
Can Offloading Save Energy for Popular Apps?

Aki Saarinen, Matti Siekkinen, Yu Xiao,
Jukka K. Nurminen, Matti Kemppainen

Aalto University, School of Science, Finland
aki@akisaarinen.fi, {matti.siekkinen,
yu.xiao, jukka.k.nurminen}@aalto.fi,

matti.kemppainen@iki.fi

Pan Hui
Deutsche Telekom Labs, Berlin, Germany

pan.hui@telekom.de

ABSTRACT
Offloading tasks to cloud is one of the proposed solutions for
extending battery life of mobile devices. Most prior research
focuses on offloading computation, leaving communication-
related tasks out of scope. However, most popular applica-
tions today involve intensive communication that consumes
a significant part of the overall energy. Hence, we currently
do not know how feasible it is to use offloading for saving
energy in such apps. In this paper, we first show that it is
possible to save energy by offloading communication-related
tasks of the app to the cloud. We use an open source Twitter
client, AndTweet, as a case study. However, using a set of
popular open source applications, we also show that existing
apps contain constraints that have to be released with code
modifications before offloading can be profitable, and that
the potential energy savings depend on many communica-
tion parameters. We therefore develop two tools: the first to
identify the constraints and the other for fine-grained com-
munication energy estimation. We exemplify the tools and
explain how they could be used to help offloading parts of
popular apps successfully.

Categories and Subject Descriptors
C.4 [Performance of Systems]: [Design studies]; D.2.8
[Software Engineering]: Metrics—performance measures

Keywords
energy, offloading, smartphone, Android

1. INTRODUCTION
A seemingly straightforward way to conserve battery life

of a mobile device is to migrate application execution par-
tially to cloud. This technique is called offloading or some-
times cyber foraging. Several frameworks, including MAUI [4],
Cuckoo [6], CloneCloud [3] and ThinkAir [7], have been
developed to offload CPU intensive tasks. However, most
popular apps involve also network communication, such as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiArch’12, August 22, 2012, Istanbul, Turkey.
Copyright 2012 ACM 978-1-4503-1526-5/12/08 ...$15.00.

updates of social networks or remote data access, which con-
sume a major part of the overall energy. Hence, it is justified
to ask: Can offloading techniques help save energy, if applied
to such apps?

Existing research provides very little answers to the above
question since little efforts have been put on offloading tasks
involving network usage. Indeed, almost all previous work
focuses on alleviating the load by migrating heavy compu-
tational tasks to the cloud. To address this shortcoming,
we investigate the feasibility of offloading network intensive
communication, taking open source applications as exam-
ples. To this end, we use a specific framework, ThinkAir
[7], for application partitioning and migration. It should
be noted that our goal is not to develop our own offloading
framework, but rather to study the feasibility of using ex-
isting solutions with typical apps.

ThinkAir, like many other existing frameworks supporting
application partitioning on a method granularity, provides
APIs for specifying which methods are allowed to be offloa-
ded. This requires programmers with expert knowledge to
manually select and annotate these methods. Using a case
study, we observe that in practice there are several con-
straints, such as Java serialization issues, usage of callbacks,
and access to native APIs that are tied to the device, which
limit the ability of remotely executing a method. We find
these constraints to be non-trivial and laborous to identify
manually. We develop a tool to automate the identification
of such constraints and provide analysis results from a set
of apps. The results reveal that such constraints exist very
frequently in typical apps.

We also note that the potential energy savings from method
offloading are difficult to estimate, because communication
energy consumption, a major factor in popular apps, de-
pends on many factors. These include traffic patterns, net-
work conditions, network type, and so on. We develop a
tool to estimate communication energy consumption on a
per-method level. It can be used for evaluating the energy-
efficiency and performance of existing code at development
stage, and can therefore guide programmers in improving
application implementation for better energy-efficiency.

The following points summarize our main contributions.
1) We take the first look into the feasibility of offloading

popular apps and analyze the constraints that may reduce
the opportunities of energy-efficient offloading of communi-
cation related tasks.

2) We develop a toolkit to help analyze and increase the

3

potential in offloading such apps. 1Specifically, we develop a
tool for identifying offloading constraints using static source
code analysis and another tool to profile the energy con-
sumption of each method which relies on models that take
traffic patterns and tail energy2 into account.

