needs to be trained for each device type and
configuration in the lab. Third, the energy per event is not constant and depends on the
clock speed. Therefore, the benchmarking requires careful reconfiguration of various
speed levels for different types of CPU events.
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8.3. Fine-grained Profiling with Eprof
Eprof [Pathak et al. 2012] is an off-device energy profiling framework for Android and
Windows-based mobile devices. The framework consists of a few components: the rou-
tine or system call tracer, the energy profiler, and the profile viewer. Android supports
application development with the software development kit (SDK) and native devel-
opment kit (NDK) for developing the critical parts of the application. For SDK, Eprof
instruments the default routine profiling framework to consider only caller-callee invo-
cations. It also performs periodic sampling and the corresponding sampling timestamp.
This reduces the tracing overhead. NDK calls are traced at the C library interface. In
order to trace system calls, Eprof instruments the Android framework to log the time,
system call parameters, and call stacks.

The logged traces are post-processed to account the energy consumption. The system
calls are the indication of different hardware utilization by the applications and such
calls are mapped into FSM models developed in [Pathak et al. 2011]. Power consump-
tion of a hardware component in a state is constant and a component can have only
one power state at a time. Tracing system calls serves two purposes in this framework.
First, they can clearly trace which components are requested by the application and
how long that resource is being utilized. Second, the system call can be retraced back
to the callee and thus the energy consumption of a routine or a function.

8.4. Banerjee et al. [2014]
Similar to Pathak et al. [2012], Banerjee et al. [2014] also worked on a profiler to-
wards identifying the energy anomalies. In this section, we briefly describe the energy
profiling mechanism. The energy anomaly findings are covered in section 9.2. Baner-
jee et al. [2014] developed a test framework which profiles the energy consumption in
three steps. First, the flow of events in an application is traced and an event flow graph
(EFG) is generated using Hierarchy Viewer [Android 2014c] and Dynodroid [Machiry
et al. 2013]. Hierarchy Viewer provides information about the execution of the UI el-
ements in an application and a sequence of events is generated when Dynodroid in-
teracts with application. However, Dynodroid does not generate the flow graph of the
events by itself and consequently, it was instrumented. When the EFG is ready, a set
of event traces are generated in the second step. The length of such traces can be arbi-
trary and must start from the root UI. Akin to Eprof [Pathak et al. 2012], this frame-
work also relies on the system calls in order to identify the hardware component usage
and likewise they are recorded while executing the event traces by instrumenting the
applications in the third step.

Unlike Eprof, the framework proposed by [Banerjee et al. 2014] depends on utiliza-
tion based power models which are developed off-device based on the same power mea-
surements used by the Android Power Profiler (see Section 7.1). All the event graph
generation, tracing and instrumentation of mobile applications are done on an emula-
tor in a desktop computer.

8.5. Shye et al. [2009]
Shye et al. [2009] developed an energy profiler for smartphones. The profiler estimates
the energy consumption of the system and different components of mobile devices. The
main idea here is that a user-space Android application collects system usage informa-
tion and other performance statistics, and then uploads these information to a remote
server. The data is analyzed for identifying usage pattern for building power estima-
tion models for mobile architecture with an abstraction of two distinct power states;
active and idle. It was assumed that the screen would be ON or the system wakelock
would be occupied by the application while the screen would be OFF. Although energy
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Table V. Off-device Energy Profilers and their performance comparison

Name/Author Profiling Granularity Measures Model Type Accuracy
PowerScope Device and process level Current, volt-

age
Code analysis &
Current integra-
tion over time

Not Reported

Joule Watcher Thread-level Thread energy
consumption

Utilization and lin-
ear regression

Not Reported

Eprof Device, subcomponent,
and application level

System calls
and energy

Code analysis,
FSM

94%

Banerjee et al.
[2014]

Device, subcomponent,
and application level

System Calls,
energy

Utilization Not Reported

Shye et al.
[2009]

Device and subcompo-
nent level

Energy Current integra-
tion over time,
linear regression
model

93%

consumed by mobile devices varies with the workload, the energy consumption is rel-
atively invariant in the idle state. Shye et al. [2009] applied different workloads and
then used the generated logs to produce the power models. The main limitation of the
system is that it requires device specific calibration.

8.6. Summary
Table V compares the off-device energy profilers discussed in this section. Among them,
only Joule Watcher depends on hardware performance counters to profile thread level
energy consumption. On the other hand, PowerScope, Eprof and Banerjee et al. [2014]
apply code analysis to estimate the energy consumption of functions and applications.
PowerScope relates the execution time of a process with the current drawn during the
executing period, whereas Eprof and Banerjee et al. [2014] trace system calls in the
functions. Then, they apply FSM and utilization based models respectively to estimate
the energy consumption of the hardware components corresponding to the system call
and relate the energy consumption with the callee function. The energy profiler imple-
mented by Shye et al. [2009] also depends on a simple utilization based model.

