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Abstract. It is a common situation with distributed hash tables (DHT) that in-
sertions and lookups frequently target only specific fractions of the entire value
range. We present in this paper a self-optimization scheme for DHTs that opti-
mizes the routing behavior in such situations. In our scheme, called Non-Sticky
(NS) fingers, each node continuously measures the routing behavior and guides
neighboring nodes to adjust their NS fingers (a subset of all the long distance
links that the node establishes) accordingly in order to shortcut the most popu-
lar sections of routes. Our scheme enables self-optimization, which means that
it adapts to the current system state and only operates when advantageous. It is
also policy-driven, which means that the application can specify its policy on
the tradeoff between performance and cost efficiency. We implemented the NS-
fingers scheme for an existing order-preserving DHT and report the evaluation
results. Our simulation results show that in a realistic application scenario, NS-
fingers can halve the number of routing hops.

1 Introduction

Distributed hash tables (DHT) [1, 2, 3] provide efficient data exchange for completely
distributed applications. These systems allow to lookup a node that stores a particular
data value by specifying a key corresponding to that value.

In this paper, we present a generic self-optimization scheme for minimizing the
length of routes in DHTs in cases where popularity of some value ranges in the key
space is higher than others. The key observation is that in such a case, certain hops
or sequences of hops (i.e. portions of entire route) become more utilized than others.
Therefore, it makes sense to try to optimize these routes by making them pass through as
few intermediate hops as possible. We call our scheme Non-Sticky fingers (NS-fingers)
due to the way it functions: In DHTs, a node establishes a set of long distance links,
a.k.a. fingers in Chord [1], in addition to “nearby” neighbors. The destination nodes of
these fingers can be chosen in various ways. In Chord for instance, each node estab-
lishes fingers to nodes that are the powers of two distance in hops from the node (i.e. 2,
4, 8, etc. hops away from the node). These fingers are proven to enable efficient loga-
rithmic routing performance. In NS-fingers, a subset of all fingers of a node are selected
to be non-sticky. These fingers are continuously adjusted according to the estimation of
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demand for given links. In this way, we strive for shortening the most popular routes
which may be shared portions of routes from many different source nodes to many
different destination nodes.

In specific cases, reducing the number of routing hops with shortcuts may actually
increase the end-to-end delay of the path. This is because the overlay topology does
not necessarily reflect the underlying network-layer topology or geographical distance.
Thus, neighbor nodes in the DHT may be located far away from each other geograph-
ically or many hops away in the network-layer topology. Therefore, we also present a
simple extension of our scheme to consider also the delay when making decisions to
shortcut routes.

Many optimizations for DHT routing exist today. What makes our scheme stand out
from the crowd is that it proposes neither to grow the size of routing tables nor to add
extra pointers or hints to optimize routing to the entire key space. We also do not change
the forwarding procedure. We simply propose to dynamically adjust the routing table
entries based on current demand. We show in later sections that such a straightforward
modification in the routing table maintenance can deliver an impressive improvement
in routing efficiency. The cost of this improvement is some additional load in terms
of messages sent and memory used (see discussions in Section 3.5). Our scheme is an
add-on that can be applied in principle to any kind of DHT. This kind of optimization
approach is valuable especially for resource constrained devices which might not be
able to afford to scale up the DHT routing table sizes.

Where do such non-uniform distributions occur that call for this kind of an opti-
mization scheme? We give two example application scenarios that use order-preserving
DHTs. Such DHTs (e.g. [4,5]) use order-preserving hash functions, or perform no hash-
ing at all like in [4], in order to process range queries efficiently. First, consider locality
aware applications using virtual network coordinates (e.g. [6]). In such applications,
nodes store their coordinates and lookup nodes in their vicinity, that is, nodes having
coordinates close to its own. These lookups can be efficiently expressed using range
queries. As a second example, consider peer-to-peer video streaming where informa-
tion about the blocks of video that a node currently has are inserted by the node and,
consequently, looked up by other nodes. When a particular node is playing the stream,
it queries a specific range of blocks at a time corresponding to its playout buffer. Note
that using a standard DHT would in both cases require performing separately lookups
corresponding to all the values within the ranges.

