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ABSTRACT 
Using Mobile Ad-hoc Networks (MANETs) for audio and video 
transmission is very promising for application domains such as 
emergency and rescue. However, audio/video streaming services 
are not designed for such dynamic and unstable networks. The 
problems are even more important in so-called sparse MANETs 
where the node density is relatively low so that disconnections 
and network partitions are common. We have designed an 
architecture that combines MANET routing with caching and 
delay tolerant store-carry-forward operations in an overlay 
network to improve the quality of audio/video transmission over 
sparse MANETs. We have implemented a prototype to evaluate 
the architecture. The results from the experiments demonstrate 
that our system clearly outperforms simple client-server solutions 
when the network has temporal disconnections. 

Categories and Subject Descriptors 
C.2.2 [Network protocols]: Applications.  

General Terms 
Algorithms, Design, Experimentation. 

Keywords 
Audio/video, sparse MANET, overlay, streaming. 

1. INTRODUCTION 
Mobile ad-hoc networks (MANETs) are a promising 
communication technology for environments lacking 
communication infrastructure, for example, in an area hit by a 
disaster. During the first hours after the disaster, the immediate 
goal of the response units is to save human lives. The efficiency 
of emergency and rescue operations can be improved by proper 
communication services. One such service could be video 
streaming from head mounted cameras of the response unit 
members to the command and control center. However, it is not 
clear whether such a service is feasible, because audio/video 
(A/V) streaming services are not designed to address problems 
that typically occur in MANETs, such as node mobility causing 
route changes, shared medium transmissions, or restricted 

bandwidth. In sparse MANETs where the node density is 
relatively low, disconnections and network partitions cause 
additional problems. For instance, connection loss between 
client(s) and server may terminate an existing session, if the 
disruption is long enough to produce a timeout in the TCP 
connection. Existing A/V streaming services assume connectivity 
between source and destination, which causes continuous packet 
losses when client(s) and server are in different network 
partitions. Moreover, the transport protocols that are used for 
streaming services, i.e., UDP and TCP, are both unsuitable. On 
the one hand, UDP is unreliable, which is a problem due to packet 
losses in MANETs. On the other hand, TCP has been shown to be 
problematic in this type of networks [1]. Specifically, TCP 
confuses network partitions with path congestion. When sender 
and receiver are disconnected, the protocol executes the 
exponential back-off algorithm, leading to a long idle connection 
period, even if the connectivity is restored. 
In this paper, we present a middleware architecture for delay 
tolerant streaming over sparse MANETs to support multimedia 
streaming. The primary goal of our approach is to deliver as much 
video as possible, with the best quality achievable in such an 
environment. We describe a prototype implementation of the 
architecture and an extensive performance evaluation that 
demonstrates that our approach is in most node mobility and 
density combinations superior to classical client-server 
approaches. When network disconnections between server and 
client cannot be immediately overcome, it is unavoidable that 
users perceive a pause in the reception. However, as soon as the 
client can be reached again the live stream is transmitted to the 
client, and also those parts of the stream that could not be 
delivered due to the disconnection. At the application level, the 
user can decide to watch the live stream and/or the missed part of 
the stream in one or more windows, to store it, etc. Thus, certain 
audio/visual data might be delayed, but much more data is 
available for the user than in the classical client-server approach. 
The proposed solution to increase reliability of A/V streaming is 
the introduction of session nodes to, for example, cache data 
between server and client. In this way, the efficiency of error 
control is improved, because a long path in the MANET is 
composed out of a set of shorter paths. Furthermore, A/V data can 
be delivered to the client in case of network partitions, because 
session nodes serve as “message ferries”. To make this idea work, 
specialized transport and signaling protocols and proper resource 
management is required.  
There exist other proposals on many aspects of A/V streaming 
over MANETs. In [2], the use of Multiple Description Coding 
combined with multiple sources streaming to the same client is 
proposed. Thus, A/V content must be pre-distributed to several 
nodes that are subsequently used to stream parts of the media 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
IWCMC’09, June 21–24, 2009, Leipzig, Germany. 
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00. 
 

1056



requested by the client node. In addition, Vista-XL [3] searches 
multiple paths between server and client using cross-layer 
information. Then, video is divided and sent using these paths, 
according to the QoS required. Seo et al. [4] propose an adaptive 
video encoding protocol. In this case, an optimal path is selected, 
examined and video is encoded taking into account the link 
capacity or the number of hops. In [5], a similar approach is 
proposed, focusing mainly on link layer parameters and looking 
for an optimal streaming rate. A multi-path routing scheme is 
used in [7] to improve streaming by finding several paths, better if 
disjoint, from the source to the receiver. Finally, MRTP [6] is also 
interesting as it proposes a protocol to support multi-path 
streaming by extending RTP. Our solution is different from 
related work. For example, the main stream solves problems of 
dense MANETs, such as looking for optimal paths, while we aim 
at sparse MANETs, where it is difficult to find paths.  
Furthermore, we try to tackle other problems, such as signaling or 
which applications to use, that are normally omitted from the 
scope of the existing research. 
The remainder of the paper is organized as follows: In Section II, 
we describe the design of our solution. We have implemented a 
prototype, called MOMENTUM, which is described in Section 
III. Section IV presents the evaluation and the results. Section V 
concludes the paper. 