With respect to accuracy, the performance of PowerScope depends significantly on
their data sampling frequency and the external device monitor. The performance of
Joule Watcher is limited by the CPU architecture and power consumption for the hard-
ware events may not be constant, as mentioned earlier. Apparently the FSM-based
Eprof seems to be more accurate with an accuracy of 94%. Although Banerjee et al.
[2014] did not discuss the accuracy of their profiler, it is likely to suffer from more
error than FSM-based Eprof and thus the profiler from Shye et al. [2009].

9. ENERGY DIAGNOSIS ENGINES
In addition to developing energy profilers, researchers have sought to better under-
stand the energy consumption behavior of different applications, particularly in order
to detect program code that causes suspiciously high energy consumption. In this sec-
tion, we first discuss a taxonomy of energy bugs for mobile devices and then present a
number of energy debugging tools.

Energy Bugs. Pathak et al. [2011] mined online blogs and identified a number of en-
ergy bugs from users reporting. Figure 11 shows a hierarchical taxonomy of the energy
bugs for mobile devices. Although the list may not be exhaustive [Pathak et al. 2011],
it allows us to note that energy bugs can be divided into four categories. The software
related bugs are divided further into OS and application types. The applications suffer
from three types of bugs: no-sleep, loop, and immortality bugs. The no-sleep bugs are
the results of software coding errors that fail to release a wakelock and prevent the
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Energy Bugs (eBug)
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Fig. 11. An overview of energy bugs

device or one of its components from switching to a sleep mode. If a component specific
wakelock, such as WiFiLock [Android 2015], is not released by the application be-
fore exiting, the component continues to be in high power state [Banerjee et al. 2014].
With a loop bug, an application executes some unnecessary code again and again. In
the case of immortality, a buggy application is killed by the user but the application
restarts again with the buggy nature. External energy bugs are triggered by the wire-
less network conditions. A device increases the transmission and reception power of
the wireless radio, when there are poor signal strengths. Poor network status may also
trigger frequent wireless handovers, which also depletes battery faster. The hardware
bugs are related to the faulty electronics, such as the battery, charger, exterior hard-
ware damage, and external peripherals like SD card. A faulty battery may drain very
fast. Such a scenario can arise, when the phone is charged with a faulty wall or USB
charger. External damages to the device may cause the home screen or power button
to be very sensitive which may result in frequent display ON/OFF. In addition, writing
to a corrupted SD card may drain the battery quickly, if the device tries to write in a
loop.

Table VI. Classification of the Energy Diagnosis Engines

Name/Author Profiling Granularity Model Type Model
Construction

Deployment
Type

Eprof Device, subcomponent and ap-
plication levels

Code analysis
and FSM-
based

Off-Device Off-Device

Banerjee et al.
[2014]

Device, subcomponent, and ap-
plication levels

Linear Regres-
sion

Off-Device Off-Device

eDoctor Device and subcomponent lev-
els

Not Applicable Not Applica-
ble

On-Device

Carat Application level Statistical Off-Device On-Device

A list of energy debugging tools are presented in Table VI and we can see that these
tools, such as Eprof, can be used to understand the energy consumption behavior of
the applications. In general, these systems aim to answer one or more of the following
questions. How much energy consumption should be normal for an application or a
component? Does the abnormal energy consumption stem from poor system configura-
tion or user behavior? Would changing the system setting improve the energy savings
and how much?

9.1. Diagnosing with Eprof
Considering the debugging challenges for different kinds of energy bugs for mobile
devices, Pathak et al. [2012] proposed an energy debugging framework called Eprof,
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which aims for fine grained energy consumption analysis of applications and the OS
in mobile devices. Eprof finds the energy hotspots in the source code by instrumenting
both the OS and applications, and then traces system calls. In this way, Eprof [Pathak
et al. 2012] does fine grained profiling by identifying the contribution of code in total
energy consumption. For example, lchess spends 30% of total energy in checking user
moves in the game and 27% of the energy in code offloading [Cuervo et al. 2010]. Eprof
also finds energy bugs in the application. It specifically looks for the acquisition of
wakelocks and their releases in the code.

9.2. Banerjee et al. [2014]
Banerjee et al. [2014] also classified mobile applications according to their energy us-
age; energy bugs and hotspots. The application energy bugs are similar to those iden-
tified by Pathak et al. [2011] as shown in Figure 11. On the other hand, the hotspots
include either the applications which execute networking code in infinite loops or the
applications heavily depend on very high sampling rates at the background or the
applications suffer from tail energy or suboptimal resource binding. The suboptimal
resource binding refers to binding or releasing the resources too early which causes
the hardware to be in high power states longer than the actually required.