In both examples, insertions and lookups can have a high level of locality, that is, a
given node often inserts and looks up similar value ranges: The lookups performed by
a node discovering other nodes in its vicinity based on their coordinates exhibit a high
degree of locality. Furthermore, if there are clusters of nodes, the value ranges corre-
sponding to the coordinates of those regions become frequently addressed. As for the
P2P video streaming example, the range of blocks that a particular node is interested
in at a specific time instance exhibits temporally a high level of locality. Similarly, a
node stores only information about pieces that it has just downloaded following the
progress of viewing the video stream. In addition, a given video stream may experi-
ence a flash crowd phenomenon meaning that at a particular time (usually in the begin-
ning) the stream becomes very popular. In such a case, the value ranges of the blocks
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following the progress of viewing of the nodes forming that flash crowd are very fre-
quently addressed. DHTs without any optimizations treat ranges equally so that the
expected number of hops to any range of values is the same. Our scheme would adapt
in these examples to provide few-hop routes to the heavily used fraction of the range by
increasing the expected number of hops to the other portions of the range that are little
or not at all used.

Our scheme is self-optimizing: First of all, nodes continuously perform optimizations
based on latest observed routing behavior in the system. In this way, the system adapts
when the most popular range shifts, for instance. Second, the changing state of the
system, e.g. the popular range size and the number of nodes, determines whether using
the scheme is beneficial. NS-fingers can be made to adapt to this changing state. To
enable this, we parameterize the scheme in order to provide “control knobs”. By tuning
these control knobs, its behavior can be adapted to the changing state of the system. For
example, it can be turned off if the popularity distribution of the ranges is uniform.

The self-optimization is policy-driven: Tuning the control knobs allows to determine
a tradeoff between how aggressively route optimizations are performed and how cost
efficiently the scheme operates in terms of extra control messages routed. Thus, appli-
cations can specify their policy wrt. this tradeoff, as a result of which the scheme tunes
its control knobs to comply with this policy, i.e. it self-configures its parameters based
on estimations of the current state of the system and this policy.

The contributions of this paper are the following:

– We present a self-optimization scheme for routing in DHTs that is based on non-
uniform distribution of popularity of value ranges. The self-optimization can be
controlled through a set of parameters and, thus, allows customizing the routing
behavior for a policy specified by a given application.

– We present an extension of the scheme that takes into account the delay, in addition
to routing demand, of links when making decisions on shortcutting paths.

– We implement the scheme for an existing order-preserving DHT and show through
simulations that in a realistic application scenario, NS-fingers can deliver up to 50%
reduction in the average number of routing hops.

2 Related Work

Existing related work commonly focuses either on a growing the size of the actively
managed routing table for increased performance or on relying on some additional
lightweight, potentially obsolete information for routing. Considering proposals in the
first category, Beehive [7] relies on Zipf-like query distributions and uses proactive
replication to tradeoff resource consumption for improved lookup performance. Repli-
cation can be also problematic if data is volatile, i.e. has a relatively short lifetime.
The work in [8] proposes to maintain complete routing tables using an aggressive hi-
erarchical update protocol. Kelips [9] also achieves better lookup performance through
increased routing table sizes and update traffic. EpiChord [10] maintains reactively a
large routing state and copes with the possibly outdated routing state by using parallel
lookups. As for the second category, “ShortCuts” approach [11] uses soft-state hints
in local and global levels to improve the routing. Mercury incorporates simple route
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caching which can be used as a complement to our scheme. NS-fingers differs from
these approaches in that we consider constant-size routing tables so that the applica-
tions using the DHT can set this size in order to control the resource requirements.
Then, these allocated entries are dynamically adjusted according to the current lookup
and insertion patterns. Furthermore, we provide the applications the control knobs to set
the tradeoff between the aggressiveness and resource consumption of the optimization
scheme itself.

