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ABSTRACT
Detecting and tracking the position of a mobile user is an
increasingly important feature in many mobile applications.
In this work we study how cheap and energy-e�cient air
pressure sensors measuring the altitude could be used, as
a complement to the dominant GPS system. The corner-
stone of our approach is that a huge amount of route data,
collected with GPS devices, is available in various cloud
services. The location detection and route tracking task
thus becomes a question of matching the collected altitude
traces with the altitude curves of stored data to find the
best matching routes. Here we build a prototype system of
crowd-sourced database containing only altitude data. How
accurately this stored altitude data could be matched with
the collected altitude traces is the key question of our study.
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1. INTRODUCTION
The GPS system is widely used to detect the position of

a device. However, one of its problems is the relatively high
energy consumption [10], [13]. Moreover, it is not usable
indoors where the satellite signals are not visible. Alter-
native positioning methods have therefore attracted a lot
of attention. Particularly interesting are solutions which
use low cost sensors with small energy consumption such as
accelerometer, magnetometer (compass), and air pressure
sensors [13], [15]. They allow position detection and route
tracking with small energy consumption. Moreover, it is
possible to embed such sensors in simple and cheap devices
such as entry level mobile phones, fitness watches, or toys.

A concrete example of the potential of such approach is
that today many heart rates monitors are able to record
the altitude curve of a training route. Moreover, people are
eager to share their exercise data in various social services
creating thus a crowd-sourced database of potential exercise
routes. By matching a collected altitude curve with previ-
ously stored routes it would be possible to find out which
route the person took. The problem is simplified by the fact
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that most routes follow paths or streets reducing the num-
ber of alternatives dramatically. However, di�culties arise
e.g. from the di↵erences in speed (especially when di↵erent
forms of movement are involved: walking, running, biking),
from the e↵ect of route traversal direction, and from the
daily variations in air pressure.

In this work we study the feasibility of finding the tra-
versed routes by matching altitude data with stored route
information in a crowd-sourced database. In particular, the
key contributions of our work are:

• We propose a concept of using crowd-sourced route
data to track the movement of a mobile device with
an altitude sensor. In addition to the simpler case of
detecting the route after it has been completed we also
sketch the possibilities to use similar approach on the
move.

• We study the feasibility and accuracy of the approach
by analyzing the characteristics of a number of stored
routes and derive values for estimation parameters with
that data. In addition to matching full routes we ana-
lyze the matching of partial routes and of routes con-
sisting of multiple sub-routes.

• We perform an extensive measurement study and ex-
periment with traces collected via walking, biking and
riding a bus in di↵erent geographical areas. We also
study how the speed of movement, means of trans-
portation, and route traversal direction influences the
matching accuracy.

• We discuss how such an approach could be used to
save battery on a GPS enabled smartphone by allowing
GPS to be switched o↵ when the user is following a
route found from the crowd-sourced database

• We envision how such a system could be used and pro-
pose ideas for further research

The rest of the paper is structured as follows. In section 2
we discuss the background and related work. In section 3 we
describe our approach in detail and section 4 provides the
details of the matching algorithm. Section 5 describes the
results of our trace analysis and section 6 the application of
the matching to a set of use cases. In section 7 we discuss
the applicability of our approach and the new opportunities
it creates. Finally, we conclude in section 8.

2. RELATED WORK
To overcome the limitations of GPS a lot of alternative

solutions have been studied. Some of them try to minimize
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the time GPS needs to be active and some complement ear-
lier collected GPS data. The most relevant related approach
are summarized below.

User activity patterns using sensors Research work
in the past has been able to determine user-movement using
a duty-cycled accelerometer [13], [15], [17], [22]. Trajectory
tracking algorithms [12] detect directional movements of a
mobile with compass and sensors. In [17], [22], total time
duration of user’s movement, time period during which he is
driving, stationary, running, walking [14] and his velocity at
di↵erent times are useful in learning a user’s activity pattern.
The objective behind this technique is to turn on the GPS
when the match to previously learnt space-time history of
user activity falls below a certain threshold [6].

Experiments evaluated on Android-enabled cell phones
with accelerometer and compass have been able to provide
location estimates, where GPS fix determined the initial po-
sition and velocity. These readings su↵ered a linear loss in
accuracy compared to GPS accuracy in highways and intra-
city driving environments [23].

User activity patterns using Celltower-idUser move-
ment can also be predicted using trajectory mapping mech-
anisms where cellular (GSM) fingerprints can be used to
estimate the highest probable trajectory (sequence of map
segments) followed by the mobile device [10], [18], [21]. The
GSM fingerprint collecting application, known as CTrack
takes into account uncertainity in path transition of a mobile
user and records all the GSM tower observations during its
movement. This procedure known as celltower-RSS black-
listing detects GPS unavailability (e.g. indoors) and avoids
turning on GPS in these places. The GSM fingerprints (con-
taining current celltower ID and the received signal strength
(RSS) [17] without any GPS fixes) are directly matched to a
map. The map matching algorithm converts the whole space
as grid cells and determines the mostly likely traversed grid
cell and its corresponding road segments [21].

Sharing GPS information using Bluetooth Blue-
tooth communication [10], [17] has served one of the means
in reducing position uncertainty among neighbouring de-
vices. New position updates are broadcasted to neighbours
(with or without GPS functionality) who can obtain this
measure and save a GPS query. Neighbours also send their
own position estimates to other peers. Such peers learn this
new update when this estimate has a lower accuracy value.
This helps all neighbouring GPS devices in close proxim-
ity to synchronise themselves with GPS positions of least
accuracy.

In contrast to most prior approach our idea is centered
on the crowd-sourced database of routes taken earlier. Such
databases already exists for e.g. sharing exercise data and
therefore our approach could be directly taken into use with-
out a special e↵ort to create a route database. An example
of such already existing database is Sports tracker [3], [5].
It is an exercise tracking application that uses the mobile
phone’s GPS readings and, optionally, heart-rate monitor
to track outdoor user activities like speed, position, heart
rate etc. It then broadcasts the details to a social cloud
service where spectators can view online the live events of
every sportsman.