In order to identify energy bugs and hotspots, Banerjee et al. [2014] relied on their
offline profiling framework (discussed in Section 8.4). The authors divided an event
trace into four phases; PRE, EXEC, REC, and POST, and generated a corresponding
energy utilization ratio1 trace. In the PRE stage, the device remains in the idle or
very low power consuming stage. EXEC refers to an event execution stage. In the REC
phase, the device consumes tail energy before going to the completely idle state in the
POST phase. In order to detect the energy bugs, the energy utilization in the PRE and
POST phases are compared. If the difference is more than a threshold value of 50%,
then those are marked as buggy applications. On the other hand, energy hotspots are
screened during the EXEC and REC phases in an event trace using a technique which
employs discords [Keogh et al. 2005] to find the abnormality in the energy utilization
in a sub-sequence by comparing with the remaining sub-sequences in the EXEC and
REC stages.

9.3. eDoctor
eDoctor [Ma et al. 2013] is another energy debugging tool. This application runs in
the user space just like other applications and investigates multiple phases during
the execution of other programs. eDoctor then identifies the phases which have strong
correlation with the energy waste or abnormal energy usage. The execution phases of
an application are then mapped to the execution intervals. In each interval an appli-
cation consumes a certain type of resources. Therefore, an anomaly can be detected,
when an application deviates from the normal behavior. The anomaly detection can be
fine grained by correlating such behavior with the system configuration.

eDoctor consists of four components; data collector, analyzer, diagnosis, and prog-
nosis advisor. The data collector finds the resources, such as CPU, GPS, and sensors,
used by the applications. At the same time, it uses energy models to estimate the en-
ergy consumed by these hardware components. As the energy consumption of these
components also depends on their power states, eDoctor records their state changes
as events as the Android BatteryStats does (Section 7.1). The analyzer analyzes the
resource usage over time. From the data, eDoctor generates phase information and en-
ergy consumption for each application. eDoctor also constructs a phase table for each

1Energy/Utilization ratio expresses the energy efficiency of an application over a period of time. A high ratio
implies an inefficient application.
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application using k-means clustering algorithm. The diagnosis engine identifies the
energy buggy applications in two steps. First, it finds the applications with energy-
heavy phases and then finds the corresponding events. However, eDoctor analyzes a
complete trace between two consecutive charge intervals.

Finally, the prognosis advisor recommends three actions to a user. First, if the
present version of an application consumes more energy, eDoctor recommends the user
to switch to the earlier version. Second, if an application continues running even af-
ter the user stops using it, eDoctor suggests the user to kill the application manu-
ally. Third, eDoctor recommends the user to change the settings, such as reducing the
brightness level of the display or turn off the GPS in the case of overusing a hardware
component.

9.4. Carat
Akin to eDoctor, Carat [Oliner et al. 2013] is also an energy anomaly detection ap-
plication. Carat assumes that there is no prior information on how much energy an
application should consume and whether such energy consumption is abnormal. Con-
sequently, Carat depends on the community of devices and applies collaborative ap-
proach. It collects the name and number of applications running in mobile devices and
their battery interface information, provided by the device battery manager, according
to the update rate. From the battery interface reading, Carat computes the discharge
rate for different configurations and running applications. Since Carat depends on the
community of devices, it can compare the energy usage of an application among the
devices. In this way, Carat classifies the applications in two categories, namely, hogs
and bugs.

The comparison is straightforward for energy hogs, for which two energy rate distri-
butions, with and without the application across the device community, are compared.
Carat uses 95% confidence standard error of the mean (SEM) as error bars around the
means of the distributions to detect abnormal energy behavior. If the distance of the
means including the error bars is greater than zero, an application is marked as a hog.
The detection of applications with energy bugs requires that a similar comparison is
made for each application on a device. More specifically an application is an energy bug
if the energy rate distribution distance including the error bars with the application
on the current device being analyzed and on other devices is greater than zero.

Carat performs further diagnosis of an application with different system settings
such as Wi-Fi active or inactive, user roaming or stationary, and the OS version. Like
the eDoctor system, Carat also recommends actions to the user in order to increase the
run-time battery life. Those recommendations include killing or restarting an applica-
tion, and even changing the OS version. In addition, Carat also informs user about the
battery life improvement for the corresponding action. However, Carat does not help
during the application development process.

