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a b s t r a c t

TCP is the most widely used protocol for data transfer over the Internet and for most appli-
cations the performance metric of interest is throughput. Identifying the reasons for the
throughput limitation of an observed connection is a complex task. We present a set of
techniques, called the TCP root cause analysis toolkit, that allow users to determine from
a passively captured packet trace the primary cause for the throughput limitation. We
present the details of the toolkit and its validation and apply the toolkit to carry out a case
study of ADSL traffic.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Today, TCP carries the vast majority of Internet traffic.
Throughput is the most important performance metric
for many network applications that utilize TCP to transmit
data. Therefore, knowledge about which factors determine
the TCP throughput observed by an application is very
useful as it can help improve the performance of the appli-
cations and of TCP itself. It can also help network operators
to identify performance problems and bottlenecks in their
network.

The throughput achieved by a given TCP connection is
determined by many factors, such as the available band-
width on the individual links of the end-to-end path
and the TCP protocol mechanisms. In many cases it can
also be the application itself that determines the through-
put, as was first pointed out in [20]. Finding out which of
the possible reasons is the cause for the observed
. All rights reserved.
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throughput at a given time instant is not trivial. We call
this kind of analysis root cause analysis of TCP throughput.
It may be straightforward to do root cause analysis if one
has such access to the transmitter host that allows
inspecting the state of the TCP state machine and applica-
tion at any given time (using for instance the Web100
utility [12]). However, it becomes much more difficult
when one is only able to observe traffic at a given mea-
surement point inside the network, which is a very com-
mon case for large scale measurement studies. For
example, an ISP that would like to analyze the behavior
of its thousands of clients would often do so by studying
the aggregated traffic flow at the edge of the access net-
work, since in many cases it is impossible to directly ac-
cess the client hosts.

We have designed and implemented a set of algorithms,
the root cause analysis toolkit, for doing root cause analysis
of TCP throughput. This toolkit analyzes TCP/IP packet
headers that are passively collected at a single measure-
ment point. The algorithms are designed in such a way that
they impose no restrictions on the location of the measure-
ment point, similarly to the work presented in [9], for
instance. This design choice clearly complicates the design
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of the algorithms but is worth the effort, as it greatly
increases the usability of the toolkit.

Our approach firsts isolates the bulk data transfer peri-
ods (BTP) and the application limited periods (ALP) within
a TCP connection. A BTP is a period where the TCP sender
never needs to wait for the application on top to provide
data to transfer. On the other hand, when the TCP sender
needs to wait for the application on top, we call that period
an ALP. We presented in [17] an algorithm that identifies
the BTPs and ALPs. Once BTPs have been identified, the root
cause analysis toolkit analyzes them for TCP and IP layer
throughput limitations, i.e. inferring the root causes for
the BTPs, which will be the focus of this paper.

The contributions of this paper are the following: We
describe a methodology to quantify TCP and IP level
throughput limitations that is referred to as the root cause
analysis toolkit. More specifically, we define a set of quan-
titative metrics, which we call limitation scores, that can be
computed from the information contained in the packet
headers collected at a single measurement point, and show
how these scores can be used in a threshold-based classifi-
cation scheme to derive a root cause for a given BTP. We
also show how to infer suitable threshold values for the
scheme. Finally, we apply the root cause analysis kit to
study the performance of ADSL clients, part of which has
already been presented in [15].

2. What limits the throughput of TCP?

The common view of a TCP transfer is that its transmis-
sion rate is limited by the network, i.e. by a link with a
small capacity or a congested bottleneck link. We demon-
strate in this section through examples that this view is too
restrictive. Instead, the limitation causes may lie in differ-
ent layers of the network stack, either in the end-points or
in the middle of the TCP/IP data path. Zhang et al. [20] pio-
neered research into the origins of TCP throughput limita-
tion causes. They defined a taxonomy of rate limitations
(application, congestion, bandwidth, sender/receiver win-
dow, opportunity and transport limitations) and applied
it to various packet traces. While our classification is
greatly inspired by their work, we extend the scope of their
work and discuss the difficulties of identifying certain
causes through examples. We present in the next section
the causes in a top-down manner, starting from the appli-
cation level down to the network level.
Application

TCP

Application

TCPNetwork

buffers
b1

ReceiverSender

b2

b3 b4

Fig. 1. Data flow from the sender to the receiver application through a
single TCP connection.
2.1. Application

Fig. 1 describes the way data flows from sender to recei-
ver application through a single TCP connection. The inter-
action happens through buffers: at the sender side the
application stores data to be transmitted by TCP in buffer
b1, while at the receiver side TCP stores correctly received
and ordered data in buffer b2. This buffer is consequently
read by the receiving application. Data that is received
out of order is stored in buffer b4 until it can be delivered
in order and stored into buffer b2. In case the receiver
application is unable to read the buffer b2 as fast as TCP
delivers data into it, the receiving TCP will notify the send-
ing TCP by lowering the receiver advertised window. We
discuss this case as a TCP layer phenomenon in Section 2.2.

We define two types of periods within a given TCP con-
nection. When the application sends data constantly, buf-
fer b1 in Fig. 1 always contains data waiting to be
transferred. We refer to such a period as a bulk transfer
period (BTP). In other cases, the application limits the
throughput achieved, i.e. TCP is unable to fully utilize the
network resources due to lack of data to send. We call such
a period an application limited period (ALP). Note that a
TCP connection consists entirely of these two types of
periods.

We depict the diverse classes of applications operating
on top of TCP in Table 1. This classification illustrates the
multiple ways in which the application can influence the
TCP traffic. In this paper, we focus on the root cause anal-
ysis of BTPs while the problem of identifying BTPs and ALPs
has been tackled in [17].

