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ABSTRACT
While the applications using the Internet have changed over time,
TCP is still the dominating transport protocol that carries over 90%
of the total traffic. Throughput is the key performance metric for
long TCP connections. The achieved throughput results from the
aggregate effects of the network path, the parameters of the TCP
end points, and the application on top of TCP. Finding out which
of these factors is limiting the throughput of a TCP connection –
referred to as TCP root cause analysis – is important for end users
that want to understand the origins of their problems, ISPs that need
to troubleshoot their network, and application designers that need
to know how to interpret the performance of the application. In this
paper, we revisit TCP root cause analysis by first demonstrating the
weaknesses of a previously proposed flight-based approach. We
next discuss in detail the different possible limitations and highlight
the need to account for the application behavior during the analy-
sis process. The main contribution of this paper is a new approach
based on the analysis of time series extracted from packet traces.
These time series allow for a quantitative assessment of the differ-
ent causes with respect to the resulting throughput. We demonstrate
the interest of our approach on a large BitTorrent dataset.

Categories and Subject Descriptors
C.2.3 [Computer Communication Network]: Network Operations—
Network monitoring; C.2.5 [Computer Communication Network]:
Local and Wide-Area Networks—Internet

General Terms
Algorithms, Measurement, Performance

Keywords
Internet, TCP root cause, throughput, time series.

1. INTRODUCTION
Motivation: During recent years, the Internet traffic has experi-

enced a massive growth as the number of users skyrocketed. This
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applies also to the amount of traffic per user, as the capacities of
access links have increased by several order of magnitudes. New
Internet applications, such as peer-to-peer (P2P), have emerged and
the relative importance of HTTP and FTP has decreased. On the
other hand, TCP still remains the dominating transport protocol that
conveys the vast majority of the traffic – typically more than 90%
of the bytes. As a consequence, the behavior and performance of
TCP in the Internet is a major concern. The heterogeneity of to-
day’s applications running on top of TCP and the diversity of the
environments they are used in, imply that a meaningful analysis can
only be done during their operation in the Internet.

Throughput is the most important performance measure for long
TCP connections. The achieved throughput represents the aggre-
gate effects of the network path, the end points, and the applica-
tion. Our research tries to find out which of them are responsible
for limiting the throughput of a given TCP connection at a given
time instant. Knowledge about these root causes can be used by In-
ternet Service Providers (ISP) for quality of service evaluation and
troubleshooting. Traffic modeling is another area that would bene-
fit from this knowledge, leading to more accurate workload models
of TCP traffic. It is equally important for Internet application de-
signers to know when the limiting factor is the network or the TCP
end points and when it is the application.

Approach: We adopt an approach that requires as input bidirec-
tional packet header traces captured at a measurement point along
the path from source to destination and produces as output quanti-
tative information about the limitation causes of TCP’s throughput
per connection. We assign a score to each of these limitations and
track the evolution of limitation scores with time. For this purpose,
we base our approach on a set of time series generated from the
(TCP and IP) packet headers. We focus on long transfers where
TCP slow start no longer dominates the throughput achieved.

As stated above, we distinguish three main classes of root causes:
(i) limitations due to the application, (ii) limitations due to the TCP
end-hosts and (iii) limitations due to the network. We apply a di-
vide and conquer approach to infer the limitation causes. First, the
periods where the throughput is determined by the application are
isolated. The remaining trace data consists of so called bulk trans-
fer periods. We then apply a set of tests to derive the most likely
cause (or causes) that explains the performance of each bulk trans-
fer period. Whenever possible, the algorithms are validated using
live measurements in the Internet that are compared against the re-
sults given by Web100 [10]. We also used NIST Net [4] to create
specific conditions for a given transfer.

Zhang et al. [18] performed pioneering research work into the
origins of Internet TCP throughput limitation causes. They defined
taxonomy of rate limitations (application, congestion, bandwidth,
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sender/receiver window, opportunity and transport limitations) that
we build on and introduced the TCP Rate Limitation Tool (T-RAT).
T-RAT turned out to suffer from a number of limitations. First, to
identify rate limitation, T-RAT needs to identify so called “flights”
of packets. These flights often cannot be identified, as we will see in
section 3, which undermines the main premise of T-RAT. Second,
T-RAT breaks long connections into “flows” of at most 256 consec-
utive packets. In contrast, we perform true connection level analy-
sis.

Challenges: The problem is very challenging for several rea-
sons. Operating at connection level complicates the analysis be-
cause with long connections, we have a higher probability to ob-
serve several limitation causes over different periods of time. For
instance, some Internet applications such as BitTorrent [8] or HTTP1.1
operate by switching between active transfer periods and passive
keep-alive periods. Our first challenge is to detect those different
periods and analyze them separately.

The great number of parameters that influence the behavior of
a TCP connection is also a major issue: round-trip time (RTT),
receiver advertised window, link capacities, available bandwidth,
delayed acknowledgment, and TCP version to name a few.