9.5. Summary
The diagnosis tools, namely Eprof, eDoctor, Carat, and the method proposed by Baner-
jee et al. [2014], aim to identify energy hotspots and bugs inside the applications
and characterize the applications as energy-hoggy or energy-buggy. The definitions are
quite similar in all cases. Eprof and Banerjee et al. [2014] trace system calls and de-
pend on their own profilers to find the energy hotspots and bugs in applications. Baner-
jee et al. [2014] and eDoctor analyze the application execution in multiple stages. How-
ever, Carat differs from the others in the aspect that it studies energy consumption be-
havior of applications across community of devices. The tool from Banerjee et al. [2014]
considers suboptimal resource binding while finding hotspots, which is not considered
in Eprof and others.
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Table VII. Component-level Support of the Profilers and Reported Accuracy. The accuracy of Values are Estimated
Against the Power Measurement Results with the External Devices

Profiler Disp CPU GPU GPS BT Wi-
Fi

3G 4G Cam SD
Card

Audio Reported
Accuracy

Trepn 3 3 3 3 3 3 3 3 3 3 3 99%
V-edge 3 3 7 3 7 3 7 7 7 7 7 86%
BatteryStats 3 3 7 3 3 3 7 7 7 7 7 Not

Reported
PowerBooter 3 3 7 3 7 3 3 7 7 7 3 96%
PowerTutor 3 3 7 3 7 3 3 7 7 7 3 97.5%
DevScope 3 3 7 3 7 3 3 7 7 7 7 95%
AppScope 3 3 7 3 7 3 3 7 7 7 7 92%
Sesame 3 3 7 7 7 3 7 7 7 3 7 86%
Eprof 3 3 7 3 7 3 3 7 3 3 7 94%
Banerjee
et al. [2014]

3 3 7 3 7 3 3 7 7 7 3 Not
Reported

Shye et al.
[2009]

3 3 7 7 7 3 7 7 7 3 7 93%

10. ENERGY PROFILING ACCURACY AND RECOMMENDATIONS
Table VII shows that the accuracy of different profilers varies between 86% and 97.5%.
Although this measure is often considered as the most important attribute of power
profilers to evaluate, it is difficult to promote a particular profiler above the others
based on the reported accuracy. The reason is that the evaluation of their accuracy
can be biased towards those applications which use only the modeled subcomponents.
In addition, some profilers may trade some accuracy for other desirable features. For
example, PowerBooter takes longer time for model generation but it is reported to
provide high accuracy. On the other hand, V-edge or Sesame allow generating power
models much faster but they may be slightly less accurate.

The profilers differ in the number of subcomponents and their power states modeled,
the modeling methodology, the rate of data collection, and the power measurement
techniques. All of these obviously contribute in one way or another to the overall accu-
racy of the profiler. For example, AppScope reports an error of 7% because DevScope
does not model the power consumption of GPU. Still their modeling approach that is
based on component-specific FSM seems to perform more accurately than V-edge which
relies on simple linear models.

While the contribution of some of the factors may be obvious, distributing the
amount of total error among all the above factors is challenging. Such work requires
benchmarking the profilers, which is difficult to even begin with because some of the
profilers exist only as research prototypes and their software is not openly available.
Therefore, we choose to look into the evaluation techniques of the profilers in order to
try to understand the extent of the above factors in contributing to the accuracy. At
the same time, we also discuss the methods to limit the error due to the contributing
factors.

10.1. Subcomponents and their Power States
We looked into the accuracy evaluation methods of the profilers. In all cases, the power
estimates provided by the profilers have been compared to measurements provided by
external instruments. The reported accuracy of each of the surveyed profilers is pre-
sented in Table VII. In addition, they have usually been evaluated with applications
that stress those hardware components that the profiler models. For example, the ac-
curacy of PowerBooter was evaluated using applications (browser and YouTube) that
require the subcomponents presented in the table. Consequently, if a users plays An-
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Table VIII. An example list of component specific models and power profilers

Author Subcomponent Model Type
Ma et al. [2009]

GPU

Linear Regression
Hong and Kim [2010] Utilization
Nagasaka et al. [2010] Linear Regression
Leng et al. [2013] Utilization
Burtscher et al. [2014] FSM
Tsoi and Luk [2011] Heterogeneous Multicore CPU Utilization
Tudor and Teo [2013] Utilization
Zhang et al. [2013] Homogeneous Multicore CPU FSM
Rethinagiri et al. [2014] Utilization (HPC)
Diop et al. [2014] Multicore CPU and GPU Utilization (HPC)
Garcia-Saavedra et al. [2012] Wi-Fi Fine grained FSM
Ding et al. [2013] Wi-Fi & 3G Signal Strength associated FSM
Qian et al. [2011] 3G FSM (Profiler ARO)
Hoque et al. [2014] FSM
Hoque et al. [2013] Wi-Fi,3G& 4G FSM
Lauridsen et al. [2013] FSM
Jensen et al. [2012] 4G FSM
Huang et al. [2012] FSM
Dong et al. [2009]

