
Energy Efficient Client-centric Shaping of
Multi-flow TCP Traffic

Ahmad Nazir Raja, Zhihua Jin, Matti Siekkinen
Aalto University

School of Science and Technology

ahmadnazir@gmail.com, {zhihua.jin,matti.siekkinen}@tkk.fi

Abstract—Energy consumption is a concern with mobile de-
vices nowadays. Network interfaces are among the most power
hungry components in these devices. In this paper, we describe
the design and implementation of a client-centric protocol for
energy efficiency. Inspired by earlier work, our protocol works
by exploiting the TCP flow-control mechanism to shape incoming
traffic into bursts in order to utilize the unused bandwidth
between the server and the client. Our solution works with
multiple simultaneous connections and it is extensible to different
scheduling policies. Furthermore, the purely client-centric nature
of the protocol enables easier deployment of the solution. The
protocol is application independent and it is targeted for bulky
TCP transfers. The solution can be used on Linux based systems
and is kept portable as it can be deployed with different wireless
devices without major modifications. We have tested our solution
with real web-servers and our results show that the protocol can
achieve sleep time up to 80% and 45% of total duration of one
and four active simultaneous connections, respectively.

I. INTRODUCTION

Energy consumption is a great challenge for the battery

powered mobile devices nowadays. Wireless network inter-

faces are among of the most power hungry components of

these devices. To alleviate this problem, 802.11 includes Power
Save Mode (PSM) which is a mechanism for dynamically

switching the WLAN interface to a low power, sleep state

when idle and back up again when new data is arriving or

being sent.

While PSM works well for bulk traffic or data sent in bursts,

as reported in [5], [8], it is inefficient when applied to a

constant bit rate type of traffic common for streaming or peer-

to-peer client upload traffic, for instance. Therefore, solutions

to shape this kind of traffic into bursts have been proposed,

such as the PSM Throttling mechanism in [10]. Inspired by

this solution, we designed and implemented a similar kind of

protocol. The advantages of our solution are the following:

it is client-centric, i.e. requires no support from infrastructure

or other end point, the architecture is hardware independent,

it works with multiple connections which is necessary to be

used with e.g. peer-to-peer applications and it is extensible

so that different scheduling policies can be plugged in. The

implementation is portable across different Linux platforms.

Several other related solutions have been proposed in the

past. Some of these discard PSM and propose a different proto-

col such as in [8], [2], some suggest co-operative mechanisms

between end points [7], [11], and some propose server-side

[5], [4] or proxy-based solutions [9]. There are also solutions

which trade off performance (delay, throughput) with energy

savings such as in [12], [13]. In contrast, the starting point for

our work was to come up with a deployable solution which

would not require server side support or additional proxies,

works with off-the-shelf 802.11 mobile devices, and does not

hurt the application-level performance.

We also report evaluation results of our solution from tests

in an infrastructure WLAN. Note that it should also work

fine in an ad-hoc configuration because of the client-centric

nature of the protocol. We focus only on TCP traffic which is

the most common transport layer protocol used for both web

browsing and bulk data transfers (i.e. file downloads as well as

multimedia streaming). Our technique is based on exploiting

TCP’s flow control mechanism and, hence, does not support

UDP traffic. Furthermore, the protocol is not suitable for very

interactive applications or applications with sporadic traffic

patterns such as gaming.

We discuss our client-centric solution in Section II. Section

III deals with the design of our solution by discussing the

core components and implementation related details. Section

IV contains the experiments and their outcomes along with our

analysis of the results and possible extensions to our work. We

conclude in section VI.