2. DESIGN 
The design of our streaming solution is strongly influenced by our 
goal that it has to run in real environments and not only in 
simulators. Thus, the system architecture should enable the reuse 
of existing tools and protocols, like standard MANET routing 
protocols and TCP/UDP, and off-the-shelf video streaming client 
and server.  
 

 
Figure 1. Client-server (a) vs. session node as a relay (b) or as 

a ferry (c) 
Based on these primary requirements, we have designed our 
streaming solution as an overlay network on top of standard 
MANETs. The main idea is that the set of nodes that form the 
overlay provide delay tolerant transmission of data, but 
communicate with each other using standard routing and transport 
protocols. Delay tolerant data transmission is achieved by treating 
each message in a store-carry-forward [8] manner. The overlay 
consists of three types of nodes: client nodes, server nodes, and 
session nodes. Server nodes stream multimedia data and client 
nodes receive and play multimedia data. Session nodes 
collaborate in the data delivery. For example, when server and 
client are connected, session nodes could be used as relays, 
increasing reliability in the path and improving recovery after 
disruptions. However, if server and client are on different network 

partitions, a session node, connected to the server, could carry 
video to the client partition and forward it. In this way, our 
solution benefits from node movement and uses alternative “time” 
paths of communication between server and client. Therefore, 
multimedia sessions can be established even without direct 
connection between server and client. If we compare our overlay 
streaming solution to a classical client-server setup (Figure 1(a)), 
we observe that the session can be partitioned into multiple 
overlay hops and video data can be stored on multiple nodes 
(Figure 1(b)) or data can be stored-carried-forwarded by a node 
moving from the server partition to the client partition (Figure 
1(c)). 
The resulting architecture, shown in Figure 2, applies the main 
concepts of our proposal and divides the system into components. 
It can be defined as a middleware, with multimedia applications 
on top and standard network protocols below. 

 
Figure 2. Overlay architecture 

2.1 Routing Interface 
The Routing Interface component gathers information from the 
routing protocol, such as neighbors, topology or hops to other 
nodes. This knowledge is often used for route planning and 
session node selection. The Routing Interface makes the rest of 
the system routing protocol independent. 

2.2 Overlay Transport 
The Overlay Transport protocol aims to provide efficient 
communication between overlay nodes. It tackles MANET issues, 
such as disconnections or dynamic topology, and isolates the rest 
of the components from them. The protocol should consider 
communication requirements of other components, such as those 
coming from multimedia services or overlay management. Then it 
should apply known network patterns and new mechanisms to 
overcome the challenges of MANETs. First, the heterogeneous 
nature of traffic requires prioritization and scheduling of packets. 
Thus, if a good traffic classification policy is applied, resources 
are spent on important content for the user experience. At this 
level, priority can change over time and affect packet sending and 
storage. In addition, MANETs are an unreliable environment, the 
well-known positive ACK and retransmission (PAR) paradigm 
can be useful to overcome losses of important packets. 
Furthermore, resources of the network can be saved checking the 
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connectivity of a node before sending packets to it. Finally, a 
control flow mechanism, that limits the sending bitrate of the 
node, can be useful to avoid network congestions in some 
situations. For example, when using the store-carry-forward 
paradigm, a node A can store many packets destined to a node B 
that is disconnected. When A and B reconnect, A might try to 
send all the packets as fast as possible, causing network 
congestion and UDP buffer overflows.  

2.2.1 Overlay Routing 
The Overlay Transport protocol must include the distributed 
nature of our solution. We have designed an Overlay Routing 
protocol that benefits from network topology provided by the 
Routing Interface. For example, if a node A is on the way to a 
node B, maybe not on the optimum path but close to it, the source 
can send a message to A, which will forward it to B. Moreover, if 
the message is lost on the way from A to B and it has to be 
retransmitted, this can be done by A. Extending this idea to video 
transmission from the server to possibly many clients and session 
nodes, the savings in network resources could be significant. 
Overlay routes increase reliability and save resources over 
common network paths. We consider that overlay routes can be 
planned by the source and progressively optimized by the rest of 
the nodes in the route, as shown in Figure 3. The Overlay routing 
protocol should notify nodes about new routes, removed routes 
and updates due to topology changes. 

 
Figure 3. Overlay routes are planned (a) and optimized (b) on 

the fly. 

2.3 Multimedia Transport 
In contrast with the Overlay Transport protocol, the Multimedia 
Transport component contains a specific multimedia transport 
protocol (RTP+) for A/V streams. Furthermore, one of its 
important tasks is the assignment of Overlay Transport parameters 
(priority, reliability, etc.) to multimedia contents. Streams should 
be delivered from server to session nodes, between session nodes 
and from session nodes to clients. Thus, RTP+ should adapt to 
circumstances and available resources in each streaming hop. 
RTP+ uses the Overlay Transport protocol to send and receive 
messages. Thus, the selection of the adequate Overlay Transport 
protocol parameters is also important for RTP+ streaming 
success. Finally, there are many interesting approaches that can 
be used for stream adaptation. For example, tagging packets 
according to their payload, e.g. I, B, or P-frames, