
Experiences with Application Development for
Autonomic Networks

Karl-André Skevik, Matti Siekkinen, Vera Goebel, and Thomas Plagemann

Department of Informatics, University of Oslo
P.O. Box 1080 Blindern, N-0316 Oslo, Norway

{karlas,siekkine,goebel,plageman}@ifi.uio.no

Abstract. ANA is a project that examines legacy-free future network-
ing architectures, with a focus on autonomicity. The programming model
used in ANA dispenses with the rigid layers of the OSI model and instead
uses bricks that can be combined to build a compartment offering the
functionality required by an application. Restrictions such as TCP always
being layered on top of IP do not exist, with e.g., arbitrary bricks offering
transport functionality being usable to communicate with other nodes in
a compartment. Application functionality is divided among specialized
bricks, giving a clean and non-monolithic design. We have designed a
P2P-like distributed streaming system from scratch, and designed an in-
formation sharing system by adapting an existing structured P2P system
for ANA. In this paper, we report our experiences on the benefits and
pitfalls of application and service development for ANA, and draw some
conclusions on suitable design approaches for such novel “disruptive”
network architectures.

1 Introduction

Research work on autonomic computing systems has originally been motivated
by the effort and complexity of configuration, management, and maintenance of
the continuously increasing number of networked computing systems that exist
today. The advantage of autonomic networks is obvious in the area of network
management because they minimize manual intervention. Making networks au-
tonomic by introducing self-* properties is one of the key elements in many
of the recent efforts towards the future Internet, like ANA [1], BIONETS, and
CASCADAS1. While the challenges of autonomic network solutions receive a
strong attention in the research community, little effort has so far been put into
the investigation of distributed applications using autonomic networks. Even if
self-* properties are introduced into the network, these properties themselves
should not be the ultimate goal; instead, the added value of autonomic networks
should ultimately be benefits provided to end-users, applications, and application
developers.

In order to understand the challenges and benefits that application developers
are confronted with when implementing applications for autonomic networks, we
1 www.ana-project.org, www.bionets.eu, www.cascadas-project.org

S. van der Meer, M. Burgess, and S. Denazis (Eds.): MACE 2008, LNCS 5276, pp. 1–13, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

www.ana-project.org
www.bionets.eu
www.cascadas-project.org

2 K.-A. Skevik et al.

analyze in this paper two complementary cases of application development in the
ANA Project (Autonomic Networking Architecture). The ANA Project is pur-
suing disruptive research towards solutions for the future Internet. Besides the
development of networking concepts with self-* properties, ANA has introduced
an abstract notion of communication starting points to enable the construction
of ANA networks without limitations on addressing mechanisms. Furthermore,
ANA uses the concepts of compartments composed of smaller bricks to build sys-
tems that offer services or application functionality. Each brick offers a simple
service and can be used in multiple compartments.

Since ANA does not have a strict layering, like in the OSI reference model,
the boundary between network, overlay, and application is fuzzy. Each of these
are in fact represented by a compartment. Even all functional blocks running on
a node form a compartment. In this paper, we use the term application for the
“higher” layer compartments that offer functionality that would be implemented
as overlays or applications in a layered architecture. The common factor for these
application compartments is that they might need the services of some basic
network compartments, such as an IP compartment, for example.

Based on these fundamental concepts, we have designed and implemented
two applications: a Peer-to-Peer (P2P) video-on-demand streaming system and
a Multi-Compartment Information Sharing System (MCIS) which is essentially
a structured P2P system. The P2P streaming system is based on our earlier
research on P2P based streaming [2], but the architecture and code has been re-
designed from scratch to make use of ANA concepts in order to benefit from the
advantages of autonomic networks. In contrast to this fully redesigned system,
with the MCIS implementation we have tried to reuse the open source Mer-
cury system [3] as much as possible; the MCIS implementation represents the
approach of porting legacy applications and overlays to a new autonomic net-
working architecture. The contribution of this work is a description and analysis
of the experiences and tradeoffs of porting versus redesigning and reimplement-
ing applications for future autonomic networks.