II. CLIENT-CENTRIC TRAFFIC SHAPING USING PSM

THROTTLING

In this paper we present a novel technique for achieving en-

ergy efficiency for bulky TCP transfers in a client-centric man-

ner. The design is kept hardware independent and works with

multiple connections, which we have demonstrated through

performance evaluation of a real prototype. As our solution

is client-centric, it does not require additional infrastructure

support like the 802.11 PSM does. The design is inspired by

the PSM Throttling protocol proposed by Tan et al. in [10]

that detects unused bandwidth between the server and the

client and uses it to increase predictability of packet arrival

and shape traffic into bursts. High predictability of incoming

traffic can be used to switch the state of the WNI for energy

efficient communication. The technique effectively utilizes

available Internet bandwidth without degrading the applica-

tion’s performance as perceived by the user. We have borrowed

many mechanisms from the protocol but have considered the

addition of the following features while designing our solution:

• Use of timers to transition between states, if required

2010 IEEE/ACM International Conference on Green Computing and Communications & 2010 IEEE/ACM International Conference

on Cyber, Physical and Social Computing

978-0-7695-4331-4/10 $26.00 © 2010 IEEE

DOI 10.1109/GreenCom-CPSCom.2010.135

260

2010 IEEE/ACM International Conference on Green Computing and Communications & 2010 IEEE/ACM International Conference

on Cyber, Physical and Social Computing

978-0-7695-4331-4/10 $26.00 © 2010 IEEE

DOI 10.1109/GreenCom-CPSCom.2010.135

260

• Use of TCP Keep Alive packets to avoid deadlocks

• Keeping the TCP functionality intact by implementing

our solution as a separate layer

• Dynamic calculation of advertised window sizes for

maintaining throughput

• Adding functionality for multiple connections

• Hardware independence of the solution

Our solution works by exploiting the TCP Flow Control

Mechanism which is a windowing mechanism used to control

the flow-rate between the sender and the receiver. According

to the mechanism, the receiver controls the amount of data

that can be received with the help of Receiver Window Size.

A window size with a zero value means that the buffer is

full and the client can not accept more data. Such a packet is

referred to as a choke ACK.
Similar to PSM-Throttling, our solution consists of two

parts: Bandwidth Throttle Detection and Traffic Burst Genera-
tion. The first part as described in [10] detects unused end-to-

end bandwidth restricted by the server, in order to determine

whether or not to proceed with the second part. First, the client

measures the flow rate r as a baseline. Then, the client pauses

the server data transfer by sending a choke ACK. After two

RTTs, the client resumes the server data transfer by sending an

unchoke ACK with restored window size. The client expects

2RTT*r bytes of data buffered at the server to arrive in a burst,

utilizing the full end-to-end bandwidth r’. If r’ > r, there is

unused bandwidth that can be used for traffic shaping.
Traffic Burst Generation is the actual mode of operation

of our solution. The incoming packets are shaped into bursts

similar to how bandwidth is detected during throttle detection.

The client sends ACKs with specific window sizes and then

waits for the amount of data to arrive. On the arrival of the

first packet, the client acknowledges it by sending a choke

ACK preventing the server to send in more data. The client

keeps on receiving data for 1 RTT after having sent the choke

ACK. It counts the number of bytes received and sends an

open ACK once all the expected data has arrived. Let the time

taken to receive the burst be Trecv and the interval between

be Tidle, the total burst time Tburst is equal to the sum Tburst

= (Trecv + Tidle), then it makes sense to shift the WNI to the

sleep state for time period Tidle as long as it is non-trivial (i.e.

Tidle ≥ RTT) otherwise the overall savings might turn out to

be insignificant. We have noticed in our experiments that the

server doesn’t always send data with size equal to the receiver

window size. In such cases, the client doesn’t totally rely on

counting the incoming bytes before transitioning back to the

sleep state but does so after a predetermined amount of time

i.e. the RTT since the last window advertisement was sent.
It is very important to set the value of the receiver window

size small enough that that all the data can arrive within an

RTT. If the number of bytes, as specified in the window size,

takes more than 1 RTT to reach the client, then the algorithm

will fail as the subsequent choke ACK will prevent the server

from sending more data and the client will keep on waiting

for the data to arrive. Therefore, an appropriate sized window

��������	
�	

���
��

���������
�����������

���
��

��	��

���
��

��	��

���������������
�����������������

���

Fig. 1. Generating bursts using the PSM-T protocol

should be set to avoid any deadlock. On the other hand, a very

small sized window will also lead to a lot of overhead and

the protocol might consume more energy than normal. Hence,

the the window sizes need to be advertised dynamically to

maintain the throughput.

