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Abstract- Analyzing Internet traffic at packet level involves
generally large amounts of raw data, derived data, and results interpret results
from various analysis tasks. In addition, the analysis often process combine wIdefine newfilter filtered previous store results
proceeds in an iterative manner and is done using ad-hoc methods analysis task raw data data results in files
and many specialized software tools. These facts together lead
to severe management problems that we propose to address
using a DBMS-based approach, called InTraBase. The challenge (a) Typical Case
that we address in this paper is to have such a database
system (DBS) that allows to perform analysis efficiently. Off-
the-shelf DBMSs are often considered too heavy and slow for interpret results
such usage because of their complex transaction management squery (filter eload rawprocess define new & combine)properties that are crucial for the usage that they were originally data into DB raw data analysis task data
designed for. We describe in this paper the design choices for
a generic DBS for packet-level traffic analysis that enable good
performance and describe how we implement them in the case of
the InTraBase. Furthermore, we demonstrate their importance
through performance measurements on the InTraBase. These Fig. 1. Cycles of Tasks for the Iterative Process of Off-line Traffic Analysis.
results provide valuable insights for researchers who intend to
utilize a DBMS for packet-level traffic analysis.

I. INTRODUCTION system. Depending on the number of files and the skills of the
.... . . ~~~~researcher to properly organize them, the later retrieval of a

Internet traffic analysis is a discipline that involves typically r

large amounts of data. In off-line traffic analysis the raw traffic particular trace or data item may be a non-trivial problem. As
.. ~~Paxson [12] has pointed out the researchers themselves oftendata, such as TCP/IP packet headers, is generally processed cannot re rdc tei own results.

and analyzed in many ways. Each analysis task generates new
data that needs to be stored and possibly processed again later. Analysis cycle: A common workflow to analyze network
In other words, traffic analysis is often an iterative process: A traffic proceeds in cycles (see Figure 1(a)). Since the semantics
first analysis is performed and based on the results obtained, of the data are not stored during the analysis process, reusing
new analysis goals are defined for the next iteration step. intermediate results becomes cumbersome and usually the pro-new~~~~~~~~~~~~anlyigol ar deie fo h etieainse. cess needs to restart again from the raw data after modifyingToday, the state of the art of traffic analysis tools is handcrafted ces nsc tod
scripts and a large number of software tools specialized for a the scripts.
single task. These facts together lead to the following major Scalability: Scalability is an important issue in traffic
issues analysis and poses a problem as the amount of data is typically
Management: We identify two problems: 1) many tasks are large. Already packet traces larger than 5 GB may pose

solved in an ad-hoc way using scripts that are developed from serious problems for certain tools because of too large memory
scratch, instead of developing tools that are easy to reuse and or run-time requirements. An example is the well-known tool
understand and 2) traffic analysis involves large amounts Of tcPtrace [3].
data. By data we mean not only the traffic traces containing In order to cope with the issues detailed above, we have
unprocessed packet data, but also all derived data generated by adopted an approach based on an object-relational database
each analysis task. However, the tools used generally do not management system (DBMS). It was first introduced in [14]
provide any support for managing these large amounts of data. where we describe in detail how a DBMS-based method can
Therefore, the data is typically archived in plain files in a file overcome the above mentioned problems. For example, Fig-

ures 1(a) and 1(b) illustrate the advantage of such an approach
1These issues are also to some extent discussed in [10] and [9]. to the traditional approach through the typical analysis process
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TABLE I
CHARACTERISTICS OF DIFFERENT DBMS-BASED APPROACHES FOR TRAFFIC ANALYSIS.