Section 2 introduces relevant ANA concepts and gives a short overview of the
fundamental APIs used by ANA developers. Section 3 describes MCIS and the
process of adapting it for ANA. Section 4 presents the design of a streaming com-
partment developed for ANA. Section 5 concludes this article with a summary
of our contributions.

2 A Glimpse of the ANA Architecture

The objective of the ANA project is a clean slate design of a network architecture
for the future Internet with an autonomic flavor. The ANA approach is disruptive
in that it does not build on top of the current Internet. Instead, ANA defines a
small set of abstractions that form the basic building blocks of the architecture,
and that make it possible to host, federate, and interconnect an arbitrary number
of heterogeneous networks. These abstractions are Information Channel (IC),
Information Dispatch Point (IDP), Functional Block (FB), and Compartment.

Experiences with Application Development for Autonomic Networks 3

Protocols and algorithms are represented as FBs in ANA. These FBs can be
composed together in any desired manner to produce a specific packet processing
functional chain. Communication in ANA occurs towards the start point (the
IDP) of a communication channel (the IC). FBs send messages to IDPs which are
dispatch points for the next FB. This mechanism makes it possible to recompose
the functional chain that represents a specific IC at run time, which is necessary
for the control loop behavior of an autonomic system.

A network is represented as a compartment in ANA. ANA does not man-
date anything about the internals of a specific compartment, which is free to
define inter-compartment communication parameters such as naming, address-
ing, and routing. Instead, ANA specifies how these compartments interact by
introducing a generic compartment API. This API consists of five basic primi-
tives: publish(), unpublish(), resolve(), lookup(), and send(). The imple-
mentation of this API represents the external interface of a compartment. The
underlying idea is that a service (represented as a FB) is able to publish itself
within a compartment. Users of that service (other FBs) are able to resolve a
communication channel (an IC) to the service via that compartment, after which
they can send data to each other. An analogy to the layered architecture used
today would be an IP FB publishing itself to be reachable at a specific IP address
within an Ethernet compartment, enabling other IP FBs to resolve (using the
published IP address) an IC to that IP FB via the Ethernet compartment. In
addition, compartments can look up specific kinds of services based on keywords
if it is not exactly known what to resolve.

The programming model used in ANA is based on bricks. There are two kinds
of bricks: those that offer access to a network protocol compartment, and those
that implement operations such as caching or encryption. Application functional-
ity is divided among specialized bricks, giving a clean and non-monolithic design.
A more detailed overview of ANA internals can be found at the ANA web site2.

The abstractions described above form the blueprint for the architecture and
are merely the tools that enable autonomic operations. Establishment of self-*
properties naturally requires additional development of corresponding services,
such as those that provide resilience or functional recomposition, for instance.
Furthermore, various support services are needed, among which one of the most
crucial is monitoring services; knowing the current state is imperative for auto-
nomic behavior.

3 MCIS: Multi-Compartment Information Sharing
System

For an autonomic network, a generic and fully distributed information sharing
service is needed to disseminate monitoring information for decision making. The
Multi-Compartment Information Sharing System (MCIS) offers this, by providing
lookup and storage facilities for any client brick wishing to share data with other

2 http://www.ana-project.org/web/meetings/start

http://www.ana-project.org/web/meetings/start

4 K.-A. Skevik et al.

bricks. The system is rich in capabilities and supports range queries over multi-
attribute data records, publish/subscribe functionality, and one-time queries.