III. DESIGN AND IMPLEMENTATION

Following are the requirements we set for the solution:

1) Portable through Hardware In-dependency: Even

though, control of the wireless device might need some

sort of modification of the device driver, the imple-

mentation of the energy saving mechanism should be

independent of the hardware and it should be possible

to implement the protocol with other wireless devices.

2) Easy to Deploy: The end result should require no

(or little) modifications to existing functionality of the

TCP/IP protocol stack. In addition, no support from

infrastructure (APs, middle-boxes) or other end point

should be necessary.

3) Low Computation Overhead: Since, the overall energy

saved depends on how often the WNI is transitioned to

the sleep state, it is important to make these decisions

quickly. In addition, to save energy, the computational

overhead of the solution should be as small as possible.

Consequently, the design of our solution consists of three

components: Traffic Shaping Protocol, Scheduler and WNI
control. The design relies on the Linux kernel which makes

it portable from a Linux system to another but not as such

to Symbian, for instance. We implemented these three design

components as a single kernel module. We explain the roles

and detailed design of the three components individually

below.

A. Traffic Shaping

The function of the traffic shaping component is to, namely,

shape the incoming traffic into bursts so that the underlying

261261

���
�����	

����
�����	
���
�
���

�
����
�	

�
����
���

�����

�����

�
����
�������

���

�����
���	

��������

Fig. 2. Using appropriate Netfilter hooks

device can be put to sleep in between receiving these bursts.

The bursts are generated as we explained in Section II, and

this component needs also to ensure that throughput is not sig-

nificantly affected. The shaping mechanism operates between

the network and data-link layer of the TCP/IP protocol stack

so that it has access to the TCP and IP information for both

outgoing and incoming packets.

We have chosen to use the hooks provided by the Netfilter
Framework (http://www.netfilter.org/) within the Linux Kernel

for packet interception and modification. The framework pro-

vides five positions or hooks where functions can be registered:

Pre-routing, Post-routing, Forward, Local In and Local Out.
Figure 2 represents the five positions that Netfilter framework

exposes. We use the Local In and the Local Out Hooks

for registering our functions to implement the traffic shaping

protocol. Intuitively, the function registered at the Local Out
hook is responsible for out going packets and performs tasks

such as modification of the receiver window size in the TCP

header, if required. Similarly, the function registered at the

Local In hook is responsible for all the incoming packets

and is responsible for a number of tasks depending on the

state of the connection. During throttle detection, the function

determines the payload of the TCP packets and calculates the

flow rates. During traffic burst generation, the function keeps

track of the amount of data arrived in a burst and informs the

scheduler accordingly. In addition, both the functions need to

identify the specific TCP connection that the packet belongs

to, which is done by checking the TCP source port that acts

as the connection identifier.

Apart from normal operation, there can be cases where the

protocol gets stuck in a deadlock. We rely on TCP Keep Alive

packets in such cases, which help in resuming the connection

and also in determining whether the connection has terminated

or not. The TCP Keep Alive packet is simply a TCP ACK with

zero payload.

For each connection, the shaper keeps track of states related

to operational modes i.e. TCP Handshake, Throttle Detection,

and Shaping in order to know when to perform shaping and

when not.

An important responsibility of the shaper component is to

determine the right size for receiver window advertisements. A

too large window will cause the protocol to continue waiting

for the complete burst (until the timer expires) which will

keep the WNIC awake and increase the energy consumption.