Contributions: The contribution of this paper is threefold: First,
in section 2, we discuss the problem of inferring causes for TCP’s
transmission rate limitation by elaborating more on the limitation
concepts themselves with respect to the approach taken by T-RAT.
Second, in section 3, we demonstrate through simulations that an
important characteristic of a TCP transfer, the so called flights, have
in many cases a very different form than the one assumed in T-RAT.
Third and most importantly, we provide a set of algorithms to infer
causes that limit the throughput of a given TCP transfer (sections 4
and 5), and apply the algorithms to an example set of real Internet
traffic (section 6).

2. CAUSES FOR RATE LIMITATION
In this section, we discuss the different rate limitation causes that

we want to infer. While the classification is inspired by T-RAT, we
extend the scope of their work, and exemplify the difficulties of
identifying certain causes or assessing the impact of others. We
present the causes in a top down manner, starting from the applica-
tion level down to the network level.

2.1 Application
The application operating on top of TCP can be the cause for the

throughput achieved. In this case, TCP is not able to fully utilize the
transport or network layer resources because the application does
not produce data fast enough. There exist two scenarios where the
application is the limitation cause.

In the first scenario, the application is producing small amounts
of data at a relatively constant rate for the TCP layer. This results
in small bursts of packets, in the extreme case a single packet of
size less than the maximum segment size of the connection. Typi-
cal examples are live streaming applications such as Skype [1] that
transfer data over TCP at a constant rate of 32 Kbit/s. Also, appli-
cations that use permanent TCP connections and send keep-alive
packets during inactive periods, fall in this category (BitTorrent ex-
hibits this behavior during choke periods -see [8]).

In the second scenario the application is producing data in bursts
separated from each other by idle periods. An example of such
behavior is web browsing with persistent HTTP connections.The
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Figure 1: A piece of a receiver window limited connection.

user clicks on a link to load a web page, causing a transfer period,
reads the page, causing an idle period, and clicks on another link,
causing another transfer period.

2.2 TCP End-Point Limitations
The achieved throughput of TCP can be limited by the size of

the buffers allocated at the two end-points of a connection. The
receiver buffer (between the TCP layer and the application layer)
constrains the maximum number of outstanding bytes the other end
is allowed at any given time instant. On the other hand, the sender
buffer (between the TCP layer and the MAC layer) constrains the
maximum number of bytes in the retransmit queue. Consequently,
the size of the sender buffer also constrains the amount of unac-
knowledged data that can be outstanding at any time. Following
the convention of T-RAT, we call the first limitation receiver win-
dow limitation and the second one sender window limitation. If the
transmission rate of a connection is limited by a window size (ei-
ther sender or receiver window limitation), the sliding window of
TCP will be consistently smaller than the bandwidth delay product
of the path. Figure 1 shows a time vs. sequence diagram of an re-
ceiver window limited connection. The staircase-like lines indicate
the left (lower) and right (upper) limit of the sliding window and
the vertical arrows represent data segments that were sent. Since
most of the time, the lines for the data segments transmitted coin-
cide with line tracking the upper limit of the sliding window, the
sender is receiver window limited.

Sender and receiver window limitations result in the same ob-
servable behavior. As we will see in section 5, identifying a re-
ceiver window limitation is possible using the advertised window
information carried by TCP packets. On the other side, identify-
ing a sender window limitation is a much more complex task, that
we do not address in this work. In [18], the authors use the no-
tion of flight size to infer a sender-window limitation. However,
we will see in section 3 that identification of flights is, most of the
time, impossible. We expect that for most transfers in the Inter-
net, the sender buffer to be at least the size of the receiver window.
Indeed, in most Unix implementations of TCP, the minimum size
for the sender buffer is 64 Kbytes, which is equal to the maximum
receiver window size when the window scale option (RFC 1303)
is not used. When the window scale option is used, a correct im-
plementation of a TCP stack should resize the sender buffer when
receiving the window scale factor of the other side. However, a re-
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cent study [12] has observed that 97% of the hosts that support the
window scale option used a window scale factor of 0, meaning that
the maximum receiver window was at most 64 Kbytes.

There is an additional type of limitation at the transport layer
that is referred to as opportunity limitation in T-RAT. This limita-
tion occurs for short connections carrying so few bytes that the con-
nection never leaves the slow start phase. Since it is the slow start
behavior of TCP that limits the rate of the TCP transfer we do not
classify these connections as application limited. As will become
clear later, we concentrate on analyzing long TCP connections in
which case opportunity limitation will not be an issue.

2.3 Network Limitation
A third category of limitation causes for the throughput seen by

a TCP connection are due to the network. We focus on the case
where one or more bottlenecks on the path limit the throughput of
the connection (see [7] for a study on the location and lifetime of
bottlenecks in the Internet). While other network factors, such as
link failures or routing loops [16], might impact a TCP connection,
we do not consider them in the present work as we can reasonably
expect their frequency to be negligible as compared to the occur-
rence of bottlenecks.

For the following, we need to borrow a few definitions from [5].
We define first general metrics independent of the transport proto-
col:

capacity Ci of link i:
the maximum possible IP layer transfer rate at that link

end-to-end capacity C in a path:
C = min1,...,HCi, where H is the number of hops in the
path

the average available bandwidth Ai of a link i:
Ai = (1 − ui)Ci, where ui is the average utilization of that
link in the given time interval

the average available end-to-end bandwidth A in a path:
A = min1,...,HAi, where H is the number of hops in the
path

We also define two TCP specific metrics:

bulk transfer capacity (BTCi) of link i:
the maximum throughput obtainable by a single TCP con-
nection at that link

bulk transfer capacity (BTC) of a path:
BTC = min1,...,HBTCi, where H is the number of hops
in the path

As in [5], we call the link i with the capacity Ci = C the nar-
row link of the path and the link j with the the average available
bandwidth Aj = A the tight link of the path. Furthermore, we de-
fine link k as the bottleneck link if it has a bulk transfer capacity
BTCk = BTC. Note that while at a given time instant, there is
a single bottleneck for a given connection, the location of the bot-
tleneck as well as the bulk transfer capacity at the bottleneck can
change over time. Please note that the bottleneck link is not (nec-
essarily) the same as the tight link. Also the available bandwidth
differs from the bulk transfer capacity of a path: The classical ex-
ample is the case of a link of capacity C used at 100% by a single
TCP connection. The available bandwidth is zero on the link while
the bulk transfer capacity should be C

2
.

If the bottleneck link explains the throughput limitation observed
for a connection, we declare this connection as network limited.

Packet losses are natural indicators of a bottleneck and we will
use the packet loss rate as a measure of the impact of the network on
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Figure 2: A piece of a bandwidth limited connection where
packets are regularly spaced due to the bottleneck link.

a connection. However, note that the packet loss rate by itself does
not fully characterize the impact of congestion on the throughput
of a given connection. Especially, two connections with different
RTT values will not see their throughput affected in the same way
even if they experience a similar loss rate, as can be seen directly
from the TCP throughput formula [11]: Tput = MSS

RTT
C
√

p
, where

MSS is the maximum segment size of the connection, C is a con-
stant and p is the loss event probability (which is related to the loss
rate, while not similar, as it indicates the frequency of loss periods
where one or more packets are lost).
For the above reasons, we will use two metrics to infer if a connec-
tion is network limited: (i) the retransmission rate of the connection
and (ii) the dispersion ratio (see section 5.2) that can be used to de-
tect if the bottleneck link is shared or not. Figure 2 shows a time vs.
sequence diagram of a connection whose throughput is limited by a
non-shared bottleneck link. The regular spacing between sent data
segments and similarly of the acknowledgments received (tracked
by the right limit of the sliding window) is easy to observe.

3. ON THE FLIGHT NATURE OF TCP
It is commonly assumed that TCP transfers packets in flights,

i.e. in groups of packets that are sent back to back within a group.
This is justified by the window based flow and congestion control
mechanisms used in TCP. Flights are a very important notion for
T-RAT as it needs to relate the flights to the different phases of
TCP, namely slow-start, congestion avoidance, and loss recovery.
However, in [14], the authors search for flights in Internet traffic
traces and arrive to the conclusion that flights can be rarely identi-
fied, which means that a tool such as T-RAT is unable to function
properly. In the present work, we investigate the notion of flights
through simulations, and come to a similar conclusion: while it is
possible to observe groups of packets it is difficult to relate them to
the well-known phases of TCP.

We simulated TCP connections limited by a specific cause us-
ing ns-2 and varied different parameters (RTT, receiver advertised
window, TCP version, etc.) affecting the behavior of the connec-
tion. Our objective was to study the similarity of the signatures of
connections limited by the same cause but having different param-
eter values. By signature, we mean the distribution of packet inter-
arrival times (IATs). For example, in the case of a receiver window
limited connection one would expect to observe a bimodal distri-
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Figure 3: The Configurations for the Simulation.

bution of the IATs, with the principal mode at ∆t1 = S
C

and the

secondary mode at ∆t2 = RTT − (W−1)∗S

C
, where S is the packet

size (typically can be assumed to be equal to MSS), C the capacity
of the narrow link, and W is the receiver advertised window. The
principal mode corresponds to the time it takes to transmit a single
packet on the narrow link on the path. As all the packets of a single
window should be sent back to back in a single flight, their IATs
correspond to this value. The position of the second mode corre-
sponds to the time interval between observing the last packet of the
previous flight and the first packet of the next flight. Moreover, the
ratio of the heights of these peaks should be close to a factor of
W − 1 because for each window worth of packets one observes
W − 1 times an IAT of ∆t1 and one time an IAT of ∆t2. In the
following, we show a few examples to demonstrate that this type of
simple reasoning rarely holds.