3.1 Design and Implementation

In order to create an information sharing service for ANA, we have used an
already existing open source system called Mercury [3]. Mercury is a structured
P2P system where nodes are logically organized on a ring, in a way similar to
Chord [4]. The key difference is that Mercury does not hash the keys, which are
the actual attribute values. Hence, each node in the ring is responsible for a par-
ticular attribute value range. This difference makes it possible to process range
queries efficiently. In Mercury the rings are called attribute hubs and there is
one hub for each attribute of a data record. For example, if the data records are
two-dimensional coordinates with x and y values as attributes, then Mercury will
maintain two attribute hubs and each node is responsible for a particular value
range in both of the hubs. Data records are replicated and routed to each of the
hubs while queries are routed only to the hub of the attribute that is estimated
to be most selective in the query predicate (i.e. specifies the smallest range). This

Metadata cmpt

data1 cmpt

data2 cmpt

data3 cmpt

data4 cmpt

Fig. 1. Data compartments in MCIS

kind of content addressable overlay fits well to the concept of a compartment in
ANA. All data records of a specific type naturally forms a data compartment.
Each data compartment routes messages via its attribute hubs independently
of other data compartments. Resolution and publish procedures of data items
boil down to query processing and store operations, respectively. There is a spe-
cial metadata compartment which every node belongs to. It contains information
about the different data compartments that exist and enables discovery of them
(see Figure 1). As the name suggests, the MCIS brick is the entry point to the
data compartments and handles all the resolve, lookup, and publish requests
from local client bricks. MCIS bricks at different nodes cooperate on the main-
tenance of a single distributed Mercury system per data compartment.

The Mercury software has been designed in a very modular way. The code
for the overlay management and routing is located in the mercury package,

Experiences with Application Development for Autonomic Networks 5

while code for the underlay networking layer can be found in packages such as
wan-env for TCP/UDP communication over IP using the Berkeley sockets API.
Establishing point-to-point communication with other nodes in ANA requires
being able to resolve the other end point via some compartment, where that end
point has previously published itself. Thus, we needed to implement ana-env as
the underlying ANA networking layer. Ideally this layer would choose, from the
available network compartments, one that is most suitable for reaching a partic-
ular end point in the current situation. However, in the current implementation
the network compartment must be chosen with a parameter when the system is
started.

In addition to the networking layer, we needed to build the MCIS brick func-
tionality; the handling of the resolve, lookup, and publish requests as specified
by the generic compartment API. The brick functionality can be seen as a kind
of adaptation layer, from the generic compartment API to the Mercury specific
API and message types.

3.2 Lessons Learned

One particularly cumbersome issue we had in incorporating Mercury into ANA
was the use of identifiers. ANA as a “disruptive” future networking architecture
does not mandate the use of IP or any other protocol for communication, while
the current Internet makes almost exclusive use of IP. As a consequence, as with
most software designed for the Internet, Mercury assumes the use of IP addresses
and port numbers as identifiers of services and clients. As a consequence, we
needed to modify major parts of the entire source code to introduce strings as
generic identifiers.

The main reason why it has been quite straightforward to use Mercury as the
basis for building the MCIS brick has been the modularity of the source code.
While it likely stems from the fact that the authors of the original code wanted
to use a simulated networking layer in addition to the sockets API. Apart from
the changes needed to support more generic identifiers, this separation between
network layers enabled us to use the original code with only minor modifications.

Our work on Mercury has shown how porting legacy Internet networking
software to ANA with only a minimum of modifications can be done, but there
is still room for further integration. The original software could be decomposed
into smaller consistent functionalities, which could then serve in several contexts.
For example, the load balancing functionality of Mercury might also be usable
by other compartments.

4 Streaming Compartment Design

For real-time applications such as video streaming systems, having accurate in-
formation about the network, such as delay or available bandwidth between
nodes, can be an important factor in achieving good performance. Unfortunately,
this kind of information is not easily obtainable on the current Internet. Several

6 K.-A. Skevik et al.

techniques for doing this, such as [5], have been proposed, but while it is possi-
ble to keep code for this kind of functionality in an external library rather than
inside the application, the underlying limitations do not change: the Internet
does not provide an interface for obtaining all the information required by the
application, and a library might require updates as the interconnect technologies
of the Internet changes.