On the other hand, a too small window will reduce the

throughput since a smaller number of bytes will arrive within

a fixed period of time. Hence, the shaper adjusts the advertised

window size as follows: Initially, the window size is calculated

by taking the product of the reference throughput (detected at

the beginning of the connection) and the RTT. This window

size is advertised and the resulting throughput is constantly

monitored. We maintain two thresholds for throughput in our

implementation. The upper threshold is necessary because we

noticed that in practice, depending on the TCP implementa-

tion, if the number of bytes advertised in the receiver window

is not a multiple of MSS, the server might not send a full

receiver advertised window worth of data leading to a slightly

lower than expected throughput. Hence, we need to introduce

a kind of safety interval into the protocol. If the monitored

throughput is below the lower threshold, the window size is

increased by the Maximum Segment Size (MSS) which we

found to be 1452 bytes in our experiments. The throughput

thresholds along with other protocol tuning parameters can be

configured and are mentioned in Table I.

B. Scheduler

The scheduler is called when there is a change in the state

of the TCP connection i.e. idle or busy. The scheduler is

responsible for determining when to transition to the sleep

state and when to wake up based on the states on all active

connections. Once such an event should occur, the scheduler

invokes the WNI Control which takes care of modifying

the wireless device’s physical state based on the command

received.

To calculate an accurate value of the time instance that the

network interface should be woken up, it is important to know

some of the hardware specific parameters e.g. the time taken

to transition from the sleep to wake state. Also, the network

conditions should be keep in mind to predict arrival time of

bursts. We use the RTT Variance value and a factor of it,

Aggression Factor, to determine the arrival times. Figure 3

illustrates the impact of these parameters. Once we know the

values of these parameters, we can compute the wake up time

as follows:

Twakeup = Tack +RTT − (RTTV ar ∗AF)− TTwake

where,

Twakeup = Wakeup time of the WNIC

Tack = Time of Sending the Acknowledgment

AF = Aggression Factor

TTwake = WNIC Transition time from sleep to wake state

A number of protocol tuning parameters are mentioned in

Table I. Furthermore, hardware specific parameters such as

262262

�������

�	
����
�
�����

������

�����

���
�������

�������

�������	

�������

������

�����

Fig. 3. Calculating the next Wakeup time of WNI

transition times can also be tuned to cater for different hard-

ware devices. According to [10], mode switching overhead i.e.

between Power Save Mode (PSM) and Constant Awake Mode

(CAM), is 4ms for Atheros chipset Wireless Network Interface

(WNI). We also assume 4ms for the sleep to wake transition

time in our experiments. On the contrary, the transition time

from the wake to sleep state is negligible [3]. These parameters

can be tuned according to the specifications of the underlying

wireless device and hence device hardware independence is

achieved.

C. WNI Control

The WNI Control is responsible for transitioning the WNI

state to sleep or awake based on the scheduler’s decisions.

Note that in cases where the shaping is not considered a good

choice, the device can just rely on standard PSM and this

component (neither the scheduler) will never be invoked. We

have used the Linux Wireless Extensions (LWE) to implement

the mode switching feature. LWE use a set of user-space

tools to configure the wireless device with the help of IOCTL

calls. We reverse engineered the specific IOCTL call for mode

switching and implemented the same functionality from the

kernel domain.

Since transitioning to the sleep state is a hardware dependent

feature, we just provide stub functions for transitioning the

WNI to sleep and awake states. These functions can be

implemented by the user who intends to use the protocol with

the hardware device of choice.

D. Architecture

Figure 4 displays the architecture of the overall solution.

The part overlapping with the Netfilter framework is respon-

sible for interception and modification of TCP packets. The

other part is responsible for scheduling and changing the states

and operational modes of the wireless device.

�����
���	�	
	��
��
	������

��		��	
�������	

��		�������	

���	�	
	��
�	��		

�	
�

		�����	��	��	�

���
���
���

���	�	
	��
�	���	

� !"#$$%&

�'
(�)�
	

�
	

)�
�

Fig. 4. The Architecture

The solid lines represent the data flow where the data is

generated and received by the user-space application which

can be a browser, media player, FTP client etc. The data is

passed to the kernel so that it is processed by the TCP/IP

stack on its way out or in. It also passes through the Netfilter

framework and through the hooks where we have placed our

code for traffic shaping. The dashed lines show how the

operational mode of the wireless device is controlled. The

figure only shows the use of Linux wireless extensions to

transition between CAM and PSM and does not describe WNI

control which is a hardware dependent function.