2.2. TCP layer

2.2.1. TCP end-point buffers
The achieved throughput of TCP can be limited by the

size of the buffers allocated at the two end-points of a con-
nection, i.e. buffers b3 and b4, but also b2 as discussed in
the previous section. In this case, the receiver side buffer
b2 (between the TCP layer and the application layer) con-
strains the maximum number of outstanding bytes the
other end is allowed to send at any given time instant.
We call this limitation receiver limitation. Note that in the-
ory, buffer b4 can also limit the maximum outstanding by-
tes if a lot of bytes are received out of order and the buffer
is small. However, we observed that this behavior is rare.

More precisely, we observe that receiver limitations can
occur in two flavors: as an intentional or unintentional
cause. Intentional limitation is imposed by the receiver
application because it is unable to process data as fast as
TCP delivers it (recall Section 2.1). Unintentional limitation
can happen if the receiving TCP advertises an unnecessarily
small window by default. For example, consider a situation
where two applications communicate with each other
through an end-to-end path with high bandwidth and rel-
atively long delay. If the TCPs do not use receiver window
scaling1, the maximum advertised window size will be
1 Some TCP implementations do not use window scaling by default. In
addition, certain other implementations can fail to negotiate the scaling
factors properly preventing the use of window scaling.



Table 1
Summary of different application types

Type Main characteristics Example applications

1 Constant application limited transmission rate, consists of a single ALP Skype and other live streaming, and client rate limited
eDonkey

2 User dependent transmission rate, typically a single ALP Telnet and instant messaging applications
3 Transmission bursts separated by idle periods, applications using persistent

connections, BTPs interspersed with ALPs
Web w/persistent HTTP connections, BitTorrent (choked
and unchoked periods)

4 Transmit all data at once, single BTP FTP
5 Mixture of 1 and 3 BitTorrent with rate limit imposed by client application
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64 Kbytes. In this case it suffices to have more than 3.5 Mbit/
s of available bandwidth with a RTT of 150 ms (typical for a
transatlantic path) to be receiver limited with the maximum
possible receiver advertised window.

At the sender side, the buffer b3, between the TCP layer
and the MAC layer, constrains the maximum number of
bytes in the retransmit queue. Consequently, the size of
the sender buffer also constrains the amount of unac-
knowledged data that can be outstanding at any time.
We call this limitation sender limitation.

2.2.2. Congestion avoidance mechanism: transport limitation
We declare a connection to be transport limited if the

sending TCP is in congestion avoidance and experiences
no losses, thus no limitation by the network (see Section
2.3). In addition, the sending TCP does not reach the limit
set by the receiver advertised window before the end of
the transfer. Hence, the remaining limitation cause is the
congestion avoidance mechanism of the TCP protocol that
slowly increases the size of the congestion window. This
phenomenon may occur when the initial slow start thresh-
old is set unnecessarily low. In this case the sending TCP
enters congestion avoidance before experiencing any
losses. Another example is a relatively short transfer
through a path with a lot of available bandwidth and a
large scaled receiver advertised window.
2.2.3. Short transfers: slow start mechanism
There is an additional type of limitation that can be con-

sidered as a limitation at the transport layer. This limita-
tion occurs for short connections carrying so few bytes
that the connection never leaves the slow start phase.
Since it is the slow start behavior of TCP that limits the rate
of the TCP transfer we do not classify these connections as
application limited.
2.3. Network

A third category of limitation causes is due to the net-
work. We focus on the case where one or more bottlenecks
on the path limit the throughput of the connection (see [8]
for a study on the location and lifetime of bottlenecks in
the Internet). While other network factors, such as link fail-
ures or routing loops [18], might impact a TCP connection,
we do not consider them in this paper as we can reason-
ably expect their frequency to be negligible.

Let us first define general metrics independent of the
transport protocol [13]:
– Capacity Ci of link i: the maximum possible IP layer
transfer rate at that link.

– End-to-end capacity C of a path: C ¼min1;...;HCi, where H
is the number of hops in the path.

– Average available bandwidth Ai of a link i:
Ai ¼ ð1� uiÞCi, where ui is the average utilization of that
link in a given time interval.

– Average available end-to-end bandwidth A of a path:
A ¼min1;...;HAi.

We also define two TCP specific metrics:

– Bulk transfer capacity ðBTCiÞ of link i: the maximum
capacity obtainable by a TCP connection at that link.

– Bulk transfer capacity (BTC) of a path:
BTC ¼min1;...;HBTCi, where H is the number of hops in
the path. The BTC depends on how the TCP throughput
is affected by other flows.

As in [13], we call the link i with capacity Ci ¼ C the nar-
row link of the path and the link j with an average available
bandwidth Aj ¼ A the tight link of the path. Furthermore,
we define link k as the bottleneck link if it has a bulk trans-
fer capacity BTCk ¼ BTC. Note that while, at a given time
instant, there is a single bottleneck for a given connection,
the location of the bottleneck as well as the bulk transfer
capacity at the bottleneck can change over time.

If the bottleneck link explains the throughput limitation
observed for a given TCP bulk transfer, it can be considered
as network limited. Please note that the bottleneck link is
not necessarily the same as the tight link.

We distinguish two different cases of network limita-
tion depending on the type of bottleneck link on the path:
unshared and shared bottleneck limitations. Intuitively, an
unshared bottleneck limitation means that the considered
TCP transfer utilizes alone all the capacity of the bottleneck
link that is responsible for the throughput achieved. In a
shared bottleneck case, there is cross traffic competing
for the bandwidth of the bottleneck link.

A bottleneck link that limits the throughput of a given
TCP connection typically generates packet losses when
the buffer at the bottleneck link is overrun. However, it
is possible that a TCP transfer whose rate is limited by
a bottleneck link does not experience any losses.
Whether losses occur depends primarily on the size of
the buffer in the bottleneck link and the size of the re-
ceiver advertised window. To understand why, let us
consider a scenario where a TCP transfer is set up on a
given path.
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Let MSS be the packet size in bytes that the TCP sender
uses on the path, RTT the round-trip time when queues on
the path are empty and Wr the receiver advertised window
in (MSS size) packets. We further assume that the narrow
link i on the path has capacity Ci and that available band-
width also equals Ci (i.e. no cross traffic).