2. USE CASE: ANDTWEET AND K-9
To gain insights into what it means to offload typical exist-

ing network-intensive programs, we study two popular open
source Android applications. First, we take AndTweet, a
popular open source Twitter client, and offload methods
which send/receive network packets to/from the Twitter
servers, using the ThinkAir framework. Second, we take a
look into the feasibility of offloading network-intensive meth-
ods in one of the most popular open source Android email
clients, K-9 Mail.

2.1 How can communication offloading save
energy?

The concept that we call communication offloading in this
paper, focuses on reducing communication cost on mobile
devices. There are two ways to save energy when offloa-
ding parts of program responsible for communication related
tasks. First way is to reduce the network traffic that need to
be handled by the mobile device. This can be achieved, for
instance, by offloading methods that handle communication
with a server or other peers in P2P system. Such commu-
nication contains signaling traffic [1], part of which can be
suppressed.

Second way is to optimize traffic patterns and improve
overall latency and/or throughput. Packet interval patterns
and throughput, for instance, have a significant impact on
communication energy cost[11]. As a consequence, grouping
packets to bursts is more energy efficient. Bursting bene-
fits can be achieved, for example, when a group of methods,
where each method fetches data, is offloaded. In the result-
ing sequence, only the end result will be downloaded to the
mobile device in one burst, instead of downloading the data
in several small bursts for each method.

2.2 Offloading setup
In all our experiments, we use the ThinkAir offloading

system[7], which allows us to offload a selected set of meth-
ods to a more powerful remote machine which we call sur-
rogate. We use a Google Nexus One with Android 2.3 as
the mobile device and a virtual machine running the An-
droid x86 port as the remote execution platform. ThinkAir
requires the programmer to annotate which methods are“of-
floadable”, i.e. can be migrated to be run in the surrogate
machine. We choose the methods which are annotated as
“offloadable” manually. While ThinkAir provides the possi-
bility of dynamically deciding whether to offload an“offload-
able” method call or not, depending on current conditions,
we disable all dynamic decision making features and sim-
plify the setup by defining that all “offloadable” methods
are offloaded every time.

Upon starting an application, execution in the mobile ap-
plication is given to the ThinkAir execution controller, which
1Our tools are available under an open source license at
https://github.com/akisaarinen/smartdiet
2Tail energy refers to the energy that is wasted when radio
stays on for a timer specified amount of time after transmis-
sion has ended.

then sends an image of the application code to the surrogate.
Whenever a method marked as “offloadable” is executed,
ThinkAir execution controller transfers the execution to the
surrogate.

In technical terms, when a method marked as “offload-
able” is executed, the mobile device blocks execution, se-
rializes the class instance of the called method and all of
its arguments using Java’s serialization APIs, and sends the
serialized objects to the surrogate. The surrogate then de-
serializes these objects, invokes the specified method, and
sends the returned value (or exception) back to the mobile
device. When the mobile device receives the reply, it han-
dles it and continues execution as if the return value would
have been produced by running the same code locally.

2.3 Problems in AndTweet
In AndTweet we offload as many methods as possible,

which communicate with the Twitter backend. In other
words, we manually look for all places, which induce net-
work traffic between the mobile device and Twitter servers,
and mark all these methods as“offloadable”for the ThinkAir
framework. Our goal is to reduce the amount of traffic and
improve the traffic patterns to hence save energy.

Our process for identifying the “offloadable”methods is as
follows: we first manually identify events in the user inter-
face (UI) which trigger network requests. We then proceed
to read the code and look for methods whose execution could
be migrated to the surrogate, starting from the method
which handles the UI event. We encounter several limita-
tions why methods could not be straight-forwardly marked
as “offloadable”. Problems are related to 1) methods access-
ing local hardware, 2) methods whose migration to surro-
gate is not possible without modifications and 3) methods
accessing state that is not correctly synchronized between
the device and the surrogate, therefore causing unexpected
behavior.

A remotely executed method cannot interact with the UI
or other hardware resources, because these resources only ex-
ist at the client.However, AndTweet mixes application logic
and handling of UI in many of its methods. This results in
application logic, which might be offloadable on its own, be-
ing tied to the device, because UI handling renders the whole
method non-offloadable. To overcome the restrictions of UI
interactions, we attempt to offload the next level of meth-
ods in the call tree, i.e. methods which are directly invoked
from the UI handling code. Here we find Twitter-specific
abstractions, such as a timeline, which contains list of re-
cent tweets, and friend lists. This set of methods, however,
contains another category of issues.