Approach Aggregation Traffic Data Metadata SW Publicly Integrated On-
level volumes mgt mgt mgt available approach line

NetLogger/NetMiner [4] flow IOGbit/s X X
LOBSTER [1] flow IOGbit/s X X
Gigascope [6] (AT&T) packet stream Gbit/s X X

Internet Traffic Warehouse [5] (Telcordia) packet hundreds of MBytes/day XX X
IPMon [7] (Sprint Labs) packet TBytes X

InTraBase (Institut Eurecom) packet tens of GBytes/trace XX X X X

X = feature is supported
blank = feature is not at all supported or is implemented in an ad-hoc manner

cycle. We demonstrate the importance of correct design through
We have gathered significant experience on packet-level performance measurements in the particular case of managing

TCP traffic analysis with our database system (DBS), called TCP/IP packet traces with the InTraBase.
InTraBase, by performing in-depth TCP traffic studies with In Sections II and III we describe first in a general manner
it [16] [15]. While DBMS-based traffic analysis methods are the important issues to consider when managing packet-level
very attractive because they can overcome the problems with traffic data with a DBMS, and then explain for each particular
the traditional approaches stated above, the main challenge is issue how it is taken into account in the case of the InTraBase.
performance. Such an approach becomes useless if, in practice, We discuss results from performance measurements in Section
the performance does not allow to take full advantage of the IV and finally conclude with Section V.
features provided by the DBMS to support complex analysis. II. MANAGING PACKET-LEVEL TRAFFIc DATA WITH A
Because of their complex transaction management properties, DBMS
DBMSs are often considered too heavy, and, thus, too slow,
for intensive packet-level traffic analysis. A. Storing and Querying Packets
A typical off-the-shelf DBMS is optimized for a usage Packet-level traffic data is commonly recorded in plain files

pattern that is very different from the one we have with the as packet traces which may contain hundreds of millions of
InTraBase. For example, the InTraBase generally does not packets and millions of connections each. When storing this
need to process many concurrent queries, and thus, we can data into the database, it is out of the question to store packets
relax the parameters affecting the concurrent query processing from each connection into a separate table given the potential
as much as possible in order to reduce performance overhead. large number of connections in a typical packet trace file. The
Therefore, tuning the DBMS to fit this specific usage is very reason is that handling millions of tables in a single database
important. Furthermore, the characteristics of the traffic data becomes very inefficient. In addition, querying more than a
often lead to a certain specific query being extremely popular: single connection at once becomes very cumbersome since
"give me all the packets from this connection in chronological each additional connection means joining an additional table
order". Hence, to have acceptable performance, the design of into the query. Storing packets from each trace into the same
the DBS must take the nature of the data into account and table would eventually lead to performance problems when
focus on optimizing the performance of this popular query. the table size grows excessively. Hence, a logical approach is

Table I summarizes the differences between the various ex- to store packets from each trace into a separate table. In this
isting DBMS-based approaches for traffic analysis. The main way, since the objective is to analyze packet traces smaller
characteristics that differentiate InTraBase from the others are: than 50 Gbytes, the maximum table size stays reasonable.
(i) InTraBase does pure off-line analysis and does not address The analysis tasks are generally performed for predefined
the packet capturing or on-line monitoring related issues at all, groups of packets within a trace. In the case of TCP traffic,
(ii) InTraBase is designed for intensive packet-level analysis this group is typically a connection or a flow2. The latter can
on (iii) moderate size (< 50 GB) traffic traces. It is not a tool be used also for traffic generated by a connectionless protocol
to do, for instance, real-time network health monitoring for a such as UDP. Having done extensively TCP traffic analysis,
large ISP due to the immense amounts of data that would need the most common query that we have used is:
to be treated constantly, but it is rather a research tool for fine- SELECT * FROM tracel_packets
grained analysis of Internet traffic. We refer the reader to [14] WHERE connection_id=x
for more details on the comparison to the other approaches ORDER BY timestamp
listed in Table I. The above query, hereafter referred to as the c-query (from