“Interest-based shortcuts” presented in [12] is also based on creating shortcuts in P2P
system based on interests. However, the scheme is targeted for Gnutella, an unstructured
P2P system. Caching routes from source to destination as shortcuts in a DHT would be
similar to the way their system works in Gnutella. Our approach is to continuously
adjust routing table entries in order to shortcut one popular hop at a time.

In [5], the authors present a way to construct efficient routing tables in an order-
preserving DHT that relies on estimates of hop counts between nodes. The scheme
works also for skewed distributions of data values. The difference to our scheme is that
we continuously adjust the routing based on recently measured behavior.

Yet another kind of approach is SkipNet which controls data placement by organiz-
ing data items according to their string names, which enables it to guarantee routing
locality. SkipNet is useful when the data items stored by a node have certain persistent
locality, e.g. content internal to an organization. However, this is not always the case.
For example, while network coordinates exhibit temporarily locality (see examples in
Section 1), nodes can move to another location in the coordinate system in which case
the locality no longer holds. Also in the video streaming example, the locality of the
data and lookups and the ranges that are most frequently addressed change continu-
ously. Our scheme is able to optimize the routes even if the locality of the data and
lookups change over time because the optimization is performed based on observed
routing behavior at run time.

3 Non-Sticky Fingers

3.1 Overview

Our optimization scheme optimizes routing behavior when the popularity of the at-
tribute value range is skewed. As we discussed in the introduction, such a case can
occur when there is locality in the data or queries or when many nodes insert values
that fall into the same ranges or query the same ranges resulting in a kind of flash crowd
phenomenon.

We consider ring structured order-preserving DHTs where each node establishes
links to predecessors and successors and, in addition, a number of long distance links,
a.k.a. fingers in the literature. While we focus on a ring structured DHT in this paper,
the scheme can be applied to other geometries as well (cf. Section 3.5). These fingers
enable efficient routing within the overlay: simply passing data items and queries to suc-
cessor or predecessor nodes would result in overall very inefficient routing (O(N)). With
long distance links, it is possible to achieve logarithmic routing performance. The set
of fingers can be static throughout the operation of a given node or can be periodically
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rebuilt. Nodes also maintain a set of reverse neighbors which are the nodes having a
long distance link to the node.

We propose to have a set of dynamic long distance links, i.e. Non-Sticky fingers.
The idea is that a node establishes k fingers out of which it chooses a set of l that will
be Non-Sticky (NS). These NS fingers are adjusted continuously according to the most
popular routes while the remaining k− l fingers are static in the sense that they are only
rebuilt periodically. The rationale is that when there is great demand for a particular
multi-hop route within the ring, we make shortcuts to that route step by step in such a
way that eventually the items are routed with as low number of hops as possible (with
only one hop if possible) from the starting point to the end point of this popular route.
The simplest case is when we shortcut a route so that data items are routed directly
from the source node to the destination node. In such a case, using route caching at the
source is a sufficient solution. However, note that a highly utilized route can also be an
intermediate segment of many different routes from source to destination nodes. In such
a case, caching a route directly from source to destination is not an optimal solution.
We compare the performance of our scheme to route caching in Section 4.

Our scheme establishes the k−l “normal” long distance links following the harmonic
probability distribution function (pn(x) = 1/(x lnn), when x ∈ [1/n, 1]) similarly to
Symphony [13], which guarantees expected path length of O( 1

k−l log2n) hops in a n
node network according to the Small World phenomenon [14]. This method gives us
the flexibility to choose the number of NS-fingers to establish while still guaranteeing
a certain level of routing performance in case of completely random data and query
distributions. In this way, we sacrifice some of the routing performance bounds to little
used ranges in order to optimize the routing towards the most popular ranges.