3. SYSTEM ARCHITECTURE AND OPER-
ATION

Our system architecture consists of the following key com-
ponents:

1. Crowd-sourced route database on the cloud In
the simplest case this is centralized server hosting the
database of earlier routes. If the proper APIs were in

place, databases available in existing services, such as
Sports tracker, could be used.

2. GPS enabled mobile device The GPS enabled mo-
bile devices, typically smartphones, are used to pop-
ulate the route database with the GPS traces. They
could keep the GPS on all the time or activate it only
when needed, that is, when no matching route is found
in the database. The device could continuously access
and update the route database, or it could do the up-
date o✏ine after the activity, using e.g. a proximity
connection at home.

3. Mobile device with altitude sensors These devices
include heart rate monitors, fitness watches and also
entry level phones with no GPS functionality. The es-
sential functionality is to collect and store the altitude
traces during movement. If the device is able to per-
form wide area wireless communication it can access
the route database on the move allowing realtime route
discovery and location detection. Otherwise the stored
data could be analyzed o✏ine in a batch mode after
the completion of the activity.

Figure 1: Prototype System Implementation show-
ing altitude trace collection (Pink), route matching
algo (Green) and o✏ine learning (Blue)

Figure 1 illustrates the key steps of the system operation.
In this paper we focus on o✏ine route matching. However
matching techniques can also be extended to online match-
ing where network connected devices, like smartphones, on
the move send altitude readings of partial routes to the cloud
and retrieve GPS position information of discovered routes.
Here online altitude matching enables the positioning on
already discovered routes while undiscovered routes still re-
quires the use of GPS.
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For GPS un-enabled devices the altitude information is
obtained from an atmospheric pressure sensor (Step 2A) and
fed to the cloud o✏ine at the end of the day in a batch
mode (Step 4). For GPS-enabled phones, the use of an in-
built pressure sensor is recommended as it reduces the power
consumption (Step 3A). For smartphones without pressure
sensor, we consider only the altitude fixes of in-built GPS
to emulate the altitude readings as readings of a pressure
sensor (Step 3B). The cloud is also provided with the GPS
start position and direction externally so that matching sub-
set is confined to stored routes where GPS start direction
coincides. This start direction is obtained by receiving the
initial GPS fixes for 10 - 12 secs at all route origins.

The cloud matches the input altitude trace to all of the
visited altitude traces stored in the database with the same
GPS start direction (Step 5, Step 6). If the coe�cient of
matching is within a certain range compared to any of the
stored routes, the cloud concludes the mobile user travels
along one of the previously visited routes. Otherwise it con-
siders it as a completely new route and updates the database
with the altitude data of the new route (Step 6A). Further-
more, low-end phones (without GPS) obtain the GPS co-
ordinates of new undiscovered routes from the cloud (Step
6B). Here the cloud is updated with the same GPS coor-
dinates externally by a map service like Google map (Step
8A) for any given mode of transport (riding a bus or bik-
ing or walking). On the other hand GPS enabled phones
can directly obtain GPS route information from its built-in
GPS (Step 8B). This information trains the cloud with the
altitude data and GPS positions of the new route. It can
later send this information to requesting clients (Step 6B).

In this paper we focus our study to di↵erent use cases
of altitude matching to reduce the GPS activity. The next
sub-section discusses these scenarios.

3.1 Use cases of Altitude Matching
In this section we evaluate the applications of altitude

matching for a number of use-cases under di↵erent modes of
transport, movement speed and atmospheric pressure (Use-
case 4). These use-cases are analyzed by carrying out a post-
mortem route analysis on the collected field traces. Such
route analysis capabilities include matching complete, par-
tial and reversed curves with a curve matching algorithm
(Use-cases 1, 2, 3).

1. Complete Route MatchingMatching altitude curves
can be applied to match two complete routes. Figure 9
is an example of complete route matching of a defi-
nite biking route without any active GPS. This type of
matching is used in the context of the system to match
two curves with same GPS start direction, one of which
is frequently traversed and stored in the database and
the other route is newly traversed.

2. Partial Route Matching For lengthy routes, it also
becomes essential to match segments of one complete
route and one incomplete route. Figure 3 shows par-
tial route matching on three di↵erent days of a defi-
nite bus route. Partial matching detects deviation in
user-movement quickly from the course of frequently
traversed routes. Here, in case of online matching the
GPS gets turned on automatically (in GPS enabled
phones) when the mobile user deviates from the most
frequently traversed route.

Partial route matching can be further extended to sit-
uations (like Matching multiple partial routes)
when the route taken by a mobile user falls into multi-
ple sub-routes of previously stored routes in the database.
Figure 7 of Section 6.2 explains the algorithm when

the current route of the user fails, the database tries
to find the intersections of the current route with the
existing stored routes in it. Figure 2(b) describes this
condition when a known start direction is provided to
the cloud and section of the current route no longer
matches with the sub-routes (previously visited) stored
in the database. Figure 3 more clearly presents the el-
evation of a complete route (consisting of 5 sub-routes
of which one sub-route is of Track 1).

Figure 2: Coverage of multiple sub-routes, with one
sub-route matched to a complete known route

Figure 3: Partial matching

The red lines of Figure 2(a) presents three di↵erent
sub-routes of three complete known routes covered by
a mobile user. A known start direction (obtained ei-
ther through a GPS fix or an external map) is supplied
to the cloud when the sub-route for each of Track 1,
Track 2 and Track 3 begins and ends. For online match-
ing where the mobile user communicates with the cloud
at frequent intervals (like Sports Tracker), the GPS 2 ON
and GPS 2 OFF denote GPS ON and OFF instants at
the beginning of the Track 2. On finishing Track 2 a
start direction for Track 3 is provided to the cloud for
finding its intersection point with any of the stored
routes. For a GPS-enabled mobile phone using online
matching, GPS active interval is denoted by the sum
of time interval between GPS 1 ON and GPS 1 OFF,
GPS 2 ON and GPS 2 OFF, GPS 3 ON and GPS 3 OFF
points. As Track 1, Track 2 and Track 3 happens to
be one of the previously visited sub-routes stored at the
cloud, the position coordinates are retrieved for these
tracks. The algorithm used for matching sub-routes is
described below in Figure 7.