We dscrbe iths paer he min rincplewhende- connection and common), returns all the attributes (e.g. for
signng DBto upprt ffiientanaysi of ackt-lvelTCP traffic all the IP and TCP header fields and a timestamp)

network traffic measurements and how to enforce this prin- ofaltepctshtblngocnetinxrmtbe
ciple. We base the design decisions on the characteristics Of 2A flow is usually defined as a part of a connection using a timeout or a
this measurement data and the typical analysis process cycle, maximum packet count.
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tracel_packets in chronological order. As indicated in between unique cnxids and 4-tuples formed by source and
Figure 2, this query is executed in the beginning of each destination IP addresses and TCP ports. The attributes of
typical analysis task and the analysis results, e.g. the number the packets table are directly from the verbose output of
of reordered packets, are computed by inspecting the query tcpdump for TCP packets. The attributes of the other tables
results row by row. Finally, the result is stored into another were chosen.
table or alternatively printed on the screen. Note that even if The remaining tables form the set of RCA tables. Each
the c-query is made more complex (e.g. by adding WHERE connection may be partitioned into several bulk transfer peri-
rules or by joining in another table), the query processor of ods (BTP) and application limited periods (ALP) which are
the DBMS would translate it into the original c-query and stored into the bulk-transfer and app_period tables,
perform additional filtering and querying separately and merge respectively. In addition, the n 1 im parameter can have values
the results in the end. In other words, fetching packets for from 0 to 1 with 0.05 steps for each connection. For details
a specified connection from the database boils every time about the BTPs and ALPs and the n1 im parameter, we refer
down to executing the c-query. We ignore the common queries the reader to [15]. Each BTP stored in the bulktrans fer
that do not involve querying packet-level data because their table has additional characteristics computed and stored into
contribution to the performance is negligible due to orders of the bnbw_test, rwnd_test, and retr_test tables.
magnitudes smaller data sets. For example, before executing Populating the base tables has been carefully explained in
analysis tasks in the way described in Figure 2, one may wish [14]. The RCA tables are populated with the help of procedural
to select a set of connections having certain characteristics language (PL) functions written in PL/pgSQL and PL/r, and
(e.g. more than 100 packets) for which these analysis tasks are C-language functions. Defining PL and C-language functions
performed. The table storing per-connection statistics contains is one of the ways in which PostgreSQL allows to extend
only a very small fraction of the amount of rows that are stored the functionality of the object-relational DBS. Each function
in the table holding the packets. operates in the way described in Figure 2. It queries packets

for a given connection, computes one or several results, and
SELECT * FROM tracel_packets stores them into one of the RCA tables.

WHERE connection_id=x 1/O intensive
ORDER BY timestamp B. Tuning the DBMS

A standard off-the-shelf DBMS is optimized for processing
a large number of concurrent queries. It takes care of issues

comuteResult CPU intensive related to parallel access to data and enforces atomicity of
compute transactions, etc. However, our experiences with the InTra-

Base suggest that the typical usage of a packet-level traffic
analysis DBS for research purposes generates a very different

store or display Result 1/0 or CPU intensive workload: few users seldom issuing queries that commonlystore or display Result I/O or CPU intensive
are very I/O intensive touching large amounts of data (see
Section Il-A for the c-query). In addition, several queries are

Fig. 2. Executing a typical analysis task. rarely executed simultaneously. In this case the DBMS must
be tuned to conform to the special usage.
The fact that concurrent query processing is rare allows

Case Study on InTraBase:
InTraBase runs on PostgreSQL DBMS mainly because of its to set most of the buffer sizes high since they are normally
object-relational nature that allows to extend the functionality defined on per process, i.e. query, basis. For the majority ofDBMSs, it is possible to tune parameters such as memorythrough procedural language (PL) functions [14]. The layout aBle fo apsoing to inde the c-qury
of the tables of the InTraBase are shown in Figure 3. We
can divide the tables into base tables and RCA (Root Cause involves an ORDER BY operation and the queried connection

AnalySiS)3 tables. can contain up to millions of packets, it is important to set the