3.2 Adjusting Non-Sticky Fingers

The NS-fingers are adjusted according to the estimated service demand of links. Each
node measures the service demands of each of its long distance and successor links
to other nodes. Service demand Si(d) of the link of node i to destination range d is
defined as the number of data items or queries forwarded per time unit using that link.
Each node also keeps track of Sj

i (d) which is the portion of service demand generated
by reverse neighbor j i.e. a node that has a successor or long distance link to node
i. Those data items and queries that originate from the node itself are excluded from
the computation of the service demands (i �= j). Hence, the service demands reflect
the amount of services that the node provides as an intermediate hop for other nodes.
Obviously,

∑
j Sj

i (d) = Si(d).
Each node checks periodically the service demands of its links and chooses the link

to range dmax which is the link with the highest demand. The node then sends adjust-
ment requests to those reverse neighbors that contributed to the demand, i.e. node i
sends requests to nodes j|Sj

i (dmax) > 0. This request contains the ID of the node that
is responsible for the target range dmax and the service demand Sj

i (dmax). Figure 1
illustrates the scheme in a very simple scenario. In the figure, node 7 chooses the link
to node 8 as the heaviest link because the computed service demand is 8 compared to 6
of the link to node 1. Note that the traffic originating from node 7 towards node 1 does
not count. Node 7 then sends adjustment requests accordingly to nodes 5 and 3.
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Fig. 1. Computing service demands

Upon receiving an adjustment request, a node stores it. Each node then adjusts its
NS-fingers periodically: The node iterates through the received adjustment requests
from largest service demand to the smallest. At each iteration, it compares the service
demand included in the request to the smallest service demands of its currently estab-
lished NS-fingers (i.e. the NS-finger with lightest load). If the demand in the request is
larger, the node adjusts the NS-finger to the target range specified in the request. The
iteration continues until each of the nodes NS-fingers has been adjusted or no more
adjustments are necessary (i.e. the service demand of the current NS-fingers exceeds
the demands in the remaining requests). It can happen that a node begins to adjust its
NS-fingers right after it has checked its service demands and consequently reset the de-
mands after sending necessary adjustment requests. In this case, the service demands of
the NS-fingers are lower (close to zero) than what the true demand actually is. To avoid
unnecessary adjustments in such cases, the node stores also the service demands of the
NS-fingers from the previous period and uses those in addition to the current ones when
making the choice whether to adjust a particular finger.

3.3 Delay-Aware Extension

As we pointed out in the introduction, in certain cases reducing the number of rout-
ing hops does not reduce the total end-to-end delay for the path. We present a simple
extension to our scheme that takes the delay into account when making adjustments.

In the delay-aware extension of the scheme, nodes measure the delay to the nodes in
their routing table while performing peer management (e.g. send keep-alive messages).
Consider again Figure 1. Node 7 routinely measures the delay to nodes 8 and 1. It
would then include the measured delay in the adjustment requests sent to nodes 5 and
3. When, for example, node 5 subsequently is about to adjust one of its fingers to point
to node 8, it will first measure the delay to node 8 and then make the adjustment if the
measured delay is less than the delay from node 7 to 8 (in the adjustment request) plus
the delay to node 7 (measured during peer management). In this way, each adjustment
is guaranteed to shorten the total delay in the forwarding path. The price to pay is the
extra delay measurement to the new long distance neighbor candidate.

The scheme can be further extended to prioritize the shortcutting of longer delay
links, as follows. In addition to adding the delay measurement to each corresponding
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adjustment request, all service demands of links are multiplied with the corresponding
measured delay. Then this product, weighted service demand, is used in determining
the “heaviest” link. In this way, when the “heaviest” link is chosen for shortcutting the
delay is taken into account in addition to the amount of traffic passing through. The
chosen link represents the one with largest estimated gain in total routing delay.