In order to migrate the execution of a method, the offloa-
ding system must of course transfer the related state infor-
mation to the surrogate. In case of ThinkAir, the encapsu-
lating class of an “offloadable” method must be serializable
using Java’s serialization APIs. In addition, the method
may not access any state outside the serialized context, be-
cause this state will not be synchronized between devices.
AndTweet implements the Twitter timeline processing with
non-serializable classes. It stores some of its internal state,
e.g. cryptographical tokens for authentication, using an An-
droid standard library class SharedPreferences, which is not
serializable. Similarly, HttpClient, the de-facto class for us-
ing HTTP in an Android application, is used for communi-
cating with Twitter servers, and it is not serializable.

4

Measurement Wi-Fi (avg/stdev) 3G (avg/stdev)
Original Offloaded Original Offloaded

Total energy (measured) 2.67/0.59 J 25% less/0.3 J 3.92/1.97 J 18% more/2.1 J
Execution time for refresh to complete (measured) 2.69/0.59 s 6% more/0.5 s 3.86/2.02 s 33% more/2.1 s
Total traffic size (measured) 7.7/0.8 kB 17% less/0.5 kB 6.0/2.1 kB 31% less/1.8 kB
Energy used for network transmissions (estimated using
model)

- 46% less/0.04 J - 33% more/2.0 J

Table 1: AndTweet measurements for a single timeline refresh event. We are comparing the measurements
for original AndTweet application and the version for which methods doing network communication with
Twitter server were offloaded to surrogate. Original network energy estimate is not shown, because the
model only gives relative numbers, not absolute energy quantities.

Methods using HttpClient are easily fixed by instantiat-
ing a new HttpClient in the surrogate. Existing instances
no longer need to be migrated to either direction. Shared-
Preferences is more problematic, because it uses the local
file system to save internal state, i.e. the preferences that
need to be stored over application restarts. Instantiating a
new SharedPreferences in the surrogate and blindly using it
would result in different states between the client and the
surrogate. Therefore, we need to implement a mechanism
which synchronizes the remote SharedPreferences before and
after a method is executed remotely. Otherwise the crypto-
graphical tokens are out-of-sync between the device and the
surrogate. The problems with state synchronization can be
difficult to resolve because in the worst case no errors are
reported. Instead, the method just does something unin-
tended and the application, not to mention the developer, is
unaware of it.

Detecting and fixing the aforementioned problems with
AndTweet was difficult because classes and methods had a
large number of dependencies. As the number of dependen-
cies increase, so does the likelihood of a method depending
on a trouble spot, which, in turn prevents the offloading.

Our experiences suggest that manually identifying the meth-
ods having offloading problems is non-trivial. It may include
many cycles of trial-and-error and the only way to know
whether all issues have been resolved is to test the applica-
tion to see whether it works correctly or not. It is essential
to have tools that can automate this procedure and guide
the programmers into developing more offloadable code.

2.4 Energy consumption of offloaded AndTweet
After eventually offloading Twitter communication, we

measure the energy consumption of non-modified and off-
loaded AndTweet, under two different network conditions.
In first setup the surrogate is in the same Wi-Fi network as
the phone. In the second scenario, the phone used 3G as the
access network.

We use a Monsoon Power Monitor (www.msoon.com) to
measure the energy consumption of the phone. We also col-
lect the packet traces and use models to estimate the energy
consumed by the network interfaces. We use the model in
[11] to estimate Wi-Fi energy consumption. As for 3G, we
use a deterministic power model described in [10]. In the
measurements and the estimates, we exclude the one-time
cost of transferring the application image. The applications
could be, for example, pre-installed to the offloading infras-
tructure.