IV. EXPERIMENTATION AND RESULTS

We experimented with the implementation of our protocol

using a laptop (Intel Core Duo 1.83GHz T5600, 1 GB RAM)

running Ubuntu 9.10 (Karmic Koala). The network controller

used was Intel Corporation PRO/Wireless 3945ABG using

iwl3945 wireless driver. The access point we used for our

tests was Linksys Compact Wireless-G Broadband Router

(Model: wrt54GC v2.0). However, the implementation was

also tested on other Linux based machines, such as Nokia

N900. Parameter values used for our experiments are show in

Table I.

Our parameter for energy savings is idle time of the connec-

tion i.e. the time for which the connections are predicted to be

in the idle state and for which the WNI can be put to sleep. We

believe that this method of determining energy savings leads us

to accurate results as the relationship between actual energy

saved and the idle time is linear. The energy consumption

while the device is active depends very little on the operating

state [6] and for that reason a constant value is usually used for

calculating the energy consumption. For Enterasys Networks

RoamAbout interfaces, energy consumption while the device

is in active state is about 750mW and during idle is 50mW [8].

Also, the energy consumption during sleep to wake transition

263263

TABLE I
PROTOCOL TUNING PARAMETERS

Phase Parameter Purpose Impact Value range Value Used

B
an

d
w

id
th

T
h
ro

tt
le

D
et

ec
ti

o
n

Playout Buffer Wait Time period to wait at the start of the
connection in order to skip the initial
high rate data transfer in cases such
as video streaming

Too large value wastes energy and
time whereas too small value re-
sults in inaccurate measurement of the
flow-rate

> 0 secs 5 secs as used in
[1], [10]

Flow-rate Calculation
Period

Time period to measure the reference
flow-rate

Too large value wastes energy and
time whereas too small value re-
sults in inaccurate measurement of the
flow-rate

> 1 RTT 5 secs

Bandwidth Ratio Least expected ratio between the end-
to-end bandwidth and the reference
flow-rate against. The protocol enters
the Traffic Burst Generation phase if
the ratio is greater than this value.

Smaller value allows the protocol to
engage even when the unused band-
width is not significant.

> 1 2 as used in [10]

Choke Factor Time period in multiples of RTT to
choke the server

A small value may result in inaccurate
measurement of the available end-to-
end bandwidth. A large value might
also lead to inaccurate measurements
since we don’t know how the server
will send the buffered data accumu-
lated over a larger time period.

> 2 3

B
u
rs

t
G

en
er

at
io

n PSM-T Throughput
Thresholds

Upper and lower bounds of acceptable
throughput

Too small upper bound degrades the
throughput whereas too large lower
bound saves less energy

[0 - 100, 0 -
100] in theory

[95,97]

Aggression Factor The aggression factor is the value
which determines how aggressive is
the prediction scheme for incoming
packets

Large value reduce the risk of missing
the incoming packet, but leave less
margin to save more energy

0 - 1 0.5

is almost the same as that in active state whereas energy

consumption is negligible while transitioning from wake to

sleep state [8].

A. Testing with Single Connections

We started with testing the protocol with a single Youtube

connection where the RTT and Variance values for the con-

nection were 46 msecs and 22 msecs respectively. Figure 5

is a graph acquired by plotting the idle time detected by the

PSM-T protocol with the time lapsed since the connection

entered the PSMT state. The connection time lapsed does not

account for the initial 10 secs for the play-out buffer and flow-

rate calculation. It can be observed that the relationship is

linear which means that the protocol is capable of providing

a constant level of energy savings.