We start with a simple topology with one client (node 0), server
(node 2), and one intermediate router (node 1) shown in Figure
3(a). A two-minute long FTP transfer was set up on top of a TCP
connection established from node 2 to node 0. Figures 4 and 5 show
histograms of IATs of packets where the connection is limited by
the receiver advertised window of 20 packets. In Figure 4, delayed
acknowledgments were not used by the TCP receiver while in Fig-
ure 5 delayed acknowledgments were used. As expected, in Figure
4 we observe the two modes at ∆t1 = 5.1ms and ∆t2 = 83.7ms
and the ratio of their heights is approximately 20. However, if the
TCP receiver is delaying acknowledgments the situation becomes
more complex. We can still observe the principal mode ∆t1 in Fig-
ure 5 but instead of a single secondary mode we observe several
additional modes. Due to the delayed acknowledgment timer at the
receiver, the set of W packets sent is divided into several smaller
sets of packets sent back-to-back. The number of these groups of
packets depends on the ratio of the RTT to the delayed acknowl-
edgment timer value but also on W . We can already conclude

from this first experiment that relating flights to one of the phases
of TCP is a difficult task.

We next consider a more realistic scenario (Figure 3(b)) with
cross-traffic using the web client-server class of ns-2 at node 1.
Tuning the parameters of the clients, we simulated different load
values. Figure 6 shows an example evolution of the probability
density function (pdf)1 of the inter-arrival times of packets when
increasing the offered load of the cross-traffic. In these simulations
the delayed acknowledgments mechanism is used as this is the most
common case. The loss rate for the ftp connection experiencing
cross-traffic was zero for all cases of offered load.

The main observation from these plots is that even with small
amounts of cross-traffic the structure of the pdf (and consequently
of the groups of packets) is much more complex than in the first
simple scenario. In general, cross-traffic adds to the queuing delay,
which lowers the modes (i.e. creates much more different group
sizes). This means that the flight sizes become more complex to
identify, which makes it difficult to track the size of the congestion
window. These simulations further confirm that it is often impossi-
ble to rely on the flight sizes to identify the state of the TCP con-
nection. Therefore, T-RAT 2 [18] will be unable to work properly
in many cases.

4. TIME SERIES-BASED APPROACH
Our approach to infer the TCP root causes of a given connection

is to generate a number of time series using the packet trace of the
connection. We then use these time series to compute scores that
characterize the impact of the different causes. As the location of
the measurement point on the path impacts the way the time series
are generated, we devote the next subsection to this issue. We then
briefly present all the time series used in our tests, along with some
tests made to validate some heuristics used to derive these time
series.

4.1 Measurement Point Location
Most of the time series that we use, are very easy to compute

if the packet trace was captured at the sender side. However, we
do not want to limit ourselves to this specific case as, for instance,
we may use publicly available traces collected by third parties and
for which we do not have exact information about the measurement
configuration.

The first problem then is to infer the location of the measure-
ment point. Let us consider the case depicted in figure 7, where
the measurement point A is close to the sender while points B and
C are not. We can determine the measurement point with respect
to the connection initiator by measuring and comparing the delay
between the SYN and SYN+ACK packets, and the delay between
SYN+ACK and ACK packets, referred to as d1 and d2, respec-
tively, for the measurement point A. We conclude that A is close to
the connection initiator if d2

d1
< 0.01.

More generally, we need to compute the RTT samples for each
connection. In the case that our measurement point is close to the
sender, we compute the RTT for each acknowledged data packet as
the time interval between the timestamps of the last transmission od
a data packet and the first acknowledgment for this data packet3. In

1We compute the pdf estimates using a kernel density estimation
technique [15] with Gaussian kernel function.
2No publicly available version of T-RAT has been released so far.
3Here we must take into account that packets may be sent multiple
times, in the case of losses, and similarly acknowledged multiples
times, in the case of lost or piggybacked acknowledgments.
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Figure 4: Without Delayed ACKs
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Figure 5: With Delayed ACKs
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Figure 7: Determining the measurement position from the
three-way handshake of TCP

the case that our measurement point is not close to the sender and
TCP timestamps are available, we implement the method described
in [17].

4.2 Time Series
In this section, we list all the time series that we use in our tests

to find the root causes for the throughput seen by a TCP connection.
Fraction of Pushed Packets: A pushed TCP packet is sent

with a PUSH flag. RFC-793 says: “The sending user indicates in
each SEND call whether the data in that call (and any preceding
calls) should be immediately pushed through to the receiving user
by the setting of the PUSH flag.”. Pushed packet thus indicates that
the application on top of TCP has for the moment no more data to
send. We compute for each direction of a TCP connection the time
series of the fraction of pushed packets observed over all consecu-
tive non-overlapping time intervals of fixed duration. To compute
those fractions, we only consider packets carrying data and discard
pure acknowledgments. If no packets have been seen during a given
time window the value is set to −1.

Inter-arrival Times of Acknowledgments: We compute the
inter-arrival times of acknowledgments separately for each direc-
tion of a connection. The ACKs included in the computation are
either acknowledging one or two data packets of size MSS or du-
plicate acknowledgments. Furthermore, we cancel the effect of de-

layed ACKs by dividing by two the inter-arrival time of ACKs that
acknowledge two data packets.