OLED Display

Code analysis (Associates a GUI
object into pixels)

Chen et al. [2012] Utilization
Dong and Zhong [2012] Utilization and Code Analysis
Chen et al. [2013] Utilization

gryBirds, which requires GPU, PowerBooter will provide estimates with less accuracy
and such evaluation scenario was not reported. AppScope does not consider the power
consumption of GPU either and thus is reported to suffer from 7% measurement er-
ror. The performance of V-edge was also evaluated with Gallery, AngryBirds, Skype,
and Browser applications. In the case of AngryBirds, it is likely that V-edge also suf-
fers from similar error than AppScope since it does not model the power consumption
of GPU. V-edge would also suffer from larger error if it was tested with applications
using the cellular network because it does not model the power consumption of those
network interfaces. Therefore, if an application requires a non-modeled subcomponent,
the accuracy will degrade from the reported values and the amount of error depends
on the power consumption characteristics of the non-modeled subcomponent, usage,
and the power measurement techniques (see Section 10.4).

Table VII shows that not necessarily all the profilers cover every component avail-
able in mobile devices. For instance, only Eprof and Trepn consider the power con-
sumption of camera. In a recent study, Rajaraman et al. [2014] have found that a cam-
era consumes the same or more energy than the 3G or 4G interfaces, even in the focus
mode. Although the power consumption of cellular network interfaces have been ex-
tensively studied [Siekkinen et al. 2013; Hoque et al. 2013], the Android Power Profiler
does not consider the energy consumption of cellular network interfaces. This applies
for most of the on-device profilers as well. Table VIII lists some examples of component
specific power profiling and modeling work. Nowadays, it is common that mobile de-
vices are equipped with multicore homogeneous cores. The energy efficiency of mobile
CPUs is being enforced through new architecture with heterogeneous cores, recently.
Although there have been energy measurement and modeling for heterogeneous CPU
cores [Diop et al. 2014], and GPUs [Leng et al. 2013; Burtscher et al. 2014], existing
energy profilers focus mainly on single or multi core CPU systems with homogeneous
cores. The power consumption of homogeneous cores are equal while operating at a
particular frequency, whereas the heterogeneous cores may have different power con-
sumption characteristics.
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Table VIII further shows that a significant number of component-specific models
follow FSM. Among the power profilers, discussed in this work, Eprof, AppScope, De-
vScope, NEP, and PowerProf also consider the tail state behavior of some components.
Burtscher et al. [2014] identified such behavior for GPU as well. However, Android
Power Profiler and V-edge do not take such hardware behavior into account. This is
challenging, because the size of the workload and the operating condition define the
state transitions. In the case of cellular networks, the operating condition also includes
the network configuration, i.e. the number of states and also the inactivity timer set-
tings for the corresponding states [Hoque et al. 2014]. For Wi-Fi, the value of the timer
varies from 30 to 200 ms [Hoque et al. 2014]. DevScope tries to recognize such state
transitions from the battery interface update samples. The RILAnalyzer application
is an on-device tool for monitoring the RRC states of the 3G modem on some specific
Android phones [Vallina-Rodriguez et al. 2013]. Although, this application can be used
by the profilers to identify 3G network configuration at run-time, it does not work
with different chipsets and 4G networks. In addition, frequent polling of network in-
formation can create energy overhead. To this end, recognizing state transition from
battery interface updates, as is done by DevScope, seems promising. Hardware also
evolves continuously and their power consumption behavior becomes better and better
understood. Therefore, new revised models, such as the wireless communication power
models presented in [Xiao et al. 2014], [Ding et al. 2013], and [Garcia-Saavedra et al.
2012], are required to be incorporated into the power models. This also applies for the
display. Since different devices use different types of display [Hoque et al. 2013], pro-
filers should adopt improved models presented by Dong et al. [2009], Dong and Zhong
[2012], and Chen et al. [2013].

10.2. Modeling Methodology
In the previous section, we discussed the impact of limited subcomponent coverage of
power models on the performance of the profilers. We now discuss other kinds of limi-
tations related to the modeling methodology. Recall that a white box model, which we
also call FSM, defines different power states and the triggers to transition from one
state to another. Black box modeling uses statistics to fit a model to observations in
the training phase. Usually, linear regression is used by the profilers and they assume
that power consumption always increases linearly with the resource usage, regard-
less of the underlying power states. Therefore, in cases where the power consumption
increases non-linearly, the error increases. FSM-based profilers look into the power
consumption in each power state. Given one power state, the power consumption may
be static or may increase with the resource usage. Whether to choose linear regression,
FSM or the combination of them depends on the power consumption behavior of the
subcomponents in question. Modeling components that exhibit tail energy is an exam-
ple of a problematic case for simple linear regression. Nonlinear power consumption
behavior can sometimes also be overcome by applying suitable transformations.

There are two main challenges pertaining to black box modeling. First, it requires
expert knowledge about the features that are related to power consumption, which
holds also for white box modeling. Including all possible features in a model is im-
practical because collecting a lot of predictor or feature values creates overhead. In
addition, some features may not be available because mobile operating systems typ-
ically expose subcomponent information selectively. Therefore, it is important to find
the most relevant features at run time. Sesame does this by applying principle com-
ponent analysis (PCA) [Dong and Zhong 2011]. Second, linear regression models dis-
tribute the weight of the coefficients across all the coefficients when the features are
correlated and reflected in the final model. Therefore, linear regression is appropriate
when the features are independent. A piece-wise linear model can be used when the

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: October 2015.



0:32 Hoque et al.

function behaves significantly different for different input sample values [Singh et al.
2009]. In order to reduce the effect of observation errors, a number of methods are used
with linear regression models, such as total-least-square by Dong and Zhong [2011],
non negative-least-square by Diop et al. [2014].

Given the complexity of smartphones today, it is difficult to identify the relevant fea-
tures or predictors. For example, regression with PCA in [Dong and Zhong 2011] failed
to identify the Wi-Fi as one of the important contributors. Lasso regression [Hastie
et al. 2001] can alleviate the dependency on domain specific knowledge in determining
the right features. In addition, it is less computationally complex and it automatically
selects a small set of relevant features. Linear and lasso models work remarkably well
when the features are independent of each other. In case of dependent features, linear
models perform poorly, whereas nonlinear model can capture the dependencies often.
For example, in [Bircher and John 2007] the authors suggest that quadratic models are
effective in power modeling. Another alternative approach is to use a support vector
machine-based regression [McCullough et al. 2011], which handles the non-linearity
by mapping data into a higher dimensional space. Consequently, the weight of the
correlated features get distributed.

10.3. Resource Utilization Sampling and Battery Update Rates
The profilers collect and feed the subcomponent utilization logs or predictor values
to the models. Therefore, the rate at which the predictor values are collected has an
impact on the time it takes to construct the model and the profiling accuracy. While
update rate of the smart battery interface depends on the mobile vendor [Maker et al.
2013], the update rate of information related to other components depends on the oper-
ating system and the application usage. For example, the highest reported update rate
of smart battery interfaces is 4 Hz, whereas a Linux OS updates the P-State residency
of CPU at a rate of 250 Hz. Sesame improves the accuracy by averaging the collected
samples. The more averaging, the higher the accuracy but also the lower the update
rate. For instance, Sesame yields an accuracy of 94-95% with a sampling rate below 1
Hz but the accuracy drops to 86% and 82% at 10 Hz and 100 Hz sampling rates, respec-
tively. DevScope and PowerBooter, on the other hand, synchronize the smart battery
update events with the component tests in the model generation phase resulting to
an accuracy of approximately 95%. In the case of V-edge, the error increases as the
sampling delay increases beyond 3 seconds after the instantaneous voltage drops. In
the case of event-based profilers, system call tracing also impacts accuracy through
non-negligible computation overhead which increases the energy consumption. This
overhead is reported to be 1-8% for Eprof, for instance.

10.4. Power Measurement
Power measurement is an integral part of the software power profilers. In section 6,
we have discussed the on-device profilers which are independent of the off-device mea-
surements and rely only on the smart battery interface to correlate the system power
consumption with the battery depletion. Table IX illustrates that such measurements
are error prone and thus require repetitive measurements and most of these profilers
apply such repetitive methodology. The error is caused by imperfections of the battery
models used. Although the SOC-dependent profilers, such as PowerBooter, do not dis-
cuss the error originating from the underlying battery SOC-estimation mechanisms,
such error should affect the accuracy of the profilers.

There are two sources of inaccuracy for the self metering profilers. The first one is
the SOC estimation error due to the battery model. The Rint model suffers from 11%
SOC error [Shin et al. 2013]. The Thevenin and Coulomb counting approaches suffer
from 5% [Chen and Rincon-Mora 2006] and 2.2% [Android 2014a] error, respectively.
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Table IX. Typical Measurement methodologies for component specific power consumption of a mobile device
[Android 2014a]

Subcomponents Measurement Methodology
Device Power Battery model dependent measurement requires repeated measurements for

a set of different configurations and then find the difference in power con-
sumption between the measurements. The battery model specific errors are
consistent across these measurements depending on the model used by the
Fuel Gauge or the profiler.