Figure 6 plots the percentage of savings i.e. (Idle Time/Time

Lapsed) * 100, with the time lapsed. It can be observed that

there is a very steep increase in the accumulated savings

because the actual savings start after some initial delay. This

delay be explained by the fact that the protocol might take

some initial time to stabilize and doesn’t save energy if the

throughput doesn’t fall in the required thresholds. After the

initial stabilization period, the protocol maintains the required

throughput by dynamically adjusting the advertised window

sizes. We can see from the figure that for a video longer than

100s, it is possible for the network interface to sleep more

than 70% of the time. The maximum sleep time achievable in

this experiment seems to be roughly 75%.

Figures 7 and 8 plot the results for a different connection

� �� ��� ��� ��� ��� ��� ��� ��� ��� ���
�

��

���

���

���

���

���

���

�	
��
�������
���
�
���

���������	�������

�	

�

�

��

�
��
�
�
�
�
�

Fig. 5. Stability of a Single Youtube stream using PSM-T protocol

which experienced some RTT or bandwidth fluctuations at

certain points of time. We observe that the protocol stopped

accumulating idle time for about 50 seconds at approximately

240 secs and 420 secs. This can be explained from figure

9 which shows that the throughput dropped below a certain

level (95% of the reference throughput) at those time instants.

At those moments, the protocol tried to achieve the original

throughput by stopping the scheduling and increasing the

window advertisements. As soon as the required throughput

was achieved, the protocol started accumulating idle time

again. These fluctuations caused the accumulated sleep time

to be only 55% of whole duration. By using more lenient

264264

� �� ��� ��� ��� ��� ��� ��� ��� ��� ���
�

��

��

��

��

��

��

��

��

������	
��
��
���������������

������
���
� ����!

"
�
��
�
�
�

�
�
��
��
�
��

�
�

Fig. 6. Accumulated Savings of the PSM-T protocol over time

� ��� ��� ��� ��� ��� ���
�

��

���

���

���

���

���

���

�������	��
����
�����	�

��	���������������

��
��
��
�	

�
��
�
�
�
�
�

Fig. 7. Fluctuations in a single Youtube stream using PSM-T protocol

� ��� ��� ��� ��� ��� ���
�

��

��

��

��

��

��

��

��

������	
��
��
���������������

������
���
� ����!

"
�
��
�
�
�

�
�
��
��
�
��

�
�

Fig. 8. Accumulated Savings with fluctuations from the Server

� ��� ��� ��� ��� ��� ���
�

��

��

��

��

��

��

��

��

��

������������	
��
�
�
�

���	�	
��
�
�
��
��������

#�$�������
	
��
�
�
��
��������

	�%��&����'�������

�
�
�
	
� 	

��

�

�

��
��
�
��
�
�
�

Fig. 9. Throughput Maintenance with fluctuations from the Server

throughput thresholds, the energy savings can be increased at

the cost of throughput.

B. Testing with Four Active Connections

In this section we discuss the results of downloading

four simultaneous Youtube streams which are established

with 20 secs interval. This means that once a connection is

setup, it takes about 30 secs for the next connection to enter

shaping state. Since the graphs show effects of connections

in shaping state only, we expect to see some fluctuation at

about 30 secs intervals in the overall energy savings. Table II

displays the RTT and variance values for the four connections.

RTT (msecs) Var (msecs)
Connection#1 45 23
Connection#2 44 24
Connection#3 41 13
Connection#4 45 22

TABLE II
RTT AND VARIANCE VALUES FOR THE CONNECTIONS

Figure 10 presents the stability as well as the accumulated

savings for each connection. The stability of the protocol

can be seen in the form of a linear relationship between the

time saved (or idle time) and the total time. The accumulated

savings graph for each connection show how quickly the

PSM-T protocol reaches its maximum performance for each

connection. It can be observed that apart from some fluctuation

at around 230 secs in connection#1, all other connections are

fairly stable. This fluctuation is expected to be seen in the

overall sleep time. We see that due to the fluctuations, con-

nection#1 achieves slightly less accumulated sleep time (70%)

compared to connection#2, connection#3 and connection#4

(over 80%).