However, in ANA, monitoring is provided as a fundamental service on all
nodes. Furthermore, ANA has been designed to support having accurate infor-
mation provided by routers and other intermediate nodes. As we have previously
designed a P2P video streaming system for the Internet [2], we have been in-
terested in seeing how having the monitoring services available in ANA might
affect the design of a similar system.

4.1 Compartment Overview

We have designed a distributed compartment that offers video streaming ser-
vices, with content retrievable from participating nodes that have previously
retrieved the same content. This kind of system requires a mechanism for trans-
mitting media data between nodes, but also a metadata handling system that
offers file search functionality and a way of keeping track of the nodes that have
copies of the data. A typical usage scenario would be for a user to search for and
request a movie, upon which a list of nodes with the content available would
be obtained, and the content requested from nodes on the list. The downloaded
parts of the movie would simultaneously be made available to other users. Files
are divided into blocks to make information about downloaded files easier to
share and manage.

Some functionality is clearly the same regardless of whether an application
has been designed for the Internet or ANA; disk caching and media playback
occurs after the media data has been retrieved from the network and can be
identical. What reveals the special characteristics of ANA is how the application
is structured. A typical Internet application use have a poll() loop, or multiple
threads, to multiplex connections to other nodes, but it is common to have the
majority of the functionality implemented as part of a single application, perhaps
even running as a single process. If there is any code shared between applications,
it is primarily in the form of shared libraries that implement common operations.

Rather than building monolithic applications, the ANA application develop-
ment concept is based on the principle of combining many small bricks to form
a larger structure, or compartment, that offers application functionality. This
might seem similar to the use of libraries, but a brick is an actively running ser-
vice that can be included in the combined structure of multiple compartments.
As with libraries, this gives the benefit of sharing code, but there are additional
benefits that come from bricks being a running and shared service. The first
is with regard to efficiency, especially in the context of network monitoring. An
Internet application that wishes to estimate the transfer speed or available band-
width to another node can do this by transmitting specially crafted packets [5],
but if each application does this independently the result will be redundant

Experiences with Application Development for Autonomic Networks 7

traffic that increases the load on the link between the two machines needlessly.
However, if all applications request this information through the same brick, the
result will be less overhead and shorter response time if the answer is already
known. Another important benefit comes from the possibility for the applica-
tion to adapt to changes; the system can react to changes in the network by
changing the bricks that offer various types of functionality. To use the network
monitoring example, on the Internet, it might only be possible to use heuris-
tics to estimate link speeds and a monitoring brick for the Internet would use
these kinds of techniques, but on a network where ANA nodes provide additional
monitoring functionality, the routers can be queried directly. An ANA node can
react to these two different scenarios by replacing the relevant monitoring brick.
The design of ANA gives applications the inherent possibility of having this kind
of adaptability, and this approach can be used in many situations: in order to
change transport protocols, insertion of transcoding bricks to reduce media size
on low bit rate links, etc.

The use of bricks has a direct influence on the structure of the application;
the streaming functionality is not offered by a single brick, but by a set of bricks
that work together. One immediate benefit of this is that some of the required
functionality is already offered by the system; network monitoring is provided
by the monitoring framework. What remains is a way to exchange media data,
metadata handling, and the interface to the media player. To demonstrate the
flexibility of the brick system, we have designed two variants of the streaming
system. The first is server based and similar to a traditional video streaming
system suited for commercial streaming, with data originating from a server
maintained by a content provider. The server also provides metadata handling
services such as file search. The difference from a traditional client/server system
is that clients serve downloaded content to other clients; the server is the origin

http2ana mplayer

anasearch

anameta

anastreamfile cache

MRP

meta relay

nodelat

IPIP network

IP

file server

meta server

IP

nodelat

file cache

Node A, complete compartment composition overview

Server, as seen from Node A

Node B, as seen from Node A

Fig. 2. Server based streaming compartment

8 K.-A. Skevik et al.

http2ana mplayer

anasearch

anameta

anastreamfile cache

MRP

MCIS

nodelat

IPIP networkIP

nodelat

file cache

MCIS

Node A, complete compartment composition overview

Node B, as seen from Node A

Fig. 3. Distributed streaming compartment

of all content, but not necessarily the only location to retrieve media data from.
The structure of this variant is shown in Figure 2.