Retransmission Rate: We compute for each direction of a TCP
connection the time series of the retransmission rate as the fraction
of retransmitted bytes per all (data) bytes transmitted in consecutive
time intervals of 1 second. A packet is considered to be a retrans-
mission if (i) the packet carries an end-sequence number lower than
or equal to any previously observed one; and (ii) the packet has an
IPID value [2] [3] higher than any previously observed values.

Note that we cannot rely on observing retransmitted packets twice
and counting them since the packets may be lost before the mea-
surement point especially if the measurement point is far from the
sender. With the help of the IPID we remove false positive retrans-
missions caused by reordering of packets by the network that can
occur if the measurement point is far from the sender.

Receiver Advertised Window: We compute the time series
for receiver advertised window, which consists of time-weighted
averaged values over a given time interval: Each time a packet is
received from the other end, the receiver window indication in the
packets will be considered as the actual receiver window value un-
til either the end of the time window occurs or the reception of a
new packet. This technique is valid if the measurement point is lo-
cated at the sender side. However, if the measurement point is away
from the sender, we virtually shift in time the observed timestamp
values by the time delay between the sender and the observation
point. For example, in Figure 7, when the measurement point is
at C, we would shift in time the timestamp values of packets sent
by the receiver by + d6

2
, which is the estimated time at which this

packet should arrive at the sender. Note that d6 will be estimated
using the technique borrowed from [17] as indicated in section 4.1

Outstanding Bytes: Another value of interest is the amount of
data bytes sent and not yet acknowledged at a given time instant.
Since the computation is done by inspecting both directions of the
traffic, we need to take into account the location of the measure-
ment point.

If the measurement point is close to the sender, we produce the
time series by calculating the difference between the highest data
packet sequence number and the highest acknowledgment sequence
number seen for each packet and then averaging these values over a
time window in the same way that we do for the receiver advertised
window values.
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If the measurement point is away from the sender, we do the
computation by shifting in time the timestamp values of arriving
packets. For example, in Figure 7, we would shift the timestamp
values of data packets arriving from the sender at C by − d6

2
and of

acknowledgments arriving from the receiver at C by + d6
2

.
The above algorithms (at the sender and at the receiver side) are

heuristics that we tested with real transfers on the Internet. We an-
alyzed scp transfers from a Web100 enabled machine to another
machine and ran tcpdump at the sending or receiving machine.
Web100 is a kernel patch that allows to access the actual inter-
nal variables of the active TCP connections of a host. It provides
the exact values for the sending TCP’s retransmission queue size,
which corresponds to our definition of outstanding bytes. We did
scp transfers and compared the values obtained from Web100 and
our algorithms: from Institut Eurecom to University of Oslo in Nor-
way and from Eurecom to University of Navarra in Spain. As the
transfer to Spain proved to be over a lossy path (with approx. 6%
of retransmitted bytes) and the one to Oslo not, we were able to
capture two different environments.

Figures 8(a) and 8(b) show the comparison in the case where
the measurement point is at the sender and receiver side, respec-
tively. Unfortunately, we were unable to dump traffic in the ma-
chine located in Oslo and present only the results from the transfer
to Spain in the receiver side case. In Figure, 8(a) the two curves for
the transfer to Spain are plotted on top of each other, indicating a
nearly perfect agreement. In the case of the transfer to Oslo there
is a difference of approximately one MSS on average (note that the
window scale option was negociated between the two parties in this
experiment). The reason for this discrepancy is not clear and may
be due to timestamp inaccuracies caused by the high throughput of
this transfer. Figure 8(b) for the case where the measurement point
is at the receiver side also shows a good agreement between the
estimated and actual values.

From the above experiments, we conclude that, in most case, we
can expect to observe a maximum a discrepancy between the actual
and estimated values that remains below one MSS, a good enough
precision for the tests based on these time series (see section 5.2.1).

5. IDENTIFYING AND ANALYZING BULK
TRANSFER PERIODS

In this section, we show how we use the time series introduced in
section 4 to separate bulk transfer periods from application limited
periods. We also introduce the different tests for TCP end host and
network limitations.

5.1 Identifying Bulk Transfer Periods
The first operation we perform on a connection is to separate

periods limited by the application from other periods. We identify
the active phases of a connection where TCP consistently transfers
and call them bulk transfer periods.

We identify bulk transfer periods using the time series of frac-
tions of pushed packets using time window of 0.5 seconds. A
smaller value for the duration of a time window would risk to in-
terpret the idle time due to the sender waiting for new acknowl-
edgments after having sent a congestion window full of packets, as
an indication of application limitation. The algorithm used to sep-
arate bulk transfer periods from application limited periods varies
between two states: active and inactive. We define the starting state
to be inactive. The algorithm switches to the active state (start of a
new bulk transfer period) if the fraction of pushed packets is con-
sistently below a value p for ∆t1 consecutive time periods. The al-
gorithm switches back to the inactive state (end of the current bulk
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Figure 9: Histogram of the time series values of the fractions of
pushed packets for all connections of a 10GB BitTorrent packet
trace.

transfer period, and start of a new application limited period) if the
fraction of pushed packets observed has been consistently above p
or if no traffic was sent for ∆t2 consecutive time periods.