Figure 11 shows the combined effect of the active connec-

tions on energy savings. Note that these values represent the

actual sleep time for the network interface. It is evident that

265265

� ��� ��� ��� ��� ��� ���

�

���

���

���

���

���

���

� ���!�	��
��!�
���!�	�

!�	������� �������

�
��
�!
�	

�
��
�
�
�
�
�

� ��� ��� ��� ��� ��� ���

�

��

��

��

��

��

��

��

��

��

����	���
� ��� �!"��� �#�!�	�

$�!!��
��!�� $�!!��
��!�� $�!!��
��!�� $�!!��
��!��

!�	������� �������

%
�
#�
�
!

�
"
�
�!
�	

�
��
�

�

Fig. 10. Results for the four connections using PSM-T protocol

the relationship between the idle time and time lapsed is not

as linear nor as steep as that of individual connections because

the bursts of different connections are not all overlapping. It

seems that the relationship is steeper after 390 secs which

is due to the termination of connection#1 and subsequently

other connections. Since each connection is setup after 20

seconds from the previous one, it takes about 30 secs for next

connection to enter the shaping state. The graph with accu-

mulated savings plotted over time shows that the combined

energy savings stabilize after 90 secs which is the time when

all four connections enter the shaping state. There is a decrease

in accumulated savings at about 220 secs which is the effect

of connection#1 facing fluctuations. We see that it is possible

for the interface to sleep 44% of the 390 secs (termination

time of connection#1).

V. DISCUSSION AND FUTURE WORK

The shaping mechanism for energy savings relies on transi-

tioning the WNI to the sleep state between two bursts. There

is some overhead associated with each transitioning. Hence,

the fewer transitions there are (i.e. the larger the interval) the

greater are the savings. Currently, we use straightforwardly the

RTT of the connection as the period during which a burst is

generated and received.

However, we could increase this period by adding a constant

� ��� ��� ��� ��� ��� ���

�

��

���

���

���

���

���

���

� ���!�	��
��!�
���!�	�

!�	������� �������

�
��
�!
�	

�
��
�
�
�
�
�

� ��� ��� ��� ��� ��� ���

�

��

��

��

��

��

��

����	���
� ��������������!�	�

!�	������� �������
"
�
��
�
�

�
�
�
� !
�	

�
��
�
�
�

Fig. 11. Accumulative effect on savings - Emulating the WNI with four
active connections using PSM-T protocol

delay, delta to the RTT, at the client end. In principle, as long

as the advertised window size is equal to the bandwidth-delay

product, the protocol should function correctly. In our case,

the bandwidth is not the path capacity between the server and

the client, but the reference bandwidth (FRnormal) calculated

at the start of the connection. Thus, it should be possible

to increase the efficiency of the protocol by increasing both

the period and the advertised window size (WS) so that the

following equality holds:

FRnormal ∗ (RTT + delta) = WS

However, this artificial increase might have some affect on

the throughput in real life scenarios. One of the possibilities

include increasing the RTT to more than a certain limit in

which case the server might start sending TCP Keep Alive

packets. In addition, the receiving TCP’s buffer size (can be

relatively small in a mobile device) might limit the advertised

window size. Studying the limitations of this approach is part

of our future work.

Another avenue for future work is to design smarter schedul-

ing policies. Currently, the scheduler we use is dumb: It is

invoked by the traffic shaper component when the state of the

connection is changed and if it notices that all the connections

are in the idle state, it in turn tells WNI Control to put the

interface to sleep. Since, the scheduler is aware of the states

of all the connections and their attributes, it can be designed

to intelligently adjust the period of generating and receiving

a burst in order to synchronize the burst reception among all

266266

active connections. It is non-trivial to design such a scheduler

that also takes into account the fact that in real world transfers

do not behave in a static manner.