3. Reversed Route Matching

The altitude traces of any frequently visited route dur-
ing its upward course of journey (from source A to
destination B) should be ideally mirror image of its
downward course (from source B to destination A) of
journey. Here we analyze the performance of match-
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ing altitude curves along the same route traversed in
opposite directions.

4. Matching curves with di↵erent speed and atmo-
spheric pressure Altitude traces obtained on di↵er-
ent days with varying speed and atmospheric pressure
are compared to analyze how much they di↵er.

4. CURVE MATCHING ALGORITHM
The Curve Matching Algorithm [11] in this paper com-

pares ’two altitude curves’, the known route being stored
in the cloud and the unknown route being recently com-
pleted by the mobile user during the course of the day (of-
fline matching). The application of the algorithm in di↵erent
circumstances are discussed below

1. To find the best matching route from the database by
matching the two altitude curves.

2. To find the best matching sub-route from the database,
when the user covers sub-section of a given route stored
in the database.

We use Sethian’s Fast Marching [11] Method to compute
the dissimilarity function (F(t, s)) of two curves C1(t) and
C2(s) at given points t and s. It measures the shape di↵er-
ence between the two curves. The di↵erence in distance is
measured by taking the least sum of the local dissimilari-
ties between individual pairs of curve points. For example
C1(t) = (x1(t), y1(t)), t 2 [0,m] and C2(s) = (x2(s), y2(s)),
s 2 [0, n], represent two curves C1 and C2. Of the other pa-
rameters m, n denote the lengths of the respective curves.
When the end-points of the two curves coincide, the local
dissimilarity function F is a path c through t, s-space from
(0, 0) to (m, n) such that

T (m,n) = min
c

Z

c

f(c(⌧)) d⌧ (1)

The weighted distance function T(m, n) is the Curve Dif-
ference Coe�cient (CDC) of the two curves f(c(⌧)). It rep-
resents the minimal cost function required to travel from any
given point to the point (t,s) in R. The weighted distance
is calculated by incorporating a weight factor to all paths
between the start and end points of the arc. The minimum
weighted Euclidean distance of the arc-length is then used
as a metric to di↵erentiate the two curves optimally. The
distance between C1 and C2 can be represented as

d(C1, C2) = T (m,n)� �⇥
p

m2 + n2 +

����1�
min (m,n)
max (m,n)

����
(2)

where path represents the minimal cost function between
each pair of curve points. Here � represents smoothing con-
stant such that � > 0. The smoothing constant helps in
running the algorithm when the two curves have negligible
di↵erences in their curvatures. Here �, the smoothening
constant is chosen as 0.5 so that the behaviour of the algo-
rithm is neither too opportunist or conservative. The sec-
ond term in the expression is a normalizing factor while the
third term in the expression subdues stretching or bending
e↵ect of the curves, minimizes curve di↵erence when curves
are matched on non-uniformly spaced grids. Among time-
series algorithms Dynamic Time Wrapping Algorithm [19]
is well known for minimizing scaling or shifting variations in
time but its time and space complexity is O(N2). Hence we
choose Sethian’s Fast Marching algorithm (complexity O(N
logN)) as a good metric in matching curves based on shape,

ignoring the width and height di↵erence of the curves under
consideration [11]. This concept is more illustrated in the
Use-case 4 described below.

5. EXPERIMENTAL SETUP
Our system setup consists of a 1) A GPS-enabled Smart-

phone (N8) 2) A pressure sensor from a heart-rate monitor
(Polar 650X) 3) A server or cloud. The cloud stores the
known routes in a database and runs a matlab program for
route matching computations. We used a heart-rate monitor
initially in the experiment to explore how altitude informa-
tion obtained from its pressure sensor varies for the same
route on di↵erent days during biking. As the smartphone
N8 does not contain a pressure sensor, we emulated N8 as a
heart-rate monitor by considering only the altitude fix ob-
tained from its in-built GPS. For positions with same GPS
coordinates, the altitude fix with least vertical accuracy is
considered. The same experiment was repeated with mode
of transport as walking and riding a bus.

5.1 Trace Collection
Our initial objective is to study the barometric pressure

readings for a given route on di↵erent days to understand
the extent of similarity or dissimilarity of the altitude traces.
It also helps us to understand the importance of a pressure
sensor in route exploration. The statistical analysis of the
traces leads to the design of the decision making system at
the cloud. In the next section of the paper we analyze the
behaviour of the algorithm for di↵erent use-cases.

We collected repeated altitude traces along a given route
in two opposite directions (to and fro from source to des-
tination) slightly more than a month (34 di↵erent days).
The readings are recorded while biking by a pressure sen-
sor of a heart-rate monitor along a given route (10 km) in
both the directions. The average biking speed was 20 - 25
km/h. Each of these 34 day’s curve is then permuted with
other 33 day’s curve and the curve di↵erence is then cal-
culated between each pair using Sethian’s Fast Marching
Algorithm. We closely analyzed the results between all the
matched pairs i.e. 34⇤33

2 comparison results for each direc-
tion.

We also took repeated altitude traces along 3 di↵erent
routes both by walking (3 - 5 km/hr) and 2 di↵erent routes
by riding a bus. However we chose to limit the comparison
set to a smaller value of 20 days. Each of these 20 day’s
curve is then permuted with other 19 day’s curve and the
curve di↵erence is then calculated between each pair using
the same algorithm. We closely analyzed the results between
all the matched pairs i.e. 20⇤19

2 results for each route each
direction separately for 2 bus and 3 walking routes. All the
traces collected during the initial phase are used for learning
the altitude curve distribution of di↵erent routes.