Base tables are packets, connections, traces, and amount of memory available for sorting as high as possible.
Write-Ahead Logging (WAL), a.k.a. redo logging [8], is aci d2 tuple. The table t race s contains annotations about

standard approach to transaction logging in DBMSs. Sinceall the packet traces that are uploaded in the database. The
packets table holds all packets for a single trace. The table wecnasm iteprle cest aa h A a

connctioshlds onnetio levl sumar dat forallrameters can be set as lazy as possible, by setting the commit
tracs. Te cxid ttrbuteidetifis asinge cnnecion delays to the maximum, in order to let the underlying operating

in a packet trace, reverse differentiates between the two sse O)otmz h / prtos
directins of taffic wthin a onnectin, and I d idntifie Caching plays a very important role in the performance of

a~~~~~~~~~~~~~sigetae.i2ulsatbet tr apn the DBS. The amount of memory available for caching is also
a modifiable parameter in most of the DBMSs. Caching can

3The naming comes from the fact that they are used for TCP Root Cause greatly improve the performance of per-connection or per-flow
Analysis [16]. querying of packets in cases where same groups of packets,
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connections traces packets cid2tuple
tid (1) tidtitid

ce cnic(2id2tupl
cnxid (1) description maps ticnxid (1)
reverse loainreverse cxd()nwts
started location timestamp (2) reverse bnbwtest
duration date ipid srcIp btid
throughput trafficType ttl bulk-transfer srcPort c
bytes connectionsTable flags tid (1,2) dstIp
packets packetTable startSeq cnxid (1) dstPort rwnd test
dataPkts app_period endSeq reverse
acks \

( nbBytes n_lim (2) btid
pureAcks tid (1,2) ack btid score
pushes dsrb cnxid(1)wrinn stargt charactezes rwnavg
syns reverse urgent duration rwnd_stddev
fins n_lim (2) options gput rwnd_meandev
resets start tput
urgents duration m-point retr_test
sacks push mss btid
minRwnd idle stinguishe datapkts retr_score
maxRwnd datapkts bytes reordered
avgRwnd bytes f duplicates

Fig. 3. The Layout of the Core Tables in the InTraBase. Indexes are denoted with numbers in parenthesis following the attribute: e.g. table connections
has an index consisting of tid and cnxid attributes.

i.e. specific connections, are analyzed over and over again in A. Indexes for Fast Lookup
different analysis tasks. In this case the data would be read The two most important concepts in DBMSs for I/O opti-
from the disk once and cached for the following queries. mization are indexing and clustering [13]. Indexes allow fast
Clearly, the execution order of the queries needs to be carefully lookup of specific rows from tables. They can be thought of
chosen. In addition, as we explain in the next section, the as hash lookups of logical records. In the case of our c-query,
caching techniques used need also to be well chosen. since each queried packet belongs to the same group, we can

Case Study on InTraBase: increase the performance by adding an index on the connection
The InTraBase is running on PostgreSQL on top of Linux or flow identifier to each table containing packets. This enables
2.6.3. The hardware consists of an Intel Xeon Biprocessor 2.2 the DBMS to do an index scan with the help of the created
GHz with a SCSI RAID system and 6 GB RAM. PostgreSQL index, touching only the required disk blocks, instead of doing
allows to set the parameter work-mem that controls the a sequential scan on the contents of the entire table, touching
amount of memory available for internal sort operations and all the disk blocks associated with the table, each time the
hash tables. We set this to no higher than 1.5 GB in order query is executed. Since the c-query includes ordering by
to avoid out-of-memory problems: On a 32-bit system the timestamp, one might think that it would be beneficial to create
maximum process size is around 3 GB and in certain cases another index on the timestamp attribute or add the timestamp
several sort operations (typically not more than two) may be into the index on connection identifier. In this way, the DBMS
run in parallel each of which is allowed to consume the amount can perform simply an index scan on the new index and does
of memory specified by work-mem. Also, 1.5 GB should be not need to sort in addition. There is a caveat, though: Index
sufficient in most cases to sort in main memory all the packets scanning using this combined index is computationally much
of a single connection. WAL commit delays were set to 100 more expensive than with the simple connection identifier
ms (the maximum). index. With InTraBase, the query processor of the DBMS