VI. CONCLUSION

We present in this paper the design and implementation of

a client centric and application independent protocol to save

energy in bulky TCP downloads without affecting the average

throughput of the connection. Our solution is portable among

different Linux-based systems. It also works with multiple

simultaneous connections and supports different scheduling

policies. Furthermore, our implementation of the protocol

complements standard TCP functionality and does not require

modifications to it. We have tested our solution with real web-

servers and have found that the protocol yields good results in

most cases. However, for multiple simultaneous connections,

a smarter scheduling would be beneficial, which is part of our

future work.

ACKNOWLEDGMENT

This work was supported by TEKES as part of the Future

Internet program of TIVIT (Finnish Strategic Centre for Sci-

ence, Technology and Innovation in the field of ICT).

The authors would like to thank Mohammad Ashraful

Hoque for sharing his interesting ideas and solutions during

the initial stages of the research.

REFERENCES

[1] How to change the proxy and buffer settings in windows media player.
http://support.microsoft.com/kb/257535.

[2] Manish Anand, Edmund B. Nightingale, and Jason Flinn. Self-tuning
wireless network power management. In MobiCom ’03: Proceedings
of the 9th annual international conference on Mobile computing and
networking, pages 176–189, New York, NY, USA, 2003. ACM.

[3] G. Anastasi, M. Conti, E. Gregori, and A. Passarella. Saving energy in
wi-fi hotspots through 802.11 psm: an analytical model. In Proceedings
of the Workshop on Linguistic Theory and Grammar Implementation,
ESSLLI-2000, pages 24–26, 2004.

[4] Surendar Chandra. Wireless network interface energy consumption
implications of popular streaming formats. In In MMCN, pages 85–
99, 2002.

[5] Surendar Chandra and Amin Vahdat. Application-specific network
management for energy-aware streaming of popular multimedia formats.
In ATEC ’02: Proceedings of the General Track of the annual conference
on USENIX Annual Technical Conference, pages 329–342, Berkeley,
CA, USA, 2002. USENIX Association.

[6] Laura Marie Feeney and Martin Nilsson. Investigating the energy
consumption of a wireless network interface in an ad hoc networking
environment. In In IEEE Infocom, pages 1548–1557, 2001.

[7] Kyu-Han Kim, Yujie Zhu, Raghupathy Sivakumar, and Hung-Yun Hsieh.
A receiver-centric transport protocol for mobile hosts with heteroge-
neous wireless interfaces. Wirel. Netw., 11(4):363–382, 2005.

[8] Ronny Krashinsky and Hari Balakrishnan. Minimizing energy for wire-
less web access with bounded slowdown. In MobiCom ’02: Proceedings
of the 8th annual international conference on Mobile computing and
networking, pages 119–130, New York, NY, USA, 2002. ACM.

[9] Prashant Shenoy, Peter Radkovdepartment, and Computer Science.
Proxy-assisted power-friendly streaming to mobile devices. In In
MMCN, pages 177–191, 2003.

[10] Enhua Tan, Lei Guo, Songqing Chen, and Xiaodong Zhang. Psm-
throttling: Minimizing energy consumption for bulk data communica-
tions in wlans. Network Protocols, IEEE International Conference on,
0:123–132, 2007.

[11] V. Tsaoussidis and C. Zhang. Tcp-real: receiver-oriented congestion
control. Comput. Netw., 40(4):477–497, 2002.

[12] Haijin Yan, Rupa Krishnan, Scott A. Watterson, David K. Lowenthal,
Kang Li, and Larry L. Peterson. Client-centered energy and delay
analysis for tcp downloads. In In IEEE International Workshop on
Quality of Service, 2004.

[13] Haijin Yan, Scott A. Watterson, David K. Lowenthal, Kang Li, Rupa
Krishnan, and Larry L. Peterson. Client-centered, energy-efficient
wireless communication on ieee 802.11b networks. IEEE Transactions
on Mobile Computing, 5(11):1575–1590, 2006.

267267