Further separate traces are collected, half the same num-
ber (16 days for cycling, 10 days for each of bus riding and
walking) along the same routes to evaluate our test results.
Figure 5 presents traces collected with Nokia N8 in Espoo
Helsinki region with elevation level ranging from 0 - 74 feet/0
- 22.5 meters above sea-level. The region has population
standard deviation (SD) of 5 meters (obtained from Google
Map [1]. The Figure 5 in the right also shows vertical accu-
racy distribution of N8 as approximately 100 meters.

5.2 Trace Analysis
The traces collected following a bus route, biking, and

walking are analyzed independently and CDC is calculated
between all the matched pairs along a given route. The
server logic is designed to have a selection criteria based on
mean CDC to decide if the currently visited route of the
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mobile user is one among the stored routes in the database.
We had 34⇤33

2 di↵erent comparison results for biking and
20⇤19

2 di↵erent comparison results for each of bus route and
walking route. Here on comparison of the dissimilarity func-
tion (CDC), between every matched pair of the altitude
curve along the same route we found that it is normally
distributed. This is further illustrated by histogram in Fig-
ure 4(b) presenting the permuted comparison results for one
direction. As the CDC of the two di↵erent bus routes (first
2 rows of Table 1) are quite close and the distribution func-
tion looks quite similar, here we represent only one route.
The histogram demonstrates the curve di↵erence distribu-
tion function of a given sub-route of bus with 180 unique
GPS points. The sub-route (1.35 - 1.5 km) was covered on
di↵erent days within 4 - 5 mins interval with the bus travel-
ing approximately at a speed of 30 - 32 km/hour. However
the choice of the sub-route length has been explained in the
context of partial matching and system performance. The
three central bars constituting 81% lie within a range of
±10% calculated from the mean of 20⇤19

2 di↵erent compar-
isons. The rest 19% of the CDCs is spread across (3 left and
2 right bars) both sides of the central bars. We also used
matlab test metric normplot [4] to fit the altitude distribu-
tion to a normal distribution. Figure 4(a) shows the data
with a blue plot and symbol ’+’. The linearity of the plot
confirms the distribution could be a form of normal distri-
bution.

Figure 4: Histogram and Fitness to a Normal Dis-
tribution

Further we took 20 days’ collected traces and analyzed the
ratio between the CDC and the Mean Curve di↵erence Coef-
ficient (M CDC) between every permuted matched pair and
plotted them in a cumulative distribution function (CDF) in
Figure 6. The ratio of CDFs for walking, biking and riding a
bus along a given sub-route are represented by plotting them
in the same graph with three di↵erent colors. All the sub-
routes are of the same travel time of 5 mins. In the CDF,
the Y axis represents the percentages of these ratios (0 to
1 and above) while the X axis represents the ratio between
Actual CDC and Mean CDC.

XAxisr =
Actual CDC

Mean CDC

It is found that all the curves follow similar trend and the
walking curve traveling with the slowest speed (3 - 5 km/hr)
has the least deviation (with 25% values exceeding 1.10 and
93.3% of values exceeding ratio of 0.7). The curve obtained
from traces collected following a bus route has the largest
deviation (with 29% values exceeding 1.10 and 73.8% of val-
ues exceeding ratio of 0.7). It also has the highest traveling
speed (30 - 35 km/hr) and the largest distance covered. The
curve obtained from biking lies midway between biking and
riding the bus (with 28% values exceeding 1.10 and 83.7%
of values exceeding ratio of 0.7). Biking speed falls mid-
way between walking and bus speed (20 - 25 km/hr) and
the distance covered by it also falls midway between bus
route and walking. From these results we can safely con-
clude the CDCs of a definite route increases with higher

traveling speed and larger distances traveled.

Figure 5: Distribution of Elevation traces (feet) and
vertical accuracy of Nokia N8 in Espoo Helsinki

Figure 6: CDF of altitude CDCs along 3 definite
sub-routes (5 mins), from Espoo-Helsinki

5.3 Tolerance Factor
Tolerance factor can be defined as an acceptable level of

deviation between a newly matched curve and altitude curve
of a previously learnt route stored in the database. The tol-
erance factor is added to the mean CDC of a frequently
visited route to govern the flexibility/rigidity of the server’s
decision. This is then termed as Threshold of Curve Di↵er-
ence Coe�cient (T CDC). For a given mode of transport,
the threshold factor for each route is calculated by adding
a tolerance factor to it. The threshold limit is taken on the
higher side of M CDC (i.e. M CDC + 10%). M CDC -
10% ( T CDC) is assumed to lie within the acceptance
range provided the start direction, transport mode of the
two curves are the same and speed of travel is within 25%.

With a higher tolerance limit, the server is more oppor-
tunist in its prediction. The server predicts that the newly
matched curve is one of the old curves stored in the database
even when the CDC between them is considerably higher
than the mean value. On the other hand the server is more
conservative in its decision with a lower tolerance limit. Here
on noticing the slightest deviation from CDC, it predicts the
newly matched curve as a new route and learns the GPS
route information. Here the tolerance limit sets the main
criteria for the server to accept or reject the newly matched
route as an old or new route respectively.

The threshold factor is decided by analysing the accep-
tance rates by the server when curves along the same route
with the same transport mode are compared. Table 1 presents
that for di↵erent modes of transport along a given route, the
correctness of the server’s prediction increases by increas-
ing the percentage of the tolerance. For all the modes of

173



transport we find that the highest change in acceptance oc-
curs when the tolerance percentage is set at 10. With the
change of tolerance limit from 5% to 10%, maximum change
is recorded in the acceptance rate (11%). But for most of the
routes the change in acceptance rate for changing the toler-
ance limit from 10% to 15% is only 4 - 5%. Hence during
learning phase we allowed a 10% tolerance level to the mean
value to set the threshold for each route (T CDC) along a
fixed mode of transport.