The algorithm is able to recognize both types of application lim-
ited periods discussed in Section 2 since we consider both the idle
time and the ratio of pushed packets. However, the thresholds p,
∆t1, and ∆t2 need to be tuned according to the type of input traf-
fic and the focus of the analysis. In section 6, we present results
for a 10Gbytes BitTorrent trace and we chose p as follows: We
extracted the time series of the fractions of pushed packets during
one-second time intervals for all those connections of the trace that
had more than 10 data packets (we do not process these small con-
nections in any case, see Section 6). We then computed a histogram
of all these values, (Figure 9). Based on this histogram we set p to
0.7 but clearly choosing any value from [0.5, 0.95] would practi-
cally give the same result. We set ∆t1 = 5 seconds and ∆t2 = 10
seconds, which implies that we discard any transfer periods shorter
than five seconds.

5.2 Bulk Transfer Period Analysis
After separating bulk transfer periods from application limited

periods, we apply the tests for TCP end-point and and the network-
ing limitations on the identified bulk transfer period. These limita-
tion tests are not exclusive. Each of the tests yields a score between
0 and 1 that quantifies the level of the limitation, which is a major
improvement over T-RAT [18] that was only providing qualitative
results, i.e. a binary answer for each test.

5.2.1 Receiver Window Limitation
We use two time series to test for receiver window limitation:

the outstanding bytes time series and the receiver advertised win-
dow time series. The difference of the values of these two time
series indicates how close the TCP sender’s congestion window is
to the limit set by the receiver window. Specifically, for each pair of
values in the two time series, we compute their difference and gen-
erate a binary variable with value one if this difference is less than
n ∗ MSS and zero otherwise (in section 6 we discuss the impact
of the n value). The receiver limitation score is the average value
of the resulting binary time series for the analyzed bulk transfer
period.
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Figure 8: Validation of the outstanding bytes algorithms.

5.2.2 Network Limitation
We use two metrics to infer whether the network limits the through-

put of a connection: (i) the retransmission score and (ii) the disper-
sion score.

Retransmission score: The retransmission score for a bulk
transfer period is computed as the ratio of the amount of data re-
transmitted divided by the total amount of data transmitted during
this period. Note that since TCP may perform unnecessary retrans-
missions, retransmission score does not exactly correspond to the
loss rate. However, we can expect these quantities to be close to
one another in general and especially if the version of TCP uses
SACK.

Dispersion score: The objective of the dispersion score is to as-
sess the impact of the bottleneck on the throughput of a connection.
We introduce this factor starting from the simple case of a non-
shared bottleneck in the network, next moving to the case where
there is a shared bottleneck which is the narrow link of the path up
to the general case where the bottleneck link is not the narrow link
of the path. The dispersion score is computed from the times se-
ries of the inter-arrival times of acknowledgments and the average
throughput tput of the bulk transfer period under consideration.

Let us first consider the case where the network limitation con-
sists of a non shared bottleneck on the path. The bottleneck is ev-
idently the narrow link of the path. Let r be the capacity of the
narrow link. The histogram of the inter-arrival times of acknowl-
edgments (computed as explained in Section 4.2) should exhibit a
mode located at MSS

r
that contains most of the mass. Since the

bulk transfer period is network limited and the narrow link is not
shared, the ratio of tput to r should be approximately equal to 1,
i.e. tput

r
∼ 1. We define the dispersion score as 1 − tput

r
.

Consider now the more complex case where the bottleneck link
is still the narrow link of the bulk transfer period but it is now
shared 4. The histogram of the inter-arrival times of acknowledg-

4In practice, detecting this case is not an easy task and would re-

ment should still exhibit a mode located at MSS
r

. However,
since the bottleneck is now shared, this mode will contain a smaller
fraction of the total mass of the histogram. Also, the ratio tput

r
rep-

resents the share the connection obtains at the narrow link during
this bulk transfer period.

Consider now the more general case where the bottleneck is not
the narrow link. The mode at MSS

r
in the histogram of the inter-

arrival times of acknowledgments should still persist, though less
pronounced, and it is thus still possible to identify the capacity of
the narrow link. (We refer the reader to [9] for a related work that
takes advantage of the distribution of the inter-arrivals of packets
to identify link capacities.) In this case, tput

r
does not represent

any more the share that the connection obtains at the bottleneck.
However, the dispersion score can still be seen as an indicator of
the distortion (or dispersion) introduced by the network.

We validate the method to infer the narrow link capacity by set-
ting up an artificial narrow link with NIST Net at Institut Eure-
com, the receiving end of the path, and transferring a large file
with scp to Eurecom from University in Oslo (UiO), University of
Navarra (UN), and Helsinki University of Technology (HUT). We
performed two experiments with three parallel transfers for two dif-
ferent narrow link capacities (2 Mbit/s, 5 Mbit/s) in order to observe
the effect of cross traffic, and three experiments with a single trans-
fer each to observe the impact for dispersion score. The results in
table 1 show that the accuracy of the estimated r value in these tests
is good regardless of the retransmission score on the path. We also
observe that the low dispersion scores correctly reveal that there is
no sharing at the bottleneck.