The results in Table 1 show energy consumption of a sin-
gle Twitter event which checks and fetches new tweets, and
then displays them. We observe that offloading saves one

fourth of the total energy consumed in the Wi-Fi setup. As
expected, the savings clearly come from having less network
traffic. However, the execution takes slightly longer when
offloaded, which increases the energy consumed by the dis-
play. The results are very different when switching to 3G.
More energy is consumed with the offloaded version even if
less data is transmitted and received. Because the RTT in
3G is an order of magnitude longer than with Wi-Fi, the
remote invocation takes more time. Combined with long 3G
inactivity timer values, this causes the network interface to
be in active high-power state during the whole invocation.
Execution time also has a big variance, because 3G latencies
vary depending on network conditions and the radio connec-
tion state when starting the transmission.

The conclusion of this experiment is that finding spots
where communication offloading can yield notable benefits
is non-trivial. Both network conditions and traffic patterns
play a major role in the profitability of offloading. The esti-
mation of potential benefits is difficult using mere intuition.

2.5 Offloading K-9
In our attempt to offload the communication in K-9 Mail,

a critical problem prevents us from achieving this goal using
ThinkAir. K-9 application architecture is heavily based on
asynchronous callbacks. The fetching of new email messages,
for example, is initiated by calling a method with a callback
as a parameter. The callback is called if new messages are
available, and it will update the appropriate internal data
structures as well as the UI. However, these kind of callback-
based APIs are not offloadable using ThinkAir. Callbacks
are not serializable and can not be invoked from the surro-
gate. To continue offloading K-9, we would need to re-write
major parts of its internal application logic.

To the best of our knowledge, none of the other systems
can handle this situation either, with the possible exception
of CloneCloud. Usually the only way to interact back to the
phone is to use the return value or exceptions of the called
methods. Asynchronous APIs break this assumption and
simply do not work. While this is something that could be
added as a feature to the offloading framework, this problem
adds to the list of limitations that restrict the usability of
current implementations in real-world programs.

2.6 Lessons learned
We learned two essential lessons from the above described

case study. First is that in practice there are many con-
straints that prohibit using method offloading techniques
and these constraints are not intuitive to detect. Hence,
we need at least semi-automated ways of detecting and, if
possible, alleviating such constraints.

5

Second, it is possible to save energy by offloading parts of
typical popular apps, which mainly consume energy by com-
municating, instead of executing computationally intensive
tasks. However, the savings depend on several things: net-
work conditions, traffic patters (before and after offloading),
and the type of network interface used were shown to have
an effect, but there are certainly also others. Therefore, we
need a way to accurately estimate the energy consumption
of the communication before and after offloading in order to
understand which parts of the app could yield energy savings
when offloaded. We investigate both of these issues in more
detail in the following two sections and propose preliminary
solutions.

3. DETECTING OFFLOADING CONSTRAINTS
In order to understand how severe the offloading con-

straint issue is among existing apps, we analyze a set of
popular ones. However, before reviewing those results, we
first describe how we perform the constraint detection in an
automated fashion.

3.1 Tool for static source code analysis
In order to identify offloading constraints, we develop a

tool for static analysis on the application source code. For
each method in the application, it points out problems that
can prevent offloading unless the code is modified. We cur-
rently focus on heuristics that identify problems associated
with our offloading setup, which is using the Android plat-
form and Java Serialization API to implement the remote
execution of methods. Nevertheless, similar heuristics can
be crafted to other remote execution mechanisms, including
the Android Parcelable mechanism used in Cuckoo [6], .NET
serialization used in MAUI[4], or even the virtual machine
based thread migration used in CloneCloud [3], because they
all set some restrictions on what kind of methods can be off-
loaded.

Hardware constraints: The first set of constrained meth-
ods are those that require access to the hardware of the local
device. We currently identify method as having this con-
straint if it tries to show, for instance, notifications to the
user, update anything on the screen, vibrate the phone, ac-
cess the Bluetooth, wifi or usb subsystem, and so on. We
have identified a total set of 20 constrained subsystems while
going through Android system APIs. If a method accesses
one of the constrained Android system APIs, it cannot be
offloaded unless the code structure is changed.

Software constraints: Our second set of constrained
methods are those that cannot be migrated to the surrogate
at all due to migration mechanism requirements, or those
that cause unexpected behavior when executed remotely due
to inconsistent states between local and remote execution
environments.

Migration limitations are specific to the mechanism used,
which in our case is the Java serialization APIs. For a
method to be directly migratable, its encapsulating class as
well as arguments and return type must implement the Java
serializable interface. We also identify the methods which
could be modified to be serializable with minor changes by
changing the dependencies, e.g. super and member classes,
to implement the Serializable interface. We exclude the li-
brary code, because for instance the Android SDK code can-
not usually be easily modified, even if the changes would be
simple.