The second variant is a completely distributed system, with no centralized
servers. Any user can publish files, resulting in a system similar to P2P file
sharing networks such as eDonkey [6]. The decentralization is achieved through
the use of the MCIS brick, which provides metadata handling. The structure of
this system is given in Figure 3, and as can be seen, despite being two completely
different systems, the only difference in the brick composition of Node A is
that the brick managing metadata has been replaced; the rest of the system is
identical.

4.2 File Server Brick

The server based design initially provides all content from the server maintained
by the content provider. The file server brick handles byte-range requests from
client nodes. Files are identified by a message digest, which is obtained by clients
through the metadata brick. An IP brick is used for communication with clients.

4.3 Metadata Server Brick

Metadata in the server based streaming compartment is managed by the meta-
data server brick. For this usage scenario all files are maintained on the server;
users can report having downloaded parts of a file, but cannot add new files to
the system. Metadata queries only search metadata for the files located on the
server.

The design of this brick reflects one of the places where a decision had to be
taken with regard to the granularity of bricks. The brick performs tasks relevant
for a single type of operation, namely metadata management, but there are two

Experiences with Application Development for Autonomic Networks 9

types of metadata: the digest, node, block, 3-tuple, and the information relevant
for media files, such as movie title and quality. An alternative approach would
have been to have two bricks instead of one, and it is conceivable that either brick
would be useful by itself for other compartments. In general, the two opposite
extremes for brick design is to have either a small number of complex bricks, or
a large number of small atomic bricks. The first results in code complexity, while
the second increases system complexity. We have chosen a solution in the middle,
with bricks divided based on the conceptual operation they provide, rather than
the low-level operation they perform.

4.4 File Cache Brick

The file cache brick is an important part of both the server based and distributed
system. As the brick composition overview of either system shows, this is the
most connected brick, with communication links to four other bricks. The task of
this brick is to manage the file cache on end user nodes. This includes managing
the file data stored on disk, and retrieving missing data from either the file cache
or file server brick on other nodes.

As with the metadata server brick, this brick performs multiple tasks that
could have been implemented in separate bricks. For example, answering data
requests from remote and local nodes could have been done by two different
bricks. The same is the case with the data retrieval functionality. In practice
however, it was found that all these operations were quite tightly connected,
and having them in separate bricks would have required synchronization mecha-
nisms to ensure safe handling of the data stored on disk and in memory, adding
complexity and essentially defeating the purpose of separating the bricks.

4.5 Meta Relay and MCIS

In both the server based and distributed streaming scenarios, the metadata
requests pass through a single block. In the server case, this is the meta relay
block, which simply relays all requests to or from the meta server block on the
server node. Because of this, the interface is essentially the same as that given
for the meta server brick, except that the brick is not available through the IP
compartment, only to the bricks on the same node. When the MCIS is used
for metadata handling, the metadata requests are processed in the context of
the MCIS compartments. Support for other ways of managing metadata can be
added by simply writing a new brick that supports the same interface as these
two bricks.

4.6 Application Bricks

The three application bricks, anasearch, anameta, and anastream, have been de-
signed to be used as normal shell commands, and each provide a simple interface
to the ANA streaming system. Of these commands, anasearch and anameta are

10 K.-A. Skevik et al.

simply wrappers around the meta brick, allowing a user to search for and ob-
tain information about available files. The anastream brick returns a media data
stream for a specified file.

Again, also in this case it would have been possible to handle the brick di-
vision in a different way. Metadata queries are performed by two bricks; anas-
tream and anameta, and the functionality of these bricks could arguably have
been implemented in a single brick. The reason for the division in this case is
that integrating ANA bricks with the UNIX shell is currently somewhat cumber-
some, and keeping the two metadata query types in different commands makes
it possible to have more easily understandable interfaces for the commands.