Altitude CDC curve distribution fits well to a normal dis-
tribution (Figure 4(a)). So we estimated our results at 95%
level of confidence. At this level of estimation, T CDC for

a given route falls within the range of m± 1.96⇥ �p
N

. This

confidence level is used to evaluate the system performance,
accuracy for di↵erent use-cases in the existing learning sys-
tem. For a normal distribution like this, standard error (SE)
will increase with degree of variation in elevation level at any
region. For e.g rugged hilly terrains will have high CDC and
therefore high SE. Our analysis shows lengthy bus routes of
varying altitude levels have the highest SE of 1.2, followed
by walking routes with SE of 0.28, while biking readings
from pressure-sensor being more accurate SE decreases to
0.22. The lowest SE for biking is also due to more number
of samples (34) than walking or bus-riding. This shows the
system error value will decrease by providing more sample
elevation traces at the crowd-sourced database.

The following Table 1 shows how acceptance rate changes
with di↵erent limits of tolerance percentage during learn-
ing phase. The first column in the table shows the Mean
Curve Di↵erence Coe�cient (M CDC) calculated from the
statistics of curves along a given route. The second column
shows T CDC after adding tolerance factor to (M CDC).
The number of unique GPS points (GPS1 and GPS2) vary
due to varying speed. For biking we used a heart rate moni-
tor without GPS. So GPS1 and GPS2 are set to 0 (columns
3 and 4). For a bus route the matching is done for a section
of the bus route, each route having 180 unique GPS points.

Each row in the table denotes a new route repeatedly tra-
versed by a mobile user along a given mode of transport
(column 15). The tolerance percentages T1, T2, T3, T4,
T5 present 0%, 5%. 10%, 15% and 20% tolerance level
respectively. The acceptance percentages A1, A2, A3, A4
and A5 decribed in columns 6,8,10,12 and 14 state the ac-
ceptance level for tolerance limits T1, T2, T3, T4 and T5
respectively. We used complete route matching for walking
or biking and partial route matching for matching lengthy
routes e.g. while traveling in a bus (discussed in use-case 2).

6. USE-CASE RESULTS
In this section we discuss about the various use-case re-

sults of matching altitude curves in an o✏ine mode without
using GPS positions. The traces used in evaluating the re-
sults are collected separately in the same manner along dif-
ferent routes as collected during teaching the cloud. How-
ever the number of traces collected along each route is kept
half the number collected during learning. The results help
us to analyze the rate of success of the individual use-cases
along di↵erent modes of transport. Further it also throws
light on the improvements needed to build a larger scalable
system.

6.1 Matching Complete Curves
The full length altitude curve of any newly traversed route

is matched with complete routes stored in the cloud for a
given mode of transport. Complete route matching o↵ers
greater potential when the speed of travel is less or baro-
metric readings on di↵erent day di↵ers slightly. From first

Table 1: Complete/Partial Matching showing Mean
Curve Di↵erence Coe�cient (M CDC), Threshold
of Curve Di↵erence Coe�cient (T CDC), No of
unique GPS points in first (newly input) curve (G1),
No of GPS points in second curve stored in the
database(G2), Tolerance Percentage (T1, T2, T3,
T4, T5), Acceptance % (A1, A2, A3, A4, A5), Mode
of travel (M), Duration of travel in mins (D)
M CDC T CDC G1 G2 A1 A2 A3 A4 A5 M D
22.5 25 180 180 54 54 67 70 71 Bus 4-

5
21.43 23.57 180 180 49 71 88 96 99 Bus 4-

5
14.54 16.0 100

to
120

100
to
120

52 73 84 88 90 Walk 8-
10

7.46 8.20 45
to
65

45
to
65

57 67 75 77 80 Walk 4-
5

6.27 6.90 35
to
45

35
to
45

47 60 78 84 94 Walk 3-
4

7.2 7.93 0 0 64 67 72 75 78 Bike 25-
31

column of Table 1) it is evident that biking has the least
M CDC. Or in other words, readings obtained from pres-
sure sensor of heart-rate monitor along the same route more
closely resemble each other. The last two rows of last col-
umn of Table 2 show the extent of variation of complete
route matching for walking at 95% confidence.

In absence of pressure sensor in Nokia N8, the altitude
readings obtained from the GPS are used for walking and
tracking a bus route. It is seen from the first and the last col-
umn of the same table, CDC during walking becomes twice
with the traveling duration becoming two-fold. Complete
route matching turns ine�cient when the mode of transport
is bus. Here we find the performance of the cloud system
su↵ers tremendously on matching a complete bus route of
20 - 25 mins (explained in Section 7.1). Hence we choose to
use partial matching to match sub-routes of complete bus
routes.

6.2 Matching Partial Curves

Table 2: Partial Matching with Threshold of Curve
Di↵erence Coe�cient (T CDC), No of unique GPS
points in curve1 (GPS1), No of unique GPS points
in curve2 stored at the cloud (GPS2), Distance be-
tween start and end points in meters (D), Travel
Mode (M), Accuracy (A), Standard Deviation (SD)
T CDC GPS1 GPS2 D(m) M A(%) SD
53 180 900 6197 Bus 50 5.87
44 180 720 5295 Bus 56 6.05
40 180 540 4250 Bus 63 5.63
28 180 360 3070 Bus 68 3.20
25 180 180 1470 Bus 70 2.68
16 100-120 100-120 442 Walk 84 1.73
6.90 35-45 35-45 50 Walk 78 0.98

Partial matching involves matching the current route with
a known route at the database when the current route is a
sub-route of the existing route. It also involves matching
sub-route of a route, when the sub-route being matched is
a sub-route of an existing route. Here by matching smaller
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sub-routes (Figure 3) of a mobile client it becomes easier to
detect a sudden change in client movement from one visited
route to another visited route in the database or to a com-
pletely new route (Use case 2). Here visited routes refer to
routes traversed by the client in the past. However such full
routes could have been traveled independently and not in
the course of the journey where the client covers only a sec-
tion of the full route. Results are evaluated with di↵erent
sub-route sizes with minimum sub-route size being 200 m
(walking) and maximum sub-route size being 1.5 km (riding
a bus). The choice of the sub-route is based on the system
processing time. As the system performance is optimal with
180 - 200 unique GPS points on a 4 - 5 mins bus route, we
limited this value as maximum sub-route length. In online
matching smaller sub-route matching helps to turn on the
GPS as soon as the curve matching coe�cient of the cur-
rently visited route exceeds the threshold limit. The client
then requests the new route details by sending the start di-
rection to the server.