Now, suppose that Wr >
RTT�Ci
MSS , i.e. the receiver adver-

tised window is larger than the maximum number of pack-
ets that can be transmitted through the narrow link per
RTT. If B > Wr � RTT�Ci

MSS , where B is the buffer size at the bot-
tleneck link, then the congestion window of the TCP sender
will reach the size Wr and no losses occur at the bottleneck
link. Otherwise, losses should occur and TCP should back
off.

The above described scenario is the simplest possible
one, but the same reasoning applies also to the case of a
shared bottleneck limitation. If the buffer of the bottleneck
link is not overrun before the TCP sender exhausts the re-
ceiver advertised window, there will be no losses.
3. Related work

In [20], the authors introduced the TCP rate analysis
tool (T-RAT). We implemented our own version of this tool,
as it was not publicly available, and experimented with it.
Unfortunately, T-RAT turned out to suffer from a number
of limitations. The limitations of T-RAT originate from the
fact that it was designed to work only on unidirectional
traffic traces. While this choice may clearly increase the
usability of the tool, it also severely decreases its accuracy
in certain cases. We discuss in detail the limitations of T-
RAT and perform a comparison against our methods in
[14].

Our early work presented in [16] described initial meth-
ods to infer root causes of the throughput for TCP connec-
tions. While the underlying ‘‘divide-and-conquer”
approach is similar to our current strategy, the algorithms
have been refined substantially. Furthermore, in [16] we
described the computation of quantitative metrics, but
we did not address the issue of mapping these metrics to
a single dominant root cause.

4. Approach

In [17], we make a strong case for filtering out applica-
tion effect prior to analyzing transport and network layer
aspects. In that paper, we describe the IM algorithm that
partitions the packets of a given TCP connection into ALPs
and BTPs. The algorithm relies only on the observation that
(1) idle periods longer than the RTT of the connection pre-
ceded by a packet smaller than the MSS and (2) many con-
secutive packets smaller than the MSS are both indicators
of application limitation.

In this paper, we focus on the root cause analysis of
non-application limited traffic (i.e. the BTPs of a connec-
tion). Thus, we focus on the limitation cause at the trans-
port and network layers.

Our approach consists of two phases. In the first phase,
we compute for each BTP several limitation scores (Section
5). These scores are quantitative metrics that assess the le-
vel of a given limitation cause experienced by a BTP. We
compute all these scores from information found in the
packet trace.

In the second phase (Section 6), we use a classification
algorithm that intends to associate a single limitation
cause to each BTP whenever it is possible. In practice, we
observed that, most of the time, a single cause is enough
to explain a certain behavior. Please refer to [16] for some
anecdotal counter-examples.

4.1. Scope of our work

We do not treat all possible scenarios in our root cause
analysis of TCP traffic. We focus only on the analysis of
long-lived connections and neglect the short ones. Previ-
ous work (e.g. [21,4]) has studied the performance of short
TCP transfers from a measurement and analytical point of
view. The slow start mechanism of the TCP protocol is typ-
ically considered as the main limitation cause for the short
transfers. Our definition of a long-lived connection is such
that the connection is not likely to be limited by the slow
start mechanism of the TCP protocol. In practice, we set a
threshold around 100–150 Kbytes. See [17] for details.

We also assume that the traffic analyzed passes through
routers that all use FIFO scheduling. One crucial compo-
nents of our root cause analysis technique, which imposes
this limitation, is the capacity estimation tool PPrate [7].
PPrate uses packet dispersion techniques, which only work
if packet scheduling is FIFO. While most of todays Internet
routers use FIFO scheduling, there are cases, such as trans-
mission over cable modems and wireless 802.11 access
networks [11] where scheduling can be non-FIFO.
5. Quantitative analysis: the limitation scores

We compute the limitation scores by inspecting the
packet headers. Packet header traces are captured and
timestamped at a single measurement point along the path
from a source to a destination. In order to be as generic as
possible, we do not impose restrictions on the location of
the measurement point relative to the TCP end-points. Tnis
is important since we may use publicly available traces
collected by third parties for which we do not have exact
information about the measurement configuration. In-
stead, we infer the location of the measurement point from
the traces (Section 5.1).

5.1. Determining position of measurement point

Most of our metrics are straightforward to compute if
the packet trace is captured at the sender side.

Our first problem is thus to infer the location of the
measurement point. Let us consider the case depicted in
Fig. 2, where the measurement point A is close to the sen-
der while points B and C are not. We can determine the
measurement point with respect to the connection initia-
tor (also the sender in Fig. 2) by measuring and comparing
the delay between the SYN and SYN + ACK packets, and the
delay between SYN + ACK and ACK packets, referred to as
d1 and d2, respectively, for the measurement point A. We
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Fig. 2. Determining the measurement position from the three-way hand-
shake of TCP.
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conclude that A is close to the connection initiator if
d2
d1 < 0:01. Note that the connection initiator is not always
the sender.

5.2. Metrics inferred from packet header information

We use the following five different time series and the
path capacity estimate as bases for generating the limita-
tion scores for the throughput of BTPs.

5.2.1. Time series of round-trip times
We need to compute running RTT estimates for each

BTP throughout its lifetime. In the case where the mea-
surement point is close to the sender, we compute the
RTT for each acknowledged data packet as the time inter-
val between the timestamps of the last transmission of a
data packet and the first acknowledgment for this data
packet.2 If the measurement point is away from the sender
and TCP timestamps are available, we use either the TCP
timestamp-based method introduced in [19], otherwise we
use the method described in [10].