Statistic Median Min Max
Number of methods 431 121 4411
Directly migratable 0.17% 0.00% 3.70%
Migratable with minor changes 15.7% 0.00% 46.8%
Hardware access constraints 14.2% 2.28% 41.3%
Potential unexpected behavior 10.7% 0.00% 30.3%
because of access to file system

Table 2: Constraint statistics for 16 open source
apps.

Regarding unexpected behavior, our tool finds all meth-
ods that access the local file system using either Android’s
SharedPreferences mechanism or Java’s File class. ThinkAir
does not synchronize the file system and files in the surro-
gate are thus not the same as those in the device. This will
often cause unexpected behavior for the program accessing
files. This principle of finding problematic API calls can be
extended to find problems related to other non-synchronized
resources as well.

A potential solution to the synchronization issues is a
system which automatically synchronizes all relevant state.
This is notably a hard problem on its own, but in the con-
text of offloading we are also concerned about energy usage
of the synchronization. Until efficient automatic solutions
are presented, the developer must be assisted in overcoming
the problems manually.

Based on our experiences with AndTweet, even a richer
set of rules could be established to detect different types of
remote execution issues. For example, if a class contains
an instance of the non-serializable HttpClient class, as de-
scribed in Section 2.3, our toolkit could suggest removing
the member instance and replacing it with a new instance
of HttpClient created on-the-fly every time it is needed.

3.2 Statistics from open source programs
We next analyze a set of existing apps with our tool.

Our method allows us to study only open-source software.
Unfortunately many popular applications on Android Mar-
ket are closed-source. To find similar applications, we went
through numerous Android application listings, and selected
programs that are non-trivial in size and include either com-
munication or non-trivial computation. 3 Additionally we
analyze also some platform applications that are shipped
with Android operating system, like the web browser.

Results are shown in Table 2. Maximum of 3% of methods
are directly migratable. If all of the identified and repairable
trouble spots in the source code were fixed, it would enable
the migration of up to 47% of methods. The results show
that real-world existing applications are heavily constrained
in terms of what can be offloaded. Developers need assis-
tance to create offloadable applications in order to enable
energy savings by means of offloading.

4. PROFILING COMMUNICATION ENERGY
In order to understand how much communication energy

different parts of the app use, we develop a tool for accu-
rate communication energy profiling. The tool implements
a measuring and modeling setup for profiling and visualiz-
ing the energy consumption of a given application. Data is
collected dynamically during the execution of the app and

3We used Android Market, popular source code sharing site
Github, Wikipedia and numerous other sources.

6

Figure 1: TCP packets and network-related method
calls for test application fetching an HTML page.

analyzed afterwards. The tool collects two kinds of infor-
mation: the traffic trace, and a trace of the program exe-
cution flow to later produce class and method level statis-
tics. Packet trace is collected by a kernel module that cap-
tures and timestamps all traffic in the device using netfilter
hooks (www.netfilter.org). To track the program execution,
the tool uses execution tracking features in Android Debug
Monitor Server (DDMS) which produces a trace of all classes
and methods executed during the run. In addition, we im-
plement minor modifications to the Dalvik virtual machine
to annotate the traces with system-wide timestamps, which
can be matched to those of our other measurements.

Our strategy for method-level communication energy ac-
counting is as follows. We use statistical methods to asso-
ciate each collected packet into one single method call in the
app. Then, the energy consumed by the set of packets asso-
ciated with a given method is estimated using power models
same way as in 2.4. Finally, we recursively sum up the en-
ergy consumed by these methods as the energy consumed
by their parent methods. In this way, we end up with a
complete execution trace with communication energy con-
sumed by each of the method. We detail and exemplify this
procedure below.

To associate each packet in the collected packet trace to an
individual method in the program execution trace, the tool
first divides the execution trace into threads and the packet
trace into separate flows (TCP connection or UDP flow).
Furthermore, only network-related method calls are filtered
for each thread. We now have two separate time series:
network-related method calls of each thread and packet ar-
rival events of each flow (see Figure 1 for illustration). These
series are compared by computing cross-correlations in order
to associate each flow to a particular thread which is gen-
erating that traffic. The idea is that each network-related
method is associated with the corresponding packets. Fi-
nally, each packet of a flow is associated to the closest (in
time) method call of the corresponding thread. This way,
the tool generates a method trace of the program execution
annotated with information about the methods that caused
network traffic.