In sub-route matching the incorrectness of GPS route in-
formation available to mobile users is limited to the time
taken to travel the sub-route. Smaller the sub-route greater
is the accuracy of position information provided alternatives
from current sub-route is less. Table 2 shows the false route
information is 1470 m on a bus with sub-route interval of
4 mins. However false position information decreases to a
maximum of 442 m when the mobile user covers the same
length sub-routes by walking. We also find matching 2 dif-
ferent sub-routes of 4 - 5 mins along the same mode of trans-
port increases the CDC. Results show on comparing di↵er-
ent sub-routes CDC increases by 25 - 35% on walking, 30 -
40% on biking and 45 - 55% on a bus ride more than CDC
of same sub-routes. Largest distance covered with greatest
altitude variation on a bus ride increases its CDC and also
the false negatives to the maximum level.

The CDC is the least when the two compared sub-routes
are of the same duration. Table 2 presents the CDCs of
an altitude curve of a mobile user traveling on a bus and
walking. The CDCs are calculated by partially matching
the current altitude curve of the mobile user with already
visited routes stored in the database. It is evident from the
sixth column of Table 2 that the CDC decreases and the
prediction accuracy (explained in Section 7.1) increases on
selecting smaller sections of the curve.

Figure 3 shows the entire altitude route of each day di-
vided into 5 sub-routes, each of 180 unique GPS points i.e.
of 4 - 5 mins duration. If the bus route contains more than
900 GPS points, the excess points are accommodated to the
fifth section. Each section of one curve is then matched
to the corressponding section of the paired curve for all five
sub-routes. This gives 5 curve di↵erence coe�cients between
any two pair of curves. For better understanding, we then
compute the mean curve di↵erence coe�cient (M CDC) and
the standard deviation (SD) for each section.

Table 3: Partial Matching showing Section Number,
Mean Curve Di↵erence Coe�cient (M CDC), Stan-
dard Deviation (SD) of di↵erent sections for a given
bus route along both directions (UP and DOWN)
Sec No M CDC UP M CDC DN SD UP SD DN
1 20.18 22.28 1.84 2.36
2 22.85 22.78 2.21 3.50
3 21.95 22.22 2.82 2.89
4 21.40 23.29 2.84 2.24
5 19.41 19.28 3.57 2.56

On partially matching sections of the altitude curve we

find the shape di↵erence between any two curves increases
with increasing the section number (first 4 sections each of
180 GPS points) i.e. in due course of the movement. This
is reflected from Table 3, the curve di↵erence standard de-
viation (SD) during the downward course of the journey for
the second, third, fourth, fifth sections are 3.5, 2.89, 2.24
and 2.56 respectively, whereas for the first section the SD
is 2.36. The di↵erence is more towards the middle to end
of the curve due to uneven speed variation, acceleration at
di↵erent curvatures of the curve. For the first section the
curve di↵erence remains less as during each time during its
start, the speed of the bus is slow.

The same type of CDC variation is noticed from Table 3
during the upward course of the journey along the same
route. Here the shape di↵erence between any two curves
increases from section 1 to section 4 (same section length
of 180 unique GPS points) and then decreases at section
5. The decrease is due to slow speed of the bus during its
arrival at the destination. The SD seen from Table 3 also
shows the same trend (increase towards the middle to end
of the curve) similar to the downward course of the journey.

On comparing matched curve results via walking and bus
riding, it is seen from Table 2 that smaller section gives
better matching accuracy by giving less false negatives. The
CDC is more accurately predicted for a smaller path length
with less alternative sub-routes, the SD also decreases on
decreasing the section of the curve. For higher accuracy, the
curves can be divided to have more sections, each section
being of 50 - 75 unique GPS points or 1.4 - 2 mins length.

Partial matching also involves sub-route matching as ex-
plained with a flowchart in Figure 7. Figure 2(b) presents
a situation when a user initiates his journey in a sub-route
of a complete route and the start direction of the user does
not coincide with any of the start points of the stored routes
(Step 1). The cloud then queries the database to find if
there exists any possible route where the start point may
fall in between the start and the end points (Step 2B), i.e.
it tries to find possible route intersections of the new route
with any full-length stored routes. For a closed curve stated
in Figure 2(a) the start point may point to either direc-
tions of the route. For this reason we choose to provide few
more GPS coordinates after the initial start point to pro-
vide the direction of user movement. If there exists such
points in any section of a complete route, the cloud parti-
tions the curve from the supplied start direction to the end
of the curve. Then it matches only the partitioned route and
the recent trajectory of the user and compares it with the
T CDC (Step 4B). In Figure 2(b), we find the coe�cient of
matching of the sub-route is 3.60 falling below the threshold
value of 4.25. By partitioning routes, the algorithm is able
to match multiple sub-routes described in use-case 2.

6.3 Reversed Route Matching
The main limitation of the curve matching algorithm is

its inability to detect same tracks traversed reversely (up-
hill and downhill) when the mode of travel is bus or walk.
We analyzed with this algorithm whether reversal of any
curve resembles the opposite route along a given mode of
transport. The analysis reveals the dissimilarity function of
reversed curves is not significantly less. Only in 7 - 10%
cases the dissimilarity function is less compared to the CDC
of the curves in the same direction. Or in other words, the
algorithm cannot reveal the opposite directional paths as
mirror images of each other.