5.2.2. Time series of inter-arrival times of acknowledgments
We compute the inter-arrival times of acknowledg-

ments separately for each direction of a connection. The
ACKs included in the computation are either acknowledg-
ing one or two data packets of size MSS or duplicate
acknowledgments. Furthermore, to cancel the effect of
delayed ACKs we divide by 2 the inter-arrival time of ACKs
that acknowledge two data packets, which can be detected
by comparing the difference of the current and the previ-
ously seen highest ACK number to the MSS.

5.2.3. Time series of retransmissions
We cannot assume to observe all retransmitted packets

twice since the packets may be lost before the measure-
ment point, especially if the measurement point is far from
the sender. Therefore, simply counting bytes carried by
2 We must take into account that packets may be sent multiple times, in
the case of losses, and similarly acknowledged multiple times, in the case of
lost or piggy-backed acknowledgments.
packets seen more than once is not sufficient. A packet is
considered to be a retransmission if (i) the packet carries
an end-sequence number lower than or equal to any previ-
ously observed one; and (ii) the packet has an IPID3 value
higher than any previously observed values. With the help
of the IPID we remove false positive retransmissions caused
by reordering of packets by the network that can occur if the
measurement point is far from the sender. Similar analysis
of out of order packets was also done in [5].

5.2.4. Time series of receiver advertised window
We compute a time series for the receiver advertised

window, which consists of time-weighted average values
over a given time interval: Each time a packet is received
from the other end, the receiver window indication in
the packet will be considered as the current receiver win-
dow value until either the end of the time window is
reached or a new packet is received. This technique is valid
if the measurement point is located at the sender side.
However, if the measurement point is away from the
sender, we virtually shift in time the observed timestamp
values by the time delay between the sender and the
observation point. For example, in Fig. 2, when the mea-
surement point is at C, we would shift in time the time-
stamp values of packets sent by the receiver by þ d6

2 ,
which is the estimated time at which this packet should
arrive at the sender. d6 is obtained from the running RTT
estimates and is, thus, continuously updated.

5.2.5. Time series of outstanding bytes
Another metric of interest is the amount of data bytes

sent and not yet acknowledged at a given time instant.
Since the computation is done by inspecting both direc-
tions of the traffic, we again need to take into account
the location of the measurement point.

If the measurement point is close to the sender, we pro-
duce the time series by calculating the difference between
the highest data packet sequence number and the highest
acknowledgment sequence number seen for each packet
and then averaging these values over a time window, in
the same way that we do for the receiver advertised win-
dow values.

If the measurement point is away from the sender, we
do the computation by shifting in time the timestamp
values of arriving packets. For example, in Fig. 2, we would
shift the timestamp values of data packets arriving from
the sender at C by � d6

2 and of acknowledgments arriving
from the receiver at C by þ d6

2 .

5.2.6. Path capacity
As mentioned in Section 4.1, we use a tool called PPrate

to estimate the capacity of the IP path of a given connec-
tion. This tool applies statistical analysis on the inter-arri-
val times of packets in order to infer an estimate for the
capacity of the path. In our case, we use the inter-arrival
3 IPID = IP identification number is assumed to be unique for each IP
packet originating from a given sender. However, this number is only
16 bits long and therefore wrap around of this number needs to be taken
into account. Note that actual implementation of the IPID counter differs
from one OS to the other [6].
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times of acknowledgments that we compute as explained
above.
5.3. Limitation scores

We compute four different limitation scores for each
connection: receiver window limitation score, burstiness
score, retransmission score, and dispersion score. The first
two ones are used to identify receiver limitation through
the advertised window or the transport layer. The two
other scores are used to identify different cases of network
limitations, i.e. limitations by unshared and shared bottle-
neck links.
5.3.1. Receiver window limitation score
We use two time series to compute the receiver win-

dow limitation score: the outstanding bytes time series
and the receiver advertised window time series. Both of
these time series are computed using a time window equal
to the minimum RTT of the connection observed. In this
way, we ensure that we capture rapid dynamics in the re-
ceiver advertised window. The difference of the values of
these two time series indicates how close the TCP sender’s
congestion window is to the limit set by the receiver
window.

Specifically, for each pair of values in the two time ser-
ies, we compute their difference and generate a binary var-
iable with value 1 if this difference is less than lb �MSS and 0
otherwise, where lb is a small value (typically
lb 2 f1;2;3g). The receiver window limitation score is the
average value of the resulting binary time series for the
analyzed bulk transfer period. We experimented with dif-
ferent values for the lb threshold and observed that the
choice among the values lb 2 f1;2;3g is clearly not critical
(see [14] for details).
x x

rtt = x+y

y

Fig. 3. Inter-arrival times of receiver window limited transfer. Black
rectangles are packets sent and time runs from right to left.
5.3.2. Burstiness score (b-score)
The outstanding bytes of the TCP sender can reach the

limit of the receiver advertised window in two different
cases:

– When the buffer of the TCP receiver is too small and the
transfer is, thus, receiver limited.

– When the transfer is network limited and the link buf-
fers on the path, and specifically on the bottleneck link,
are large enough to prevent losses.

We introduce the burstiness score, a.k.a. b-score, to dis-
tinguish these two cases. If the receiver window limits the
throughput, the sending TCP needs to wait for acknowl-
edgments for a burst of packets during a significant part
of the RTT before it can send new packets. In contrast, if
there is a shared bottleneck link that limits the throughput,
the inter-spacing pattern of packets is smoothed out by the
cross traffic at the bottleneck link and a higher throughput
would not be achieved even for larger receiver window
values. Instead, growing the receiver window would at
some point lead to buffer overflow at the bottleneck link,
causing retransmissions of packets and reduction of the
congestion window value, which would lower the overall
throughput.

We next present two definitions of the b-score value.
The first one is in line with the scenario depicted above
while the second one is easier to compute as it does not
rely on the somewhat complex estimation of the capacity
of the path.