3.4 Parameters

Our scheme has three parameters: the two intervals that specify how often adjustment
requests are sent (Ir) and how often the NS-fingers are adjusted (Ia), and the fraction
of NS-fingers (f = l

k ). The question is then how to choose these values.
In [15], we present detailed analysis of the impact of these parameter values through

measurements from simulations. We first studied the tradeoff between fast route op-
timizations and cost efficiency of the scheme in terms of overhead messages routed.
Then, we studied how a particular system setup (e.g. distribution of inserted data and
number of nodes) affects the behavior of the system with a particular parameter config-
uration. Finally, we discuss how this information could allow us to design the scheme to
be policy-driven in such a way that it self-configures its parameters depending on appli-
cation specified policy (faster convergence vs. cost efficiency). Due to space constraints,
we only present our main findings.

The experiments led us to conclude that the impact of the interval parameters Ir and
Ia to the speed of convergence seems to be similar regardless of the other parameter
values. The main observations are that 1) the values of the two interval parameters
should be set to similar values and 2) the smaller the values, the faster the convergence.
The results agree with common sense: a large adjustment interval intuitively slows down
the convergence while a small adjustment interval does not help if requests are sent
rarely, due to large request interval, because nodes do not know towards which range
to adjust. The simulations also showed that many parameters affect the cost optimal
configuration of the scheme, which suggests that analytically determining Ia and Ir

to achieve cost optimal routing behavior for any given setup is a complex problem.
Addressing this challenge is currently left for future work. Nevertheless, the results
gave us a good idea on the trend of the behavior with different interval lengths which
we report in [15]. It is intuitive that the scheme reduces the overall number of routing
hops only when the popular range is small enough compared to the number of NS-
fingers established by each node. Thus, we compared the converged mean routing hops
when f = 1 (all fingers are non-sticky) to the average number of routing hops when
f = 0 (i.e. no NS-fingers) with different values of R. We observed that, regardless
of the absolute number of fingers, when R is roughly larger than 0.6 the scheme no
longer provides benefits. Of course, in order to check whether this result can really be
generalized, we would need an analytical model of the system which we do not have at
the moment.

3.5 Discussions

We briefly discuss in this section the extra cost imposed by the scheme, impact of churn
to the scheme, applicability of the scheme to different kinds of DHTs, and the impact
to load balancing.
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The price to pay for the optimization using the NS-fingers scheme is increased mem-
ory demands and traffic. Each node needs to keep track of the service demands. Given
that each node maintains k long distance links and a few successor links, the number of
reverse neighbors for a node is also around k. This means that maintaining the service
demands requires in the worst case storing and updating kxk of state information, k
being typically log2n. The extra traffic introduced includes the adjustment requests and
adjustments themselves, i.e. neighbor requests sent to the new target of adjusted finger.
Since adjustment requests are sent periodically, they can be piggybacked into heartbeat
messages in which case they come almost for free.

Churn is a common issue with DHTs. The impact of churn is similar to a DHT
equipped with NS-fingers than to one without. Thus, the strategies described in [16]
can be used. In fact, NS-fingers can help choose suitable timeout values (one of the
important performance factors under churn according to [16]) through the delay-aware
extension.

We focus in this paper on ring structured DHTs. However, the concept of NS-fingers
is generic and the scheme can be applied to other geometries as well. For example, in
Pastry [2], which is a kind of hybrid combining ring and tree geometries, NS-fingers
could be used to shortcut routes on specific rows of the routing table (i.e. level of the
tree) that shares the same ID prefix. Similarly, in CAN [3], which relies on a hyper-
cube geometry, NS-fingers can be used to adjust the routing tables with the help of
neighboring nodes considering the routing demand in order to maximize the number of
“corrected” bits on each hop.