The 7 - 10% exceptional scenario is noticed in case of bik-
ing where the pressure sensor gives more accurate readings.
This is because the barometric recordings obtained from a
heart-rate monitor during biking exhibits much less devia-
tion (SD of 2.66 on a 25 - 30 mins 10 km route) when com-
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Figure 7: Sub-route matching algorithm

Figure 8: Matching opposite directional altitude
curves with one track reversed

pared with the altitude readings obtained from a GPS (SD
of 2.68 on a 4 - 5 mins 1.5 km bus route). More accurate
barometric readings produce mirror images in exceptional
cases on matching opposite directional curves.

To study this, two curves of the same route in two di↵er-
ent directions (uphill and downhill) of CDC 14.0 is taken.
Here T CDC is 15.43 obtained from Table 1 at 95% confi-
dence level. In Figure 8 we compare the two curves, keeping
one route intact and reversing the other route so that both
points to the same direction of origin. The first plot in Fig-
ure 8 shows that the CDC between the inverted uphill (red)
and the original downhill (blue) route is only 13.46. This
ensures the fact that weighted curve distance factor of one
route reversed does not always produce a significantly less
curve distance. This is more evident from the second plot
of the same figure. Though the curves look similar, here the
altitude di↵erences of the same route with inverted downhill
(red) and original uphill (blue) route increases significantly
to 23.18. This happens due to windspeed, road-directions,
uneven curvatures, and speed di↵erence while traversing the
curvatures. The algorithm is tolerant in recognizing un-
evenly spaced altitude variations and speed di↵erence to a
certain level (described next in Section 6.4).

Further for more detailed analysis, we also permuted both
ways to and from direction (between Ruoholahti and Otaniemi
[1]) altitude traces of one day with every other day to give
1156 (i.e. 34⇤34

1 ) comparison results. The mean value of
CDC between any two curves of the comparison set is 13.42
and the SD is 4.27. Thus the deviation in comparing in-
verted opposite directional curves along the same route is
also found to be more than comparing the curves along the

same direction which has standard deviation of about 2.66.

6.4 Effect of Speed and Pressure
The behaviour of the algorithm with di↵erent speeds are

carried with other modes of transport like walking and riding
a given bus route. In each mode a definite route is selected
and altitude traces are collected for di↵erent days (20 days
in case of riding a bus and walking whereas 34 days for bik-
ing). Here speed varies randomly on all days with maximum
variation of 25% between the slowest and the fastest day.

The algorithm tries to match the shape of two curves when
the barometric pressure level and travel speed on two dif-
ferent days di↵er. Figure 9 presents the altitude curve of
the same route in the same direction of travel as determined
by the pressure sensor of a heart-rate monitor. The average
atmospheric pressure on these two di↵erent days are found
to be 20 mm and -7 mm. Further the total time of travel
also di↵ers, the first curve completes in 29 mins while the
second curve completes in 26 mins. The CDC between the
plotted curves is only 7.03 which lies below (T CDC) the
threshold level of 7.93 (Table 1).

Figure 9: Altitude curves as given by barometric
pressure sensor on two di↵erent days

This shows that Sethian’s Fast Marching Method for curve
matching matches two curves based on shape, is independent
of the variation in speed and atmospheric pressure. The
third term of Equation 2 plays an important role in giving
an optimal curve di↵erence by neglecting stretched spaced
e↵ect of the similarly shaped curves along the same route.

The main advantage of curve matching algorithm is that
it is una↵ected by speed of the travel during walking or bik-
ing. Figure 9 demonstrates that algorithm is able to detect
same routes by its dissimilarity function when biked on two
di↵erent days with varying speed. Each reading of pressure
sensor is recorded at an interval of 15 secs with the heart-
rate monitor, while GPS fixes are recorded at 1 sec interval.
So even in case of varying speed the sensor or GPS record-
ings are not at the exact same location but the shape of the
recorded curve remains the same.

The T CDC for a small walking route of 4 - 6 mins along
the same direction is 6.90. We found for a 8% speed variation
the CDC is 2.78, while for 17% speed variation the CDC is
4.07. Both of them falls below the threshold value of 6.90.
The SD obtained by permuting each day’s alttude curve with
every other day is only 0.98. For a definite bus route of 20 -
25 mins, the results of partial matching is tolerant to a speed
variation of 5 mins or 25%. Figure 3 demonstrates a 20 - 25
mins bus route covered on three di↵erent days with varying
speed. The tolerance level of the algorithm for varying speed
is also evident from columns 4 and 5 of Table 3 that there
exists a maximum standard deviation of 3.57 (around 15%)
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in matching each section of the bus route.

7. DISCUSSION
The performance of the curve matching algorithm is mea-

sured by its prediction accuracy. This is measured by sub-
tracting the number of false positives [6] and false nega-
tives from the actual prediction of the server. False nega-
tives occur when the user actually follows an already dis-
covered route stored in the database but the CDC exceeds
the threshold level (T CDC). In that case the system gives
an error result and assumes the input route as a new route.
False positives occur when a user follows a given route with
CDC lying below T CDC but the system returns some in-
correct route information having same GPS start position,
direction and position estimates close to the correct route.

The algorithm is also evaluated to indicate its level of ef-
ficiency for the stated use-cases in the current system. The
performance indicators include processing speed, e�ciency
with di↵erent modes of transport, accuracy, sectional or par-
tial matching, matching curves of varying speed, pressure
and opposite directions along a given route.

7.1 Cloud System Performance
Sub-route matching produces lowest accuracy of 50% on a

bus route. Higher false negatives resulting from higher CDC
of matching same sub-routes reduces the system accuracy.
On the other hand walking and cycling routes having lower
CDC have higher false positives. The accuracy is found
to decrease on matching very small sub-routes on walking
when the number of alternate routes from the sub-route are
many. It also decreases with decrease in variation in altitude
for individual routes or sub-routes. At an uniformly planar
region like a falt city, pressure sensor readings comes of lit-
tle use. There other sensors like compass, magnetometer,
accelerometer could be used in addition to retrieve position
information from stored GPS traces.