Consider the receiver limited scenario depicted in Fig. 3
where y is the time the TCP sender waits because it has ex-
hausted its receiver window, and x is the time it takes to
send a receiver advertised window full of packets. Hence,
the throughput is less than the available bandwidth on
the path because of the waiting time y, i.e. the sender does
not ‘‘fill the pipe” because of y. Thus, our first definition of
the b-score is:

B ¼ 1� x
xþ y

¼ 1�
ðWr � 1ÞMSS

C

RTT
; ð1Þ

where Wr is the average receiver advertised window size
divided by MSS and C is the path capacity (Section 2.3).

Based on the above definition, if the limitation cause
experienced by a connection is receiver window limitation,
B should be close to 1. On the other hand, when the limi-
tation cause is a bottleneck link with large enough buffer,
inter-arrivals of packets should be controlled by the bottle-
neck link and hence B should be close to 0.

The above definition requires the computation of both,
RTT and C. It is not always easy to estimate those two val-
ues. That is why we compute an approximation for B,
based on the inter-arrival time (IAT) of packets at the mea-
surement point. By definition of the average inter-arrival
time value IAT, one obtains that:

IAT ¼ RTT
Wr

:

In addition, we observe that the highest quantiles of the
IAT random variable should correspond to y, see Fig. 3. The
exact quantile to be chosen is to be related to the value of
the advertised window. Intuitively, if the advertised win-
dow corresponds to n + 1 MSS packets, one should pick
each nth IAT value. Thus, the quantile p that we picked in
the IAT distribution for a receiver window of Wr packets
is the 100 � 1� 1

Wr

� �
-th one. The quantile that we obtain

should then equal y. Combining the above definitions with
Eq. (1), we obtain an approximation for B, that we term
b-score:

b-score ¼ IATp

IAT �Wr

� B: ð2Þ

We use the b-score instead of B in our root cause anal-
ysis toolkit to quantify the burstiness of a connection.
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5.3.3. Retransmission score
The retransmission score for a BTP is computed as the

ratio of the amount of data retransmitted divided by the
total amount of data transmitted during this period. Note
that since TCP may perform unnecessary retransmissions,
this score does not exactly correspond to the loss rate.
However, we can expect these quantities to be strongly
correlated most of the time.

5.3.4. Dispersion score
The objective of the dispersion score is to assess the im-

pact of the bottleneck link on the throughput of a connec-
tion. We define the dispersion score as follows (C is the
capacity of the path, and tput is the average throughput
of the BTP):

dispersion score ¼ 1� tput
C

: ð3Þ

A correct estimation of C, the capacity of the path, is
very important for the computation of this score.

Let us first consider the case where the network limita-
tion cause is a non shared bottleneck link on the path. The
bottleneck is evidently the narrow link of the path (refer to
Section 2.3 for the definition). Since the BTP is network
limited and the narrow link is not shared, we have
tput � C and the dispersion score should be close to zero.
In all other cases, including the shared bottleneck limita-
tion, the dispersion score is greater than zero.

5.3.5. Validation
We validated the computation of the receiver window

limitation score in [14]. We concluded that, in 90% of the
cases the maximum discrepancy between the actual and
estimated values of the receiver window limitation score
remains below 20%. The accuracy of the dispersion score
is evaluated in [7]. As for the b-score, we perform a
detailed evaluation under different conditions in [14],
some of which we discuss in Section 6.

6. Interpreting the limitation scores

Quantitative scores aim at uncovering the rate limita-
tion causes of each BTP. In theory, a given BTP can experi-
ence several limitation causes simultaneously. Note,
however, that all combinations of causes are not possible.
Being simultaneously limited by congestion (in a shared
bottleneck) and a too low advertised window is possible.
On the other hand, transport layer and unshared bottle-
neck limitations are exclusive, since with the former no
losses are experienced. In practice however, it turns out
that most of the time, a single dominant limitation cause
is found for a BTP (and also for a connection). Our classifi-
cation scheme is based on this empirical observation,
though it leaves the door open to the case of mixed limita-
tion causes.

6.1. Classification scheme

We present here a threshold-based classification
scheme of BTPs where each score has a threshold attached
to it. We consider the causes one after another by elimina-
tion. At each step, one score is evaluated against a thresh-
old and, as a result, one or more causes are eliminated. The
cause that remains in the end is estimated to be the root
cause we are looking for.

Our scheme corresponds to the flow chart depicted in
Fig. 4. We introduce a set of thresholds which we calibrate
later in Section 7. We first describe the different steps in
the flow chart.

The first step is to determine whether the root cause is a
bottleneck link that is unshared. For that, we compare the
dispersion score against the corresponding threshold th1. If
the dispersion score is low enough, it means that the BTP
achieves a throughput close to the capacity of the path.
Note that even if the throughput of a BTP is limited by an
unshared bottleneck, the average throughput computed
for the entire BTP (total bytes divided by total duration)
can be smaller than the capacity of the path for two rea-
sons. The first reason is that TCP needs to tune to reach
the final transmission rate by growing the congestion win-
dow gradually, which lowers the average throughput of
the BTP, supposing that the BTP starts from the beginning
of the connection. The second reason is that TCP may peri-
odically overrun the buffer at the bottleneck link unless the
number of outstanding bytes of the TCP sender is limited
by the receiver advertised window. In this situation, TCP
may experience momentarily lower throughput due to loss
recovery, depending on the loss recovery strategy. Some
TCP versions recover fast (e.g. SACK enabled Newreno)
with no significant reduction in the throughput, while
other versions may suffer much more. Naturally, the de-
gree of reduction in the throughput depends also on the
number of packets lost when the buffer is overrun.
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The second step, comparing the retransmission score to
the corresponding threshold th2, identifies BTPs limited by
a shared bottleneck link. Remember that retransmissions
are clear indications of the presence of a bottleneck link
limitation. Since the first step eliminates those BTPs whose
throughput is limited by an unshared bottleneck link, a
shared bottleneck link is the obvious cause for the BTPs
with high retransmission score.