The scheme has also an impact on the load balancing of the system. Indeed, the rout-
ing load is implicitly driven via the adjustments towards the nodes that are responsible
for a popular range. The advantage is that there are fewer nodes that become loaded
but the drawback is that this load can be higher. To deal with this load imbalance, we
can leverage existing explicit load balancing mechanisms such as the one of Mercury
(see [4] for details).

3.6 Implementation

We implemented our self-optimization scheme on top of Mercury. We made this choice
because the separation of concerns via the concept of attribute hubs allows applying
our scheme flexibly to the desired hubs and customizing it to each hub separately if
necessary. In addition, we can leverage some of Mercury’s mechanisms for the self-
configuration of the scheme (see [15] for details). Routing of items is similar in Mercury
to Chord except that, thanks to the order preservation, range queries can be expressed
and routed as one lookup instead of making multiple point queries.

The Mercury program code is open source. The code can be compiled to run on
a simple discrete event-based simulator. This simulator does not model any queuing
delays or packet losses, which enables the simulation of thousands of nodes. Such a
simulation environment is sufficient for us to evaluate and analyze the behavior of our
optimization scheme and we used it for all the results presented in Sections 3.4 and 4.
Note that with this simulator we cannot simulate the delay-aware extension presented
in Section 3.3. However, since the extension is an optimization of the scheme and the
basic mechanism does not change with it, this evaluation approach is still valid.
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4 Evaluation

In this section, we evaluate the performance of NS-fingers in different situations. Our
goal is to understand the level of performance improvement the scheme can deliver in
different scenarios. Unless explicitly mentioned, the simulations in this section were
run with n = 5000 and r = n. In reality, it is commonly the case that some lookups
and insertions also fall outside of the popular range. Thus, in all of the simulations
performed for the results presented in this section, a given data item was inserted to
the popular range (modelled with R) with 90% probability and, consequently, to the
remaining non-popular range with 10% probability.

4.1 Stable Popular Range

We first evaluate the gain with NS-fingers scheme in terms of reduction in routing hops
compared to the case without NS-fingers. In order to further put the numbers in per-
spective, we include the case of using simple route caching. Route caching being a
complementary mechanism that can be used together with NS-fingers, we merely want
to show that it alone does not provide the same benefits as our scheme.

Figure 2 shows how the average number of routing hops evolves when the size of
the network grows. For the NS-fingers cases, we computed the converged mean which
represents a lower bound below which the average number of hops does not go even
if further adjustments are made (please, refer to [15] for a more detailed explanation
and example) and for the other cases we computed the average over all routed items. In
all cases R = 0.05 and the total number of fingers is log2n. The cache size was set to
the same as the number of fingers, i.e. log2n. Note that each cache entry implies same
extra maintenance cost as an additional normal finger would do. We observe that the
additional cache delivers only a marginal improvement in the performance compared to
NS-fingers. Furthermore, the figure shows that the number of hops do not scale simi-
larly for the scenarios with route caching than with NS-fingers or no optimization. This
observation suggests that the cache size should be increased more than logarithmically
with the number of nodes in the system in order to have similarly scaling performance
in terms of number of routing hops when the number of nodes in the system increases.
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Figure 3 plots a CDF of the number of hops separately for the insertions to the popu-
lar range and outside of the popular range. The figure illustrates the main tradeoff, i.e.
how much the scheme penalizes the non-popular range. We can see that this tradeoff
can be effectively controlled by adjusting the f parameter: with a smaller number of
NS-fingers (smaller f ) the difference in number of hops is smaller between the popular
and non-popular ranges.

We also looked at what happens in a likely case where we have many smaller distinct
popular ranges instead of just one bigger popular range. We simulated cases having
from one to five popular ranges and the sum of the range sizes being the same in each
case. We observed that the fewer partitions of the popular range there are, the better the
scheme works. The difference in average number of hops between having one or five
ranges is approximately one. There is intuitively an advantage of having a contiguous
popular range because each of the NS-fingers direct traffic towards the popular range,
and within that range, routing takes very few hops.