6. EXPERIMENTAL RESULTS

6.1 Dataset
We applied our algorithms to a 10 Gbytes tcpdump packet trace

quire the use of tools like Pathneck [7] that detects bottlenecks
in combination with a tool that measures the capacity of a path [5].
This study is out of the scope of the present work
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Table 1: Validation results from inferring the capacity of the
narrow link.

src set r r estimate 1 − tput

r
retr score RTT

UN 2.0 Mbit/s 2.0 Mbit/s 0.89 0.175 56 ms
UiO 2.0 Mbit/s 2.0 Mbit/s 0.43 0.027 71 ms
HUT 2.0 Mbit/s 2.0 Mbit/s 0.69 0.037 71 ms
UN 5.0 Mbit/s 5.1 Mbit/s 0.92 0.089 56 ms
UiO 5.0 Mbit/s 5.1 Mbit/s 0.35 0.008 72 ms
HUT 5.0 Mbit/s 5.1 Mbit/s 0.78 0.013 71 ms
UN 2.0 Mbit/s 2.0 Mbit/s 0.21 0.055 57 ms
UiO 2.0 Mbit/s 2.0 Mbit/s 0.10 0.014 70 ms
HUT 2.0 Mbit/s 2.0 Mbit/s 0.03 0.005 71 ms

of BitTorrent traffic captured at the University of Navarra, Spain.
The machine at Navarra was involved in a single torrent and the
traffic was recorded once the machine had obtained a full copy of
the file and thus only acting as a server (seed in the BitTorrent ter-
minology). Hence, all the traffic was captured at the sender side.
The trace contains nearly 60, 000 connections with a total amount
of 102 million packets.

6.2 Separating the Wheat From the Chaff
Out of the 60, 000 initial connections, we first filtered out the

57, 118 connections with less than 10 data packets. We then ap-
plied our algorithm to isolate the bulk transfer periods and the ap-
plications limited periods to the remaining 2882 connections. We
discarded the connections that consisted of a single application lim-
ited period (our algorithm discards transfer periods of less than 5
seconds, refer to Section 5.1). We ended up with only 686 connec-
tions (to 413 hosts) consisting of 3295 bulk transfers and 10, 365
application limited periods.

Figures 10 and 11 show the cumulative probability density func-
tions (cdf) of the durations and sizes in bytes of both types of peri-
ods. We observe that even though BitTorrent is sending only small
protocol messages (e.g. to request a block or a piece, or to keep
connection alive) during the periods when it is non active or only
downloading data, i.e. the application limited periods, the duration
of those periods is so large as compared to the bulk transfer periods
(figure 10) that eventually the total amount of bytes of some of the

application limited periods can be non negligible as compared to
the amount carried by some of the bulk transfer periods (figure 11).
Indeed, a closer look revealed that the ones transferring up to 2.5
Mbytes are several hour-long connections sending small packets
with push flags at a very low rate (< 5Kbit/s).

For the bulk transfer periods the coefficient of correlation be-
tween the throughput and the size is 0.65 and between the through-
put and the duration is 0.52. Such strong correlations are the conse-
quence of the BitTorrent protocol that favors fast transfers between
peers. Hence, the faster the transfer, the more likely it is to last, and
thus to be large.

6.3 Receiver Window Limitation
Figure 12 shows a cdf of the receiver window limitation score for

different values of n (see section 5.2.1). Clearly, the choice of n is
not critical as the shape of the curve remains practically the same
for n ∈ {1, 2, 3}. We use in the following analysis n = 2. We
observe that approximately 65% of the transfers are never limited
by the receiver window and 17% are limited half of their life time.
Only a small fraction of the transfers are limited more than 90% of
the time by the receiver window. In Figure 13, the receiver win-
dow limited score is plotted against the mean value of the receiver
advertised window size. The three most common advertised win-
dow values are distinguishable from Figure 13 as horizontal stripes:
8, 16, and 64 Kbytes, an observation that agrees with [12]. The
coefficient of correlation between the limitation score and average
advertised window size is −0.37 which indicates that it is more
probable to be receiver window limited when the average adver-
tised window value is smaller. However, we note that there is a
significant amount of transfers with a high limitation score and an
average advertised window of 64 Kbytes, the largest usable value
without window scaling. This observation suggests that perhaps,
in some cases, a higher throughput could be obtained by using the
window scaling option, though it is not certain and depends on the
amount of available bandwidth on the path. Indeed, using a larger
window value might equally lead to congestion and lower through-
put [13].

We found that all of the 413 client hosts used window scaling
or supported its usage in our dataset. Nevertheless, approximately
93% of the hosts did not scale their own advertised window, while
6% used a value of 2 and 1% a value of 7. This agrees with the
results in [12] where 97% of the hosts that support window scaling
set the value to zero. On the other hand, only 26.6% of the hosts in
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Figure 15: Retransmission score vs. throughput

their dataset support window scaling, as compared to 100% in our
case.