If no retransmissions are observed and there is no
unshared bottleneck link limiting the throughput, our
scheme inspects the receiver window limitation score. In
the third step, this score is compared to the threshold
th3. If the score is above the threshold, the transmission
rate of the BTP is determined either as receiver limited or
limited by a shared bottleneck link. The final separation
between the receiver limited BTPs and shared bottleneck
link limited BTPs is done by comparing the b-score to the
threshold th4.

The final step distinguishes the BTPs whose throughput
is transport limited, i.e. limited by the TCP protocol (either
slow start or congestion avoidance mechanism), from
those that cannot be classified. We consider as transport
limited those BTPs that do not experience any retransmis-
sions and no limitation by the receiver advertised window.
Otherwise the BTP is classified as limited by a mixture of
causes or an unknown cause.

6.2. Discussion

In the classification scheme that we presented above,
we did not discuss the specific order in which we apply
the tests. We justify our choices in this section. Inspection
of the dispersion score needs to be done before we deter-
mine anything about shared bottleneck limited transfers.
Otherwise a large part of the transfers limited by an un-
shared bottleneck link would be classified as shared bottle-
neck limited because of a high enough retransmission
score for instance. The ordering between steps 2 and 3
(shared bottleneck and receiver limitations) does not mat-
ter due to the b-score test. Eventually, the step to identify
transport limited BTPs could be performed at any point.
7. Inferring the threshold values

The flow chart of our classification scheme presented in
Fig. 4 contains four thresholds. We present in this section a
method to infer these threshold values from measure-
ments. We try to be as general as possible, but any such
method is always unable to capture all the dynamics of
the Internet. Simulations are not an option because they
fail to capture the diversity of Internet traffic. We rather
use a controlled approach where we download traffic from
the Internet that we constrain in different ways when it
crosses the edge, so as to obtain enough samples for each
limitation cause.
7.1. Experimental setup

We proceeded as follows to obtain traffic corresponding
to each of the three different rate limitation causes: un-
shared bottleneck, shared bottleneck, and receiver
limitations.

We performed FTP downloads initiated from a machine
at Institut Eurecom, which also recorded the traffic traces.
We selected all the FTP mirror sites for the Fedora Core
Linux distribution [2] that are located in 42 different coun-
tries distributed over all five continents. We selected ran-
domly a new server from the list whenever the previous
download was finished and downloaded each time the
same set of files of different sizes with a total amount
between 40 and 60 Mbytes. The number of simultaneous
downloads was controlled in order to produce unshared
and shared bottleneck limited traffic. We used rshaper
[3] to create an artificial bottleneck link at a machine (at
the boundary of the Eurecom network) when needed and
similarly NISTNet [1] to delay packets in order to increase
RTTs.

7.1.1. Unshared bottleneck limited transfers
In order to generate traffic that should be limited, with

high probability, by an unshared bottleneck link, we cre-
ated an artificial bottleneck and downloaded from one sin-
gle server at a time. We performed the experiments with
three different bottleneck link capacities: 0.5, 1, 2 Mbit/s.

7.1.2. Shared bottleneck limited transfers
To generate transfers likely to be limited by a shared

bottleneck, we downloaded from several servers simulta-
neously. Our download script ensured that downloads
from 10 servers were continuously ongoing. We used the
following bottleneck link capacities during these experi-
ments: 1, 3, 5, 10 Mbit/s. We checked that the bottleneck
link was fully utilized during all the experiments.

7.1.3. Receiver limited transfers
Transfers are typically receiver limited in the case of a

high bandwidth delay product where the sender fully ex-
hausts the receiver advertised window before the ACKs ar-
rive. That is why we used NISTNet to delay packets in order
to increase the RTT. We experimented with different
amounts of delay added to the RTT: 100, 200, 400,
500 ms. We checked that during the experiments the
aggregate throughput never exceeded the link capacity at
the edge of Eurecom in order to be sure that there was
no shared bottleneck on our side.

7.2. Setting the thresholds

We set the threshold for the retransmission score (th2
in Fig. 4) to 1%. It is an empirically justified choice: this va-
lue seemed to work the best for the data sets from these
controlled experiments. More details are in [14].

As for the receiver window limitation score, we chose a
threshold of 50% (th3 in Fig. 4). We chose such a value in
order to capture those BTPs that experience a throughput
limitation by the receiver or by a shared bottleneck link a
majority of the time.

The threshold for the dispersion score (th1 in Fig. 4) dis-
tinguishes the BTPs whose transmission rate is limited by
an unshared bottleneck link from the rest. We inspected
the CDF plots of the dispersion score for BTPs generated
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while downloading from a single server at a time. We no-
ticed that a threshold of 0.2 for the unshared bottleneck
limitation seems to be a good choice.

The b-score threshold (th4 in Fig. 4) separates the recei-
ver limited BTPs from those that are limited by a shared
bottleneck link. Therefore, to determine a suitable value
for the threshold, we analyzed the traffic from the experi-
ments where we generated traffic corresponding to these
two rate limitations and analyze the b-score values for
the resulting two types of traffic in order to find a suitable
threshold value.

Fig. 5 shows CDF plots of the b-score for BTPs from two
different types of experiments with 10 simultaneous
downloads: experiments where an artificial bottleneck
was set up with different capacities, resulting in shared
bottleneck limited traffic, and experiments where different
amounts of delay were added, which in turn generated
receiver limited traffic with high probability due to the
increased bandwidth delay product of the path. We se-
lected for this analysis only those BTPs that had a receiver
window limitation score above 0.5, retransmission score
below 0.01 and dispersion score above 0.2, that is, the ones
that would require the use of the b-score in the classifica-
tion process (Fig. 4).