III. MINIMIZING THE COST OF I/O OPERATIONS reports almost hundredfold per-row cost estimates for the
index scan using the combined index when compared to the

Our goal is to optimize the execution of an analysis task plain connection identifier index. Therefore, the combined
displayed in Figure 2. Optimizing the middle step in Figure 2 index is useful only when a small fraction of packets of the
is always specific to the analysis task and, therefore, generic connection is queried. We have found it useful when studying
solutions for that do not exist. Based on our experience, the option negotiation (e.g. MSS and window scaling) during
regardless of the analysis task, the number of results stored the TCP connection establishment, for instance.
Or displayed per task is typically very small compared to the
number of packets queried in the first step. Thus, the last step B. Clustering to Minimize Cost of I/O Reads
in Figure 2 is rarely the bottleneck and it is the first step Clustering means grouping together data by physically
that we focus on. This step reads the tuples that represent the reordering it on the hard disk. The advantage is improved
packets from disk and it is therefore generally I/O bound. We performance for operations that access the grouped data due
derive from the above the main design principle: to accessing only adjacent disk blocks instead of scanning

* Minimize the I/O time for the c-query. through the entire disk in the worst case. The speedup may
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CLUSTER CLUSTER

1 hour 10 sec

(a) Trace captured at a slow link. (b) Trace captured at a fast link.

Fig. 4. The effect of clustering with two different types of traffic traces of the same size. Black stripes are packets belonging to a given connection and their
horizontal distance from each other reflects the physical distance on the disk.

sometimes be tremendous but depends highly on the charac- the application layer. All modern OSs implement some sort of
teristics of the data and the clustering parameters. For the case caching techniques. The same applies to most modern DBMSs.
of packet-level traffic data, consider Figure 4 that illustrates However, they may all use different techniques and, therefore,
the effect of clustering through two different examples. The implementing this principle is specific to each DBS. We will
two traffic traces are of the same size in terms of number of describe the case for the InTraBase in the next section.
packets but have different durations. In order to speed up the
c-query, we cluster the packet data with respect to connections E. Case Study on InTraBase
or flows. The packets of each traffic trace are originally stored We have addressed in [14] the performance of populating
on the disk in their arrival order. That is why the impact of the base tables as well as the disk space consumption when
clustering on a packet trace captured on a high speed link with storing packet-level data in a database. Populating the RCA
numerous parallel connections, Figure 4(b), is much bigger tables boils down to executing several times analysis tasks
than on a trace captured at a low speed link with only few described in Figure 2. Similarly does most of subsequent
parallel connections, Figure 4(a). It is clear that the penalty of "manual" analysis tasks that we do, such as plotting different
the random seeks necessary for reading all the packets of the parameters (throughput, sent and received packets etc.) of a
connection in the unclustered case compared to the sequential specific connection against time in order to understand its
reads in the clustered case is much higher in Figure 4(b) than evolution.
in Figure 4(a). To comply with the main principle, we have indexed and

C. Parallel I/O clustered some of the tables on the InTraBase. The indexes of
the tables are marked with numbers in parenthesis following