4.7 HTTP Proxy Based ANA Gateway

The http2ana and mplayer elements in Figure 2 and Figure 3 are not ANA bricks
but standard UNIX applications. To demonstrate that ANA can be used with a
normal media player, we have created a gateway application that functions as a
normal HTTP proxy, that, rather than obtaining data from a web server, uses
the application bricks to retrieve the data over an ANA network. Any media
player that supports streaming over HTTP, and has support for HTTP proxies,
should be usable with this gateway.

4.8 Non-compartment Bricks

The core part of the streaming functionality is provided by the file cache brick
and the metadata handling bricks, but network monitoring is important for
performance reasons, and node monitoring functionality is provided by the MRP
brick[7]. The information provided by the MRP brick includes simple status
information such as whether a node is available or not, but can include more
complex queries such as a request for an ordering of the nodes based on criteria
such as latency.

MRP operations manipulate so-called nodesets, that can consist of an ar-
bitrary set of nodes. Operations include adding nodes to a nodeset, removing
nodes, and requesting orderings of the nodes based on various criteria. The MRP
brick does not perform any measurement operations itself, it merely manages a
set of nodes, and sends requests for network measurements to the monitoring
framework, here represented by the nodelat brick. This brick measures the RTT
between the node itself and a different node. Each nodelat brick currently ex-
poses the latency measurement interface to other bricks on the same node, but
it would be possible to expose it to other nodes, allowing these nodes to measure
the RTT between arbitrary sets of nodes.

The final brick which is part of the streaming compartment is the IP brick,
which provides IP transport functionality.

4.9 Lessons Learned and Limitations

The current status of the streaming compartment is that all the bricks needed for
the server based scenario have been implemented and are currently undergoing

Experiences with Application Development for Autonomic Networks 11

testing. During the development process we have made several observations. We
have especially found that the brick concept leads itself well to easy development
and code testing. Most bricks are fairly small and provide a single operation
through a well-defined interface. The brick based application construction en-
courages having small bricks that are simple and consequently, ideally easy to
understand and test. Compared to the development of the P2P video streaming
system we have previously created for the Internet, it has been much simpler to
develop and test multiple separate bricks than one large application. It should
be noted that the Internet application was more feature rich, but changing the
brick based design is much simpler, as can be seen in the ease with which the
structure of the system is changed from being server based to being fully dis-
tributed, by simply using a different brick for metadata handling. Furthermore,
having a monitoring framework has made it possible to add network awareness
without having to implement code for this in the application.

While the underlying principles of ANA provide several benefits for applica-
tion design, there are some practical issues that have affected brick development.
The ANA project looks at legacy-free networking design, and a consequence of
this is that functionality that is taken for granted on the Internet needs to be
reimplemented from scratch. As the ANA code base is still far from mature,
there are some limitations that have influenced the design. One obvious odd-
ity is the use of IP to transport media data, and the system does in fact do
streaming directly on top of IP packets. The reason for this is that there are cur-
rently no higher level protocols implemented; only Ethernet and IP transport
without packet fragmentation. The consequence is that as opposed to having a
simple stream-like interface, the bricks need to consider factors such as packet
size .All requests and replies are currently kept below the MTU, which compli-
cates request handling. Lack of a reliable transport protocol makes it necessary
to handle retransmission of lost packets in the application. However, these lim-
itations should disappear as more advanced bricks become available. It could
rather be argued that these limitations demonstrate the flexibility of ANA, as
it is possible to implement a distributed streaming system on top of a simple IP
implementation. The functionality offered by the MRP brick is similarly limited
due to the lack of network measurement bricks.