In order to find the th2 threshold value that gives the
best separation between these two types of traffic, we
compare the CDF plots of the two types of traffic against
each other. We try to select a single b-score value that is
at the same time larger than most b-score values for the
shared bottleneck experiments and smaller than most
b-score values for the experiments with added delay. We
do this (see Fig. 6) by computing the difference F1–F2 for
each pair of CDFs plotted in Fig. 5, where F1 is a CDF from
the shared bottleneck experiments and F2 is a CDF from
the experiments with added delay. By computing the mean
of the maxima of all combinations of F1–F2 plotted in the
figure, we obtain th2 = 0.25. This threshold is plotted as a
vertical line in Fig. 6.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

b score

F(
x)

1Mbit/s
3Mbit/s
5Mbit/s
10Mbit/s
200ms
400ms
500ms

shared bottleneck
experiments

experiments with
added delay 

Fig. 5. CDF plots of the b-score when downloading multiple files simul-
taneously through a shared bottleneck link or with added delay.
7.3. Discussion

After having chosen the values for the thresholds, we
checked whether our choices of threshold values lead to
a correct classification of the controlled FTP downloads
we performed. In particular, we wanted to see how well
the downloads from a single server were separated by
the threshold in the cases of a shared bottleneck or receiver
window limitation. We also checked that there are no cor-
relations between locations, e.g. we verified that we did
not end up choosing mostly US servers in the experiments.
This would lead to choosing a threshold value that only
works for such transatlantic paths. The geographical loca-
tions of the servers were resolved using the IP2location
service (http://www.ip2location.com). In addition, we clas-
sified all the traces from the controlled experiments using
the chosen thresholds and further investigated the traffic
classified as mixed/unknown. We observed that the latter
represents between zero and approximately 25% of the to-
tal traffic depending on the particular data set. Detailed
analysis results are presented in [14].
8. Application to ADSL client traffic

Usually, there will always be some misclassified periods
of a connection, no matter how thorough the validation
procedure is. Instead of doing more controlled experi-
ments, we chose to demonstrate in this section how the
root cause analysis techniques (RCA) can be applied to a
large ADSL trace. This analysis also serves as a validation
of our root cause analysis toolkit.
8.1. Measurement setup and dataset

A typical ADSL architecture is organized as follows
(see Fig. 7): the broadband access server (BAS) aggre-
gates the traffic issued from many digital subscriber line

http://www.ip2location.com
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Fig. 7. Architecture of the ADSL platform monitored.
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access multiplexers (DSLAMs) before forwarding it
through the two local routers to an IP backbone. Each
client is connected to one DSLAM using one ATM Virtual
Circuit. The traffic of a client is controlled by the up and
down capacities of this access link. A variety of subscrip-
tion types of the ADSL access service is defined through
different combinations of up-link and down-link
capacities.

We applied our root cause analysis toolkit to traffic cap-
tured via two probes located between a BAS and the first
two routers of the IP backbone of an ADSL network. Each
probe captures packets flowing through a single router.
This BAS multiplexes the traffic of three DSLAMs and con-
nects about 3000 clients to the Internet. We capture all IP,
TCP and UDP packet headers going through the BAS with-
out loss of packets. Trace files are stored in tcpdump
format.

We collected one full day (Friday March 10, 2006) of
traffic, which represents approximately 290 Gbyte of TCP
traffic in total, out of which 64% is downstream and 36% up-
stream. This day can be considered as a typical day in terms
of data volumes generated by the clients. Out of those 3000
clients, 1335 generated enough data to allow for a root
cause analysis. We consider only those clients in further
analysis. In addition to the packet trace, we have a list of
IP addresses that belong to local clients, which allows us
to distinguish the upstream traffic from the downstream
traffic. However, we do not know the clients’ subscription
rates, i.e. their up-link and down-link capacities.
8.2. Throughput limitation causes experienced by major
applications

In this section, we exemplify our root cause analysis
toolkit on the aforementioned trace. Specifically, we
investigate what are the most important applications
that experience the different limitation causes, namely
(i) application limited, (ii) saturated access link, and
(iii) bottleneck at distant link. For each 30-min period,
we associate bytes flagged with limitations to different
applications based on the used TCP ports. Note that the
amount of mixed/unknown causes (see Fig. 4) we ob-
tained is negligible, i.e. a single limitation is associated
to each BTP.

Fig. 8a shows the main applications that generate traffic
that is application limited. If we look at the evolution of the
total volume of traffic that is application limited, we see
very little variation in time and an upload volume almost
as big as the download volume, both being around 2 Gbyte
per 30 min periods. The largest single application that gen-
erates application limited traffic is, as expected, a P2P
application, namely eDonkey. However, if we look by vol-
ume, the largest category is ‘‘other”, which contains traffic
that we were not able to relate to any specific application.
The overall symmetry of upload and download volumes for
the ‘‘other” category as well as a manual analysis of the
traffic of some heavy hitters strongly suggest that the
‘‘other” category contains a significant fraction of P2P
traffic.
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Fig. 8b shows the main applications that saturate the
access link.4 For this limitation cause, no traffic originating
from recognized P2P applications was seen. Instead, a signif-
icant portion of traffic saturating the up-link is e-mail. For
the down-link it is mainly traffic on ports 80 and 8080 and
traffic for which the application could not be identified.
The fact that the traffic using ports 80 and 8080 primarily
saturates only down-link suggests that it could be real
Web traffic that consists of small upstream requests and lar-
ger downstream replies from the server, as opposed to P2P
traffic which is typically more symmetric. If we look at the
absolute volumes, we see that most of the activity is concen-
trated during the day time, with the peak being in the early
afternoon.