The I/O time can further be reduced by means of parallel the attribute. The packets table is clustered based on the
I/O. There are several ways to go. It is possible to implement index on cnxid. We would not gain much by clustering the
it on application level with parallel DBSs. This approach gives data in the other tables since in the other tables each index
a lot of control over the parallelism through load balancing, value returns only a few rows, i.e. two rows per connection
for instance, but may suffer from severe overhead due to or a maximum of a few hundred rows with app_period and
complexity (e.g. distributed transaction handling). A simpler bulk-transfer tables in the case of a very large connec-
approach is to implement it on the lowest layer possible, tion. Also, these tables would need a periodical reclustering
that is, using RAID (redundant array of independent disks) since the contents are changing when ever a new packet trace
on striping mode. RAID striping is typically implemented so is inserted into the system. The server used for the InTraBase
that adjacent blocks are written on different disks in order is operating a RAID consisting of eight SCSI disks capable
to maximize the parallelism in the case of sequential disk of running in striping mode.
access. For example, when striping over n disks, any n Indexing and clustering cause some additional overhead:
adjacent disk blocks would be stored on different disks. Since indexes consume disk space and clustering is a rather ex-
we have already clustered the data in connections, and thus, pensive operation. We observed in [14] that the indexes
access adjacent disk blocks whenever executing the c-query, cause approximately 15% overhead in disk space consumption.
we obtain maximal parallelism with I/O operations. Clustering a 5 GB packet trace took us 28 minutes and creating

D *Cchn an index for the cnxid attribute for the clustered table 5
minutes with the InTraBase4. Both are acceptable considering

In addition to minimizing the I/O time of the c-query, that they are one time operations and that the potential gain is
it is equally important to avoid repeating it unnecessarily, enormous as we will demonstrate in Section IV.
Therefore, caching is important. If the same c-query is ex-
ecuted several times in a row, the query results should remain 4PostgreSQL provides a CLUSTER operator that is very slow. A faster
cached in the main memory after the first query in order to way to cluster a table with PostgreSQL is to create a new one from

. . . . ~~~~~~queryresults, i.e. by executing CREATE TABLE newtable AS SELECTavoid repeating the expensive I/O operations. It is possible * FROM oldtable ORDER BY cnxid and then recreate the indexes for
to cache the data on different layers: on the OS layer or on the newtable table (see the manual [2]).
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What comes to caching, it is only useful if the same data is most common query. Thus, the execution time should be more
repeatedly queried. Therefore, in the case of InTraBase, it is or less constant regardless of the number of packets queried5.
particularly important when populating the RCA tables where When we indexed the data by connections, the means dropped
each connection is analyzed several times with independent dramatically. Clustering the indexed data had again a similar
analysis tasks. Naturally, the order of execution needs to be effect.
such that all analysis tasks are executed for a single connection TABLE II
sequentially. As for where to cache, we have several ways to AVERAGE VALUES OF THE MEASUREMENTS.
go with the InTraBase that is running on PostgreSQL on top
of Linux. PostgreSQL has two separate caching methods: it Gigabit_ _ _ _ _ _

uses its own buffer cache, implemented as ARC (Adaptive test case T exec time (s) CPU iowait (s)Ta CPU system (s) sectors read

Replacement Cache [11]) starting from version 8.0, but also 1 222 160 20.4 -

relies on the file system cache of the underlying OS. ARC 2 { 6.07 5.22 0.338 30600
3____ 0.524 0.050 Jj 0.031 2160tries to avoid cache flushing (caused by a one-time very BitTorrent Trace

large sequential scan, for instance) by keeping track of how test case exec time (s) CPU iowait (s) CPU system (s) sectors read

frequently and how recently pages have been used and keeps in | 2 2283 3.68 0195 7280000
the cache pages that have the "best" balance of the two. Since 3 3.71 0.486 0.255 20400
we would like to cache every time the query results of the test cases: 1) unindexed, unclustered, 2) indexed, unclustered, 3) indexed, clustered

c-query, cache flushing would be in fact desireable each time
we execute a new c-query. Thus, we minimized the utilization
of PostgreSQL's own cache and attempt to force the DBMS Figures 5 and 6 reveal that while it is always good to use
to use Linux file system caching as much as possible. an index when querying a small number of packets, it is not

necessarily the case when querying a large number of packets
IV. PERFORMANCE MEASUREMENTS unless the data is clustered. In the case of the Gigabit trace,