5 Conclusion

In this article, we have described work on application development in the context
of ANA. A central ANA concept is the separation of functionality into bricks
that offer a single type of service, and the combination of bricks to form compart-
ments that offer more complex functionality. We have shown how this approach
affects both the porting of the MCIS information sharing system to ANA, and
the development from scratch of a distributed video streaming system. There are
still limitations that complicate application development, but these issues are a

12 K.-A. Skevik et al.

result of functionality that has still not been implemented rather than limitations
imposed by the design of ANA. More than being a deficiency, being able to do
streaming directly over IP demonstrates the flexibility of ANA. Our experience
shows that the brick concept is well suited for application development.

Furthermore, we have shown that the ANA compartment concept fits with
currently used networking paradigms, using a content addressable network in
the form of data compartments. Importing legacy software can be straightfor-
ward but usually requires a kind of adaptation layer in order to conform to the
generic compartment API. A complicating factor can be the implicit assump-
tion of IP addresses as locators and identifiers in existing application design.
Such design decision often influence the entire source code and, therefore, re-
quire modifications throughout the code of a legacy application when imported
to an identifier/locator agnostic environment.

There are many similarities between the brick concept and the use of shell
commands in UNIX. If bricks could be combined in an easy way similar to shell
commands, with a language designed for this purpose, it would make the brick
concept even more powerful, and simplify the creation of complex networking
applications. Especially important in this context is the existence of a monitoring
framework, which can be assumed to exist on any ANA node, and which allows
easy integration of monitoring operations into a compartment.

As for future work, it consists of two directions of research. First, to complete
testing and integration of the compartment. Second, to further examine the ap-
plicability of the brick concept to application development, by trying to identify
basic functionality that is common to many applications, and how these can be
interfaced via a high-level shell-like language.

Acknowledgment. This work has been funded by the EC-funded ANA Project
(FP6-IST-27489), and supported by the CONTENT Network-of-Excellence.

References

1. Jelger, C., Tschudin, C.F., Schmid, S., Leduc, G.: Basic abstractions for an auto-
nomic network architecture. In: WoWMoM 2007: Proceedings of the 2007 Interna-
tional Symposium on a World of Wireless, Mobile and Multimedia Networks (2007)

2. Skevik, K.A.: The SPP architecture – A system for interactive Video-on-Demand
streaming. PhD thesis, University of Oslo (April 2007)

3. Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting scalable multi-
attribute range queries. In: SIGCOMM 2004: Proceedings of the 2004 conference
on Applications, technologies, architectures, and protocols for computer communi-
cations, pp. 353–366. ACM Press, New York (2004)

4. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: SIGCOMM 2001:
Proceedings of the 2001 conference on Applications, technologies, architectures, and
protocols for computer communications, pp. 149–160. ACM Press, New York (2001)

Experiences with Application Development for Autonomic Networks 13

5. Carter, R.L., Crovella, M.E.: Server selection using dynamic path characterization
in wide-area networks. In: INFOCOM 1997: Proceedings of the Sixteenth Annual
Joint Conference of the IEEE Computer and Communications Societies. Driving the
Information Revolution, 1014 (1997)

6. Heckmann, O., Bock, A.: The edonkey 2000 protocol. Technical Report KOM Tech-
nical Report 08/2002, Darmstadt University of Technology (2002)

7. Skevik, K.A., Goebel, V., Plagemann, T.: Design, prototype and evaluation of a
network monitoring library. In: Rong, C., Jaatun, M.G., Sandnes, F.E., Yang, L.T.,
Ma, J. (eds.) ATC 2008. LNCS, vol. 5060. Springer, Heidelberg (to appear, 2008)

	Experiences with Application Development for Autonomic Networks
	Introduction
	A Glimpse of the ANA Architecture
	MCIS: Multi-Compartment Information Sharing System
	Design and Implementation
	Lessons Learned

	Streaming Compartment Design
	Compartment Overview
	File Server Brick
	Metadata Server Brick
	File Cache Brick
	Meta Relay and MCIS
	Application Bricks
	HTTP Proxy Based ANA Gateway
	Non-compartment Bricks
	Lessons Learned and Limitations

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