Figure 1 shows part of the traces of a simple Android test
application that performs an HTTP GET request when a
button is clicked. The thread executing the HTTP request
correlates strongly with the packet trace. Another thread in

the figure has a single network-related call. It is the garbage
collector thread running finalization for a network-related
object that is no longer used. Since it correlates weakly
with the packet trace, no packets are associated with it.

Program execution in each thread can be viewed as a hi-
erarchical call tree, where a method calls another method
which calls another and so on. Our tool reconstructs this
tree, carrying along the information of the detected network
usage. It then aggregates the traffic of the nodes up in the
tree, so that the root method, where the execution starts,
gets associated with all packets that have been sent or re-
ceived within each thread.

Figure 2 is an example graph, automatically produced by
our tool, for a simple test case requesting an HTML doc-
ument over HTTP. Traffic is cumulatively assigned to the
MainActivity.onClick method and from there on, divided
between various library functions that open the connection,
send an HTTP request, receive the response and finally close
the connection. At each step, we present the total number
of calls made, the number of packets and the size of data
generated by each call, alongside with model-based energy
consumption estimates.

The energy usage estimate for each method is shown as
a range between two values. In estimation one has to make
assumptions about the interdependencies of methods within
the program, which is why we show two numbers: a lower
bound and an upper bound. The reason is that communi-
cation energy consumption is heavily dependent on traffic
patterns meaning that only the exact number of bits trans-
mitted does not determine the energy consumed but also
their timing has a large impact (refer to [11], for instance).
The lower bound corresponds to the energy consumed by
the packets associated with the method in question, while
the upper bound is computed so that it includes also the
packets belonging to other methods that arrive between the
first and the last packet of this method.

5. TOWARDS A TOOLKIT
The previous two sections describe our efforts so far to

make it possible and feasible to offload parts of apps that
fall into the typical apps category. Our overarching goal is
to develop a complete toolkit for this purpose. We envision
it to comprise three tools: energy profiler, constraint iden-
tifier, and structure analyzer. Above we described initial
prototypes for the two first ones.

The idea is that the energy profiling tool finds and visu-
alizes parts of applications that could yield energy savings
when offloaded. The constraint identification tool identifies
constraints in the source code, determines which methods
can be offloaded as such and points out trouble spots in
the code. The developer would first use the energy profiler
to identify the candidate methods for offloading. Next, the
constraint identifier would locate and possibly propose res-
olutions to trouble spots in the candidates. After modifica-
tions, the process can be repeated, eventually resulting in an
application which is more suitable for offloading. The third
tool could guide the developer in making larger structural
changes, which would enable new portions of the application
to be offloaded, in an energy-efficient fashion.

While we have focused here on the communication energy
cost, computation can in some cases also be an important
factor. We also plan to integrate CPU usage measurement
and estimation to the same toolkit. Existing solutions can

7

Figure 2: Network usage graph for test application, which fetches an HTML page. Numbers show how many
times methods have been invoked during the whole procedure and how much energy it consumed.

be applied to estimate computation and display energy con-
sumption[12] given just that time stamping and high enough
sampling rates can be supported.

We encountered issues when analyzing the execution flow
of complex programs which rely heavily on threading. We
are currently looking into ways to statistically analyze the
dependencies between execution of multiple threads. Alter-
natively, packet flow inside the program could be tracked,
similar to that in TaintDroid [5].

6. RELATED WORK
Two main approaches have been suggested for compu-

tation offloading using application partitioning. MAUI[4],
Cuckoo[6], Scavenger [8] and ThinkAir[7], for example, im-
plement a framework on top of the existing runtime system.
These systems only require access to the program source
code and do not need any special support from the operat-
ing system. The second approach, used by CloneCloud[3],
is to modify the underlying virtual machine or operating
system. CloneCloud is a fully automated system and does
not require having the source code of the program because
it works directly on bytecode. Unfortunately, both types of
systems have only been evaluated in the context of compu-
tationally heavy benchmarks, like N-queens puzzles [7] and
virus scanning [3].