In order to demonstrate the importance of the I/O optimiza- an index with unclustered data becomes virtually useless after
tions described in Section III, we measured several metrics in the number of queried packets reaches a few hundreds of
the case of the InTraBase. To quantify the impact of individual thousands. In the case of the BitTorrent trace, using an index
optimizations on the performance, we did measurements while proves to be always beneficial. The difference with respect to
executing the c-query with and without indexing, clustering, the monitored link speed between the two types of the traces
and RAID striping. The query was executed on thousands of used, explained in Section III (Figure 4), is clearly visible in
connections with different sizes in number of packets. The Figures 5 and 6: clustering has a much bigger impact on the
query results were directed into /dev/null in order to measure Gigabit trace than on the BitTorrent trace captured on a low-
the retrieval process of the packets only. We measured also speed link. In the plots for the Gigabit trace, we expect similar
the effect of caching when executing several times the same variation in the measured values with the larger connections as
most common query. well, there simply were not many samples of those connections
We used two different packet traces: one recorded on a Gi- for it to be visible in these plots. In the case that data is

gabit link on a university edge containing a mixture of Internet clustered according to the index, the total execution time of
traffic, and another one recorded on a much slower link with a the query scales more or less linearly, as expected. These
total throughput all the time below 10 Mbit/s containing only observations are even more clearly visible in Figures 7 and
BitTorrent traffic. In this way we could observe the difference 8 that show the CPU's iowait part of the total execution time.
in clustering visualized in Figure 4. We selected from the The Figures 9 and 10 demonstrate that, in addition to the fact
Gigabit trace the 3060 connections having more than 100 that the read head needs to move a lot more when seeking for
packets and a different number of packets. From the BitTorrent unclustered data, many more sectors are generally required to
trace we selected all the 583 connections having at least 100 be read from the disk.
packets. In the Gigabit trace, we had only few connections Without indexing and clustering the time to execute the c-
with very large numbers (> 106) of packets. query of a single analysis task for each analyzed connection of

the Gigabit trace would take approximately eight days. As for
A. Impact of Indexing and Clustering the BitTorrent trace, it would take one and a half days. Without

Table II contains the means of the measured values: exec I/O optimizations the total execution time is linearly dependent
time is the total execution time measured in wall clock time, on the number of connections. When introducing an index
CPU iowait is the time that the CPU was idle during which the total execution times drop to 5 h and 1.3 h, respectively.
the system had an outstanding disk I/O request, CPU system Finally, when the data is additionally clustered we obtain
is the CPU utilization time spent executing tasks at the kernel total execution times of 27 min and 36 min, respectively. We
level, and number of sectors are those read from the hard observe that after indexing and clustering the execution time is

disk the szeofasecor is512 ytes) If te pacet tale sIn the case of the Gigabit trace, we executed on a few randomly chosen
is not indexed by the connections, the DBMS is forced to connections since it would have taken too long with all the 3060 connections
read through all the packets of the table when executing the without indexing.
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Fig. 5. Total execution time of the Fig. 6. Total execution time of the Fig. 7. CPU iowait time of the c- Fig. 8. CPU iowait time of the c-
c-query for the Gigabit trace. c-query for the BitTorrent trace. query for the Gigabit trace. query for the BitTorrent trace.

__
10

inee,uclsee ____________ the cases with and without caching is minor: when caching,8 indexed, clustered we gain at most 13% in the execution time. However, Figure
12 shows that the difference between the CPU iowait time is

6 10 ~~~~~~~~~~~~muchmore pronounced, which, together with the observations
4- ~~~~~~~~~~~~~~fromFigure I11, means that the processes executing the c-query

were most of the time CPU bound and not I/O bound. Indeed,
indexed, unclustered a closer look revealed that, instead of waiting for pendinginee,clustered

0 0.5 1.5 2 0o 0.5 1.5 2 1/0 operations, teCPU setmost oftetime diguserDackets packets~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Dacketsi n6 packets i n level computations (as opposed to kernel level computations),
Fig. 9. Number of sectors read when Fig. 10. Number of sectors read which suggests that the DBMS itself kept the CPU busy. We
executing the c-query for the Gigabit when executing the c-query for the will continue this discussion at the end of this section.
trace. BitTorrent trace.