6.4 Network Limitation
We observed surprisingly elevated levels of network limitations

in our dataset as can be seen from Figure 14. In 20% of the transfer
periods, at least 10% of the bytes were retransmitted. When we
plot the retransmission score against achieved throughput in Figure
15, we observe that the higher the retransmission score the lower
the throughput as stated by the TCP throughput formula [11]. The
coefficient of correlation between the retransmission score and the
throughput is −0.21.

The cdf of the estimated capacities of the narrow link is pre-
sented in Figure 16. The most dominant capacity is around 2 Mbit/s
with 16% of the values (highlighted with a box). The values around
1 Gbit/s are erroneously inferred since the capacity of the access
link of our measurement host was less than 1Gbit/s and may be
due to ack compression. Out of the 1791 narrow links for which
we were able to infer a capacity we identified only 10 potential
non-shared bottlenecks, i.e. cases where the dispersion score was

smaller than 0.2. As the retransmission score was high throughout
the dataset and the inferred narrow link capacities fairly modest (in
more than 70% of the cases below 2.5 Mbit/s), a possible expla-
nation for high dispersion scores (see Figure 14) could be a very
congested high capacity link close to our measurement host. Fig-
ure 17, which plots the retransmission score against the dispersion
score for bulk transfer periods with a receiver window limitation
score lower than 0.5, reveals that there is a connection between
these two scores. The coefficient of correlation between them was
0.25. More precise interpretations of this phenomenon would re-
quire more information about the cross-traffic, available bandwidth,
and bottleneck locations on the path and is left as future work.

We looked more closely at some of the bulk transfer periods with
zero retransmission score and a high dispersion score. We found
30 to 60 seconds-long bulk transfers where TCP is in congestion
avoidance and experiences very long RTTs that prevents it from
growing its congestion window large enough to reach the limit set
by the receiver window or available bandwidth before the end of
the transfer. The connection depicted in Figure 18 had an initial
RTT of 65ms while during the transfer period the RTT grew up to
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Figure 18: A complete bulk transfer period with a high disper-
sion score and no retransmissions.

1.3s. This suggests that somewhere along the path large queuing
delays were introduced causing a network limitation that could not
be detected by only observing retransmissions.

6.5 Exclusiveness of the Limitation Causes
We want to shed more light on the dynamics of bulk transfer

periods that experience both network and receiver window limita-
tion. Figure 19(a) reveals that even though the trend is, as expected,
that a high score in one test excludes a high score in the other test,
there are still quite a few transfer periods with significant scores for
both limitations. We had a closer look at the three such transfer
periods highlighted with a box in Figure 19(a). Two of them exhib-
ited occasional retransmissions alternating with periods where the
senders were receiver window limited as visible in Figure 19(b).
Retransmissions are marked with vertical arrows with an R on top.
Non-retransmitted data segments often hit the upper limit of the
sliding window. In contrast, the third transfer period was receiver
window limited until just before the end of the transfer where it
retransmitted a large number of packets.

7. CONCLUSIONS AND OUTLOOK
In this paper, we have revisited the issue of the root cause anal-

ysis of TCP connections introduced in [18]. We have first demon-
strated the weakness of the flight-based approach adopted in [18].
We have provided a thorough discussion on the different limitation
causes, i.e. the application, the TCP end point parameters and the
network, emphasizing the need to account for the impact of the ap-
plication on the observed traffic. We then came up with a new anal-
ysis method based on various time series extracted from the headers
of a packet trace. Our technique is robust and allows to precisely
assess the impact of each limitation. A score representing the lim-
itation level between 0 and 1 is provided for each of the causes (as
opposed to T-RAT [18] that provided only a binary answer, yes or
no, to each test). A first application of the tool on a large BitTorrent
dataset has demonstrated the interest of the technique.

Future work includes applying our tool to publicly available traces
that contain data of various applications. As explained in Section
5.1, there are currently several parameters that need to be tuned
according to the application type. We are working on a reimple-
mentation of the algorithm for bulk transfer identification that re-
quires neither a time window nor the thresholds and could there-
fore work regardless of the time scale of the transfer and the type
of the application. We want to analyze other applications because
we believe that the ”bulk transfer applications” (P2P file transfers,
FTP, scp, etc.) do not form a homogeneous class of applications
but can generate many different traffic patterns due to a number of
factors, e.g. application-level mechanisms, compression, and en-
cryption, which all have an impact on how data is delivered to TCP
and subsequently transferred. Another challenge in analyzing pub-
licly available traces is that RTT estimation is still difficult in case
the measurement point is not at the sender and TCP timestamps
are not available [6]. We are currently investigating whether other
methods for RTT estimation are suitable in this case.

We would also like to analyze the evolution of the TCP root
causes of bulk transfer periods within a connection, and eventu-
ally, study in more depth the temporal dynamics of the causes and
their interaction within a bulk transfer period.
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