Similar with Eprof [9], our communication energy estima-
tion tool takes tail energy into account. Furthermore, con-
sider the traffic patterns, i.e. we take into account the fact
that the power consumption in each active state of Wi-Fi
interface increases with network data rate.

We share many concerns that Balan et al. have presented
in [2]. Their goal was to enable rapid modification of ap-
plications for cyber foraging which is practically the same
concept as offloading in a dynamic and opportunistic fash-
ion. Their approach relies on the developer creating first
a so called tactics file corresponding to the program being
modified, after which the actual program code is modified,
which is a fairly laborious process.

7. CONCLUSIONS
In this paper we studied the feasibility of using method

offloading technique with popular apps to save energy. We
used a set of open source apps to show that offloading using
existing frameworks is often blocked by constraints, while
also missing opportunities for saving energy. Fixing the
problems manually and estimating potential energy savings
is difficult. To this end, we propose initial solutions and a
vision for a complete toolkit.

8. ACKNOWLEDGMENTS
This work was supported by the Academy of Finland,

grant number 253860.

9. REFERENCES
[1] Smartphones and a 3G Network: Reducing the impact

of smartphone-generated signaling traffic while
increasing the battery life of the phone through the
use of network optimization techniques. Technical
report, Signals Research Group, LLC, May 2010.

[2] R. K. Balan, D. Gergle, M. Satyanarayanan, and
J. Herbsleb. Simplifying cyber foraging for mobile
devices. In Proceedings of the 5th international
conference on Mobile systems, applications and
services, MobiSys ’07, pages 272–285, New York, NY,
USA, 2007. ACM.

[3] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and
A. Patti. Clonecloud: elastic execution between mobile
device and cloud. In Proceedings of the sixth
conference on Computer systems, EuroSys ’11, pages
301–314, New York, NY, USA, 2011. ACM.

[4] E. Cuervo, A. Balasubramanian, D.-k. Cho,
A. Wolman, S. Saroiu, R. Chandra, and P. Bahl. Maui:
making smartphones last longer with code offload. In
Proceedings of the 8th international conference on
Mobile systems, applications, and services, MobiSys
’10, pages 49–62, New York, NY, USA, 2010. ACM.

[5] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: an

8

information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th
USENIX conference on Operating systems design and
implementation, OSDI’10, pages 1–6, Berkeley, CA,
USA, 2010. USENIX Association.

[6] R. Kemp, N. Palmer, T. Kielmann, and H. Bal.
Cuckoo: a computation offloading framework for
smartphones. In Proceedings of MobiCASE, Oct. 2010.

[7] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and
X. Zhang. Thinkair: Dynamic resource allocation and
parallel execution in the cloud for mobile code
offloading. In Proceedings of IEEE INFOCOM 2012,
pages 945 –953, Mar. 2012.

[8] M. Kristensen. Scavenger: Transparent development
of efficient cyber foraging applications. In Pervasive
Computing and Communications (PerCom), 2010
IEEE International Conference on, pages 217 –226,
Apr. 2010.

[9] A. Pathak, Y. C. Hu, and M. Zhang. Where is the
energy spent inside my app?: fine grained energy
accounting on smartphones with eprof. In Proceedings
of the 7th ACM european conference on Computer

Systems, EuroSys ’12, pages 29–42, New York, NY,
USA, 2012. ACM.

[10] A. Saarinen, M. Siekkinen, Y. Xiao, J. K. Nurminen,
M. Kemppainen, and P. Hui. Offloadable apps using
smartdiet: Towards an analysis toolkit for mobile
application developers. CoRR, abs/1111.3806, 2011.

[11] Y. Xiao, P. Savolainen, A. Karppanen, M. Siekkinen,
and A. Ylä-Jääski. Practical power modeling of data
transmission over 802.11g for wireless applications. In
e-Energy ’10: Proceedings of the 1st International
Conference on Energy-Efficient Computing and
Networking, pages 75–84, New York, NY, USA, 2010.
ACM.

[12] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick,
Z. M. Mao, and L. Yang. Accurate online power
estimation and automatic battery behavior based
power model generation for smartphones. In
Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software
codesign and system synthesis, CODES/ISSS ’10,
pages 105–114, New York, NY, USA, 2010. ACM.

9

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