4.2 Unstable Popular Range

It is a likely scenario that the popular range is not stable but instead changes with time.
Remember, for instance, the video streaming example from Section 1 where the popular
range of video blocks shifts continuously following the progress of the stream. In the
following, we investigate what is the routing behavior in such a case. We choose the
parameters according to the example: We consider a two hours long movie stored into
a 1.3GByte file which is divided into roughly 5000 pieces of 256KBytes each (like in
BitTorrent). Each piece has a sequence number and all the sequence numbers together
form the entire range. Nodes lookup peers having a copy of specific pieces using a range
of sequence numbers as a key and insert sequence numbers of the pieces they have
downloaded (note that the pieces themselves are not inserted into the DHT). Since we
have 5000 pieces, each of the 5000 simulated nodes is responsible of one piece. We set
the popular range so that it corresponds to 1 minute’s worth of pieces, i.e. R = 1

120 =
0.0083. The rate at which the popular range shifts is equal to whole range

7200 per second.
Finally, nodes request a range of 10 pieces at a time and make an insertion for each
downloaded piece yielding a following total rate of routed items: r = insertions+lookups

duration =
5000n+500n

7200 ≈ 0.76n items/s where n is number of nodes.
Now consider the same scenario but with progressive download, i.e. nodes down-

load the video file at full speed to a buffer while playing it locally. A similar situa-
tion would occur with large software updates which naturally lead to a flash crowd
phenomenon. We assume a generous 15Mbit/s average download rate, which yields a
download duration of 650s. We set the popular range to a window of 10s which gives
us R = 10

650 = 0.0154, the rate at which the popular range shifts equal to whole range
650 , and

r = 5000n+500n
650 ≈ 8.46n items/s. We set Ia = Ir = 500 in both scenarios.

Table 1 compares the average number of hops and total cost in hops (lookups and
insertions) resulting from the simulations of these two scenarios. For the cases where
f > 0, we computed again the converged mean and included finger adjustment requests
and adjustments to the total cost. Thus, the cost is the total number of hops routed by the
DHT until each node has downloaded the entire movie. We see that for the streaming
case, with f = 0.5 the average number of hops is reduced to half and the total cost is
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Table 1. Avg hop count/total cost for the video streaming example

Scenario f = 0 f = 0.2 f = 0.5

streaming 5.2/143M 2.9/92M 2.6/84M
progressive dl 5.3/146M 3.3/100M 2.8/89M

reduced to 59% compared to the case without NS-fingers (f = 0). With f = 0.2 the
improvement is slightly smaller. When downloading at full steam, there improvement
is almost similar for both values of f .

5 Conclusions and Future Work

In this paper, we presented NS-fingers, a self-optimization scheme for order-preserving
DHTs, which performs route optimizations in the case of non-uniform popularity dis-
tribution of data or lookup value ranges. Our future work includes further studies re-
garding the relationship between the current system state and cost optimal parameter
configuration in order to facilitate the configuration of the parameters of the scheme,
esp. for specification of the self-configuration rules. In addition, we want to be able to
express the expected number of routing hops with NS-fingers for a given configuration.
We would also like to evaluate the delay-aware extension by, for example, deploying a
set of nodes in PlanetLab. Our simulations revealed that the routing behavior somewhat
oscillates when there are not enough NS-fingers per node to cover the whole popu-
lar region. We intend to investigate whether simple schemes such as using a weighted
average of the service demands can alleviate this issue. Our evaluations focused on a
specific order-preserving DHT, but the NS-fingers can be applied to any DHT. While it
is really the application workload that in the end determines how big performance im-
provement our scheme can provide, it would still be interesting to try the scheme with
another kind of DHT. We would also like to study whether in certain situations some
particular nodes relying on the most popular paths experience overload, and if so, how
to prevent it from happening.
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