Wi-Fi, GSM radio,
Bluetooth activity,
GPS

(1) Keep the device in the airplane mode, when the target subcomponent does
not have a wireless radio.
(2) The wireless subcomponent should be in a specific mode (i.e. scanning, idle,
transmit or receive), the device should be free from the interference caused by
other wireless sources, if required.

Display ON/OFF (1) Keep the screen off when measuring the power consumption of other com-
ponents.
(2) In order to measure screen power consumption, the device should be in
airplane mode, the brightness should be in a fixed level, and the screen may
be complete black or white.

System suspend /re-
sume

(1) When the screen is off, the device may turn off some of the components or
put them in low power state. Therefore, the device must be kept in awaking
mode or prevented from the suspension when measuring the power consump-
tion of the desired component.
(2) For measuring power consumption in suspend mode, the device should be
in airplane mode and all wireless radios are disabled, and the device must
be kept idle for a longer period of time so that power consumption becomes
stable to a lower value.

CPU cores, Frequency,
and Power States

Keeping the number of CPU cores and their frequencies constant while car-
rying CPU or other power measurements in order to avoid error.

However, modern devices are being equipped with better Fuel Gauge ICs. Other than
the simple Rint or Thevenin model, another approach exists that correlates the load
voltage of the battery with the OCV voltage dynamically to calculate the SOC, for
example the MAX17048 in Nexus 5. In the case of Coulomb counting, accumulation
of the current offset error can be compensated by charging/discharging the battery
100% and keeping the voltage stable for a while, and therefore, an OCV-lookup ta-
ble is required. Such a combined approach is used by the Model Gauge m3 enabled
chip [Maxim 2014a], such as the MAX17050 in Nexus 6.

The second source of SOC error is the usable capacity estimation error [Hoque and
Tarkoma 2015]. As the Lithium-Ion battery ages, the discharge rate of the battery
increases for the same usage [Barré et al. 2014]. Consequently, the reported power
consumption will be higher than the true value for an aged battery. For this reason, the
self metering profilers may require retraining of their models. Hence, the accuracy of
the self metering profilers is intertwined with the age of the battery and will decrease
as the age of the battery increases but none of the profilers addresses this issue at
this moment. Precise quantification of its effect on the accuracy would require further
evaluation of the profilers with batteries of different ages and so far it is an open
question for future research to address.

Some on-device and off-device profilers depend on power measurement with the ex-
ternal tools like Monsoon Power Monitor or BattOr [Schulman et al. 2011]. The accu-
racy of the profilers are also measured against the direct power measurement results.
Therefore, the methodology followed during the measurement plays an important role
in the accuracy of the measurement and thus the accuracy of the software profilers.
One can measure the power consumption of a component by comparing the power con-
sumption at the desired state, for example the power consumption of Wi-Fi in the idle
state. If pre-measures are not taken, then the other external influencing factors, such
as interference or other broadcasts may bias the Wi-Fi measurement result [Peng et al.
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Table X. The Usability and Measurement Information Offered by the Profilers and Debuggers

Profiler Usability and Visualization Offered Information Target
User

NEP On-device standalone profiling. Easy installa-
tion. Graph windows are easily accessible. It
works only in Symbian devices.

Total System power consump-
tion in Watt or Amp, HSPA
timers, data transmit and re-
ceive, wireless signal strength,
and discharge curve. All these
information are presented in
temporal graphs and can be ex-
ported to a desktop computer
for further analysis.

Expert
User

Trepn On device standalone profiling, Easy installa-
tion. The UI displays temporal graphs which
are easily accessible, and the plots can be seen
on the foreground of a running application to
see the power consumption and resources used
by the application. The profiler works only
on Snapdragon chipset-based Android devices
powered with special component-wise sense
resistors and power management IC.

Component specific power con-
sumption and utilization, and
the information can be ex-
ported to a desktop computer
for offline analysis.

Expert
User

Power
Tutor

Easy installation, but requires rooting of the
Android devices for more accurate power mea-
surement of the display. The application UI de-
picts easy visualization of component power
consumption as line graphs and the share
of individual components in total power con-
sumption as a pie chart. Requires device spe-
cific calibration.

Component and application
specific power consumption.
The measurement can be
exported for further analysis.

Expert
User

AppScope Requires rooting of the device and device spe-
cific calibration.

The measurement data can be
exported for further analysis.