Fig. 8c shows the main applications that see their
throughput limited by a link that is not the client’s access
link. The category other, which contains the applications
that could not be identified, clearly dominates in terms of
volume. Otherwise, we observe a mixture of applications.
It was expected that this set of applications be diverse
since this type of network limitation can occur at any point
of the network, almost independently of the application
behavior.

In the download direction, the total traffic that is lim-
ited by a distant bottleneck reaches in the late afternoon
a proportion that, in terms of volume, is similar to the
download traffic that is application limited. The fact that
this traffic peaks late afternoon may be an indication of
higher overall network utilization just after working
hours, not only within the network we monitor but at a
wider scale. Note that at the same time, the amount of
traffic limited by the access link is very low (Fig. 8b),
which could indicate that these two groups represent dif-
ferent types of clients.

Finally, we would like to point out that a comparison of
the absolute traffic volumes of Fig. 8a–c reveal that the
application limitation category represents the vast major-
ity of the total number of transmitted bytes.

8.3. Closer look at an example client

Finally, we selected an interesting example client and
studied it in more detail. The client selected is active the
entire 24 h and belongs to the set of the top 15% clients
in terms of number of bytes transmitted.

In order to visualize the activity of the client, we show
activity diagrams that plot all connections of the client as
rectangles on a coordinate system where the x-axis repre-
sents time and y-axis the throughput. The width of each
rectangle represents the duration, the height represents
the average throughput, and, consequently, the area repre-
sents the volume of the connection.5 The starting time of
the connection is the left boundary and the ending time
4 We estimate the saturation of an access link by comparing the
throughput of a BTP with the access link capacity estimated using PPrate.

5 Note that we only show the scale for y-axis but not cumulative values
because the absolute vertical position of the upper boundary of a particular
rectangle does not necessarily signify the instantaneous throughput. In
other words, these plots are different from the area plots in Fig. 8, as they
do not represent the cumulative throughput.
the right boundary of the rectangle. Each rectangle is placed
vertically as low as possible in such a way that no rectangle
overlaps with another one. Upstream connections are plot-
ted above x-axis and downstream connections below the
x-axis. The fill pattern of the rectangle represents the appli-
cation that generated the connection. The different applica-
tions are identified using the TCP port number. We selected
only connections that transmit at least 10 Kbytes for the
sake of clarity.

By analyzing the utilization of the access link for this
client, we see that while being all the time active, the client
transfers data with modest rates. However, there are occa-
sional short periods of time when the client achieves high
throughput. Fig. 9a shows three-hours of typical activity
for this client. The same kind of activity persists through-
out the day. We make two main observations: First, the
client used mainly eDonkey, which produced the low
Time (wallclock)

−500000

 08:33:44  08:33:42  08:33:40 

Fig. 9. Activity of a single client. (a) Three-hour piece of an activity plot.
(b) Close up of the client’s connections originating most likely from Web
browsing that cause the peak download rates.
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throughput activity persisting throughout the day. We can
visually identify from the plot a typical size of an eDonkey
connection by looking at the areas of the rectangles. This
size is approximately 9 Mbyte, which is the typical chunk
size for eDonkey transfers, i.e. each file larger than that is
divided into 9 Mbyte chunks. If we compare the areas of
the rectangles representing eDonkey connections to the
rectangles of port 80/8080 and unknown traffic, we see
that those connections are often of the same size. More-
over, many of these port 80/8080 and unknown transfers
are upstream. Thus, as a second remark, there is probably
a significant amount of eDonkey traffic disguised as Web
traffic or that is not using the standard port numbers
(6881–6889). Just before the activity represented in
Fig. 9a, the client had different activities. The client pro-
duced occasional fast downloads originating from port
80/8080 that caused peak rates for this client. We zoomed
in to one of these periods, which took place at around
8h30. The activity diagram is in Fig. 9b. Note that the scale
of the y-axis is more than ten times larger in this plot than
in the plot of Fig. 9a (500 vs. 50 Kbytes/s steps). We see
that it contains several simultaneous connections and
when one ends there is another one that starts. The largest
connections carry around 100 Kbytes. Thus, it seems likely
to be a download of a Web page using parallel and persis-
tent (HTTP/1.1) connections. We looked at the root cause
analysis results for this client that showed that the clear
majority of the bytes (most of the time more than 85%) up-
loaded and downloaded by this client are rate limited by
the application on top. However, some port 80/8080 traffic
such as the occasional fast downloads like the one enlarged
in Fig. 9b were rate limited by the network. These results
are illustrative of the trends for different applications that
we saw in Fig. 8: most eDonkey traffic is rate limited by
application while ‘‘true” Web traffic tends to be network
limited and the major cause for access link saturation.

9. Conclusions

Knowledge about factors that limit TCP throughput is
useful for the development and the optimization of (i)
the applications operating on top of TCP and (ii) the TCP
protocol itself. It also helps network operators for trouble-
shooting purposes.

In this paper, we showed how to infer these rate limita-
tion causes for each TCP connection from packet traces col-
lected at a single measurement point. We described a set of
algorithms that we designed and implemented in a TCP
root cause analysis toolkit. This toolkit adopts a two phase
‘‘divide-and-conquer” approach: The first phase filters out
those periods of a connection that are rate limited by the
application. The second phase, which is the focus of this
paper, analyzes the remaining bulk transfer periods (BTP)
for TCP and IP level limitation causes. We also illustrated
how this toolkit could be applied in a case study on the
performance analysis of ADSL clients.

Our root cause analysis toolkit is quite mature and has
been extensively validated and evaluated. What remains
to be done is to extend the work to include short
connections.
Currently, the toolkit is used for off-line analysis of
stored packet traces. Another interesting thread of work
would be to try to redesign the algorithms in such a way
that they could be run on-line, i.e. while observing the traffic
and without the need to store the traffic in trace files. Such
modifications might need to trade off some of the accuracy
for the sake of performance.
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