The system operations of Figure 1 has optimal perfor-
mance speed when the server matches sub-routes of com-
plete routes. On an average, comparing the altitude curves
of 35 - 45 unique GPS positions takes around 400 - 500 ms
on a Dual core T5550 1.83 GHz processor. However it in-
creases to 15 - 16 secs on matching 180 - 200 unique GPS
position on the same processor. Reduction of unique GPS
positions can reduce sub-route lengths to enhance process-
ing speed on server. This can be done by increasing GPS
query interval and by using higher accuracy points to com-
press neighbouring points. Point compression algorithms
like KML and Google Maps [2] can also serve this purpose.
This processing e�ciency of the cloud based system can be
improved further by using energy-e�cient uploading of sen-
sor data to the cloud [14], by evaluating the performance of
di↵erent partial curve matching algorithms like exact algo-
rithms [9] or improved algorithms [16].

We choose to limit partial curve matching to 180 - 200
unique GPS points as slightly increasing the number of GPS
points beyond this limit the processing speed increases to a
range of a minute. The processing time increases to the
range of several minutes when the entire travel bus route of
20 - 25 mins is matched. A trade o↵ factor is associated
with the processing speed and the length of the section of
the curve matched with segments of curves stored at the
cloud. To have minimum processing speed in terms of the
whole length of the curve, maximum of 5 sections, with each
section of 180 unique GPS points is chosen.

We also propose the use of the phone over the cloud for
matching altitude curves particularly when number of routes
stored in the database are very small. To build an energy
e�cient system, it is economical to build a hybrid system

where the most frequently traversed data are stored at the
phone and less frequently traversed data (like multiple al-
ternate sub-routes of a complete route) are stored at the
cloud. The system performance and power savings of the
cloud architecture is briefly discussed below.

7.2 Power savings
Our study with Nokia Energy Profiler (NEP) shows that

getting a single GPS fix on Nokia N8 on an average draws
120 - 620 Joule / hour at 80 secs interval (depending on the
availability of satellites) while sensors like accelerometer or
magnetometer consumes .08 Watt of power at an interval
of 30 secs [17]. To find out the potential of power savings
in sensor based systems, we used online learning. In online
learning the mobile client (N8) queries the cloud at a fixed
interval over TCP socket in a 3G network. The client also
provides the cloud with a given GPS start direction at the
origin of the sub-route. The start direction is obtained by
taking the initial valid GPS fixes for 10 - 12 secs. In case
the sub-route is stored in the database, the cloud sends the
client GPS information of the entire route over the same
TCP socket. Our calculations show for a maximum sub-
route length of 5 mins on bus, querying the cloud in inter-
vals of 65 - 67 secs and turning on GPS at the sub-route
origin consumes the same average power (.31 - .33 Watt)
as querying the GPS at an interval of 1 sec. As sensors
consume power of .08 Watt/30 secs, increasing the querying
time to the cloud to 70 - 72 secs makes the average power
consumption of initial GPS fix, 3G data transfer and pres-
sure sensor equal to GPS query. Power savings of 25% -
30% could be achieved by setting the GPS query interval to
80 - 85 secs. However detailed discussion on percentage of
power savings for varying length routes and sub-routes for
stored and new routes is outside the scope of this paper. We
leave this as future work. As per NEP records, N8 consumes
average power of .10 Watt for matching altitude curves at
intervals of 70 - 72 secs for a very small subset (3 - 4) of
stored routes. Power savings obtained at the phone by such
matchings suggest the design of a hybrid system could be
used to save smartphone battery.

8. CONCLUSION AND FUTURE WORK
In this paper we use Sethian’s Fast Marching Method

for determining curve matches in a crowd-sourced database.
This work can be further extended by using other match-
ing algorithms like exact algorithms [9]/improved algorithms
[16] for partial curve matching to analyze the system perfor-
mance. Complete route matching has an accuracy of 75% for
biking and 75 - 88% for walking along di↵erent paths with
varying elevation profiles, sub-route lengths (3 - 10 mins),
speed and travel time. As complete route matching fails for
lengthy bus routes we use partial matching where accuracy
of matched segments varies between 50 - 70%. Such low to
moderate accuracy findings entails us to use larger history
of crowd-sourced data, shorter sub-routes with less alterna-
tives and validation of location estimates with other sensor
readings.

Further we find that matching the paths of opposite direc-
tion on the same route is unsuccessful in most cases. Also
curves of varying speed (25%) and atmospheric pressure
along a given route on a given mode of transport exhibit 10
- 25% SD, proving the fact that coping with di↵erent speeds
does not require GPS ability or knowledge of speed. As
altitude elevations of same routes follow similar trend (nor-
mal distribution), mobile phones can use internal or exter-
nal pressure-sensor as an alternative to GPS to track routes.
GPS querying is power-intensive and can drain 1200 mAh
battery on N95 smartphone in less than 11 hours [17], [18].
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Hence reducing GPS active time by tracking user-movement
with pressure sensor has great potential in enhancing life of
mobile battery. The design of a hybrid system with online
matching at the cloud and the phone could be used a future
reference design model. Our future work lies in investigat-
ing the percentage of mobile battery savings for a pressure
sensor in-built GPS enabled phone. Through online match-
ing of varied length sub-routes we intend to find the tradeo↵
between position accuracy and battery life.

We plan to extend the scope of the prototype system from
a single user to multiple users by building a larger scal-
able crowd-sourcing system [7], [20] where millions of mobile
users can update their altitude trajectory and start direction
information. The accuracy of such a crowd-sourced system
will increase with higher frequency of GPS reportings of a
particular route from more number of users. The cloud can
process the routes based on di↵erent modes of transport
and group the same regularly visited routes [8]. Based on
altitude trend identification and a given start direction, the
cloud can send existing GPS route information to any re-
questing client.
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