C. The Impact of Parallel I/O: RAID Striping

no longer dependent on the number of connections but rather We had the option to further minimize the I/O time through
depends on the number of packets. parallelizing those operations using a RAID system in striping

mode. However, a glance at Figures 7 and 8 already shows
B. Measuring the Effectiveness of Caching that we could not expect a very significant speedup since

In order to measure the effect of caching, we executed the iowait times are already very low after indexing and
several times the same c-query. First, the query was repeated cutring. Rough measurements confirmed that indeed the
5 times in sequence for each connection in order to take gain is marginal and, therefore, we decided not to use striping.
advantage of available caching. During the second measure- Nevertheless, the fact that the performance of the c-query
ments, the query was executed once for all the connections with the InTraBase is mostly CPU bound after indexing and
and then the second time and so on until each query had been clustering can not be generalized. With a faster CPU, multiple
executed 5 times. In this way the caches got flushed between CPUs with parallel processing support from the DBMS, or

the subsequent executions of the same query. In order to focus slower disks the situation might not be similar and parallel
on the effect of caching we excluded the first execution of I/O could improve significantly the performance.
each query from the measurements since only the subsequent D. DBMS as the Final Bottleneck
ones benefit from the potential caching. As the results for both We have shown that after the proposed I/O optimizations,
traces were similar, we only show those for the Gigabit trace. the performance of the c-query with the InTraBase is mostly

________2__outofsequence_______ CPU bound. On the average, the CPU spent approximately
70_ out ofsequence __- ounosequence 84% of the time computing user level tasks with both of the

60 -- insqec ,- S--i eunetraffic traces. We further investigated the origins of the main
E -,~~~~~~~~~~~~~~~~~~E8~50 -

~~~~~40 ~ ~ ~~~~~~t_CPU activity by trying to exclude potential options.
x ~ ~ _6First, we evaluated the effect of sorting (the c-query spec-a)0 0_?
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10. 100nosorting --- SELECT ipid tasks execution scales approximately linearly with the number
with sorting] SELECT count(*) a80 80 SELECT* of packets queried. Furthermore, its total execution times for

E 60 E 60 a packet trace of a few Gigabytes is from tens of minutes to
D 0-, a maximum of a few hours. However, the time needed for the

=8 40 ~~~~~~~~~~~~40
a) - , a - ,, initial processing of the packet trace to reach a stage where

20 " 20 ,,' these analysis tasks can be executed (e.g. populating the base

0.5 0 0
tables with the InTraBase, see [14]) may limit in practice the

0 05 1.5 2 0 0.5 1.5 2sie pctbealyd tm.packets 1In6 packets YIn6 maximum size of a packet trace to be analyzed at a time. We

Fig. 13. Average execution time of Fig. 14. Average execution times of have successfully used the InTraBase with packet traces of
the c-query with and without the the original c-query and a modified several tens of Gigabytes. For the type of analysis that we
ORDER BY clause for the BitTorrent c-query that only counts packets for perform with the InTraBase, larger traces are generally not
trace. the BitTorrent trace. necessary. Nevertheless, based on these results, we would not

recommend to use an off-the-shelf DBMS for very large scale

execution times of the c-query and two modified c-queries: one packet-level measurement studies involving Terabytes of data

which computed only the number of packets and another one at a time.
which selected only the ipid attribute6 as the query result, i.e. ACKNOWLEDGMENTS
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