Expert
User

Android
Power
Profiler

Default Android system power profiler. The ap-
plication UI shows the percentage of energy
used by display and other applications since
the last time the device has been powered on.
It also displays other related information, such
as signal strength and the number of charging
events.

Display and application spe-
cific power consumption.

Average
User

Carat Easy installation. The UI presents the perfor-
mance of a device across the community of
similar devices, the visualization of the energy
buggy and hoggy applications running in the
device, and the improvement in terms of bat-
tery life if the user kills a hoggy application.

Lists of energy buggy and
hoggy applications, energy
benefit, and the explanation of
these terms.

Average
User

2015]. Again, if the smartphone is plugged into a computer or a wall charger during
power measurements, a measurement error is possible because current may flow into
the device. For instance, in the measurement setup presented by Banerjee et al. [2014]
the smartphone was connected to a desktop computer. Table IX lists the component
specific guidelines which would help to produce power measurements with higher ac-
curacy.

11. USABILITY
The profilers, in general, enable the application developers to understand the perfor-
mance of their program code and to tune their applications to reduce the energy con-
sumption. Recent studies suggest that users are also concerned about the power con-
sumption of their mobile devices [Pathak et al. 2011; Jung et al. 2014] and their en-
ergy awareness can improve the performance of their devices [Athukorala et al. 2014].

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: October 2015.



Modeling, Profiling, and Debugging the Energy Consumption of Mobile Devices 0:35

Therefore, the profilers also guide the users to point out the most energy consuming
applications running in their devices. However, the choice of a profiler for a typical
user or developer is not straight forward. Along with their accuracy (see Table VII),
the other important factors are their availability, requirements of the user, hardware
support, the ease of use and installation, and also on the expertise of the user. Over-
all, it is fair to say that most of the profilers provide an acceptable accuracy for most
use cases, which suggests that other features, such as software availability and usabil-
ity, subcomponent coverage, and profiling rate, may weigh more than accuracy when
choosing which profiler to use.

Table X describes the ease of installation and usage of the profiler applications, the
information offered by the profilers, and the way they provide the visualization of the
measurement results. We can see that most of the profilers work on Android devices.
Although they are available as mobile applications, their usability is limited by at
least one or more factors. For example, Trepn works better in devices with MDP and
specific Fuel Gauge ICs, PowerTutor requires rooting of the device for estimating dis-
play power consumption more accurately, and AppScope requires instrumenting the
kernel and hence rooting the device. Consequently, they are suitable for researchers
or application developers and remain difficult to use for average consumers. Usability
may also be limited by the dependency on the underlying Fuel Gauge chip used by the
mobile devices. For example, the profilers which depend on current readings from the
battery interface will not work with devices that only provide voltage reading.

On-device power profilers are interesting for all kinds of users, consumers, appli-
cation developers, and researchers, whereas offline profilers are usually of interests
only for developers and researchers. Furthermore, off-device modeling that requires
instrumenting the smartphone with external power monitor is not possible even for
the most application developers, not to mention consumers. Another aspect to con-
sider is that profilers with on-device modeling will provide consistent accuracy with
different devices of the same model, different device models, and usage scenarios. In
contrast, profilers with off-device models are device specific and require measurements
and model calibration for every device. The off-device models in Android devices are
calibrated by the manufacturer. They either conduct measurements or collect energy
ratings of the individual subcomponents from System-on-Chip manufacturer, which is
close to impossible for an individual researcher to conduct in a laboratory. In addition,
it is not always easy to instrument the devices for power measurements.

12. CONCLUSIONS
This article makes a broad survey of smartphone energy profilers. We paid special
attention to their accuracy reported by the authors and to the way it has been evalu-
ated, to the profiling coverage in terms of components considered, to power modeling
methodology used, and their usability. The accuracy of the surveyed profilers varies
between 86% and 97.7% and for some profilers the accuracy could be increased to over
90% by modeling the power consumption of the relevant subcomponents and synchro-
nizing the sampling frequency with the smart battery interface updates. Although
on-device models are inferior to off-device models accuracy-wise, the difference is by
no means dramatic.

We found a rather large variation also in terms of profiling coverage. While most
profilers do not include power models for GPU, also the range of wireless network in-
terfaces modeled differs a lot between the profilers. Concerning modeling methodology,
we observed that only Sesame makes an attempt to automatically select the best pre-
dictors. We believe that there is room to improve also the power modeling methodology,
at least in the case of black box modeling. Factors related to usability differ substan-
tially between the profilers. While some profilers could be easily used by consumers,
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the others require such expert knowledge that only trained professionals could take
advantage of them. Also the availability of the profiler software varies, some being
openly available, while most are non-disclosed research prototypes. In addition, all the
profilers are OS specific and some work only on certain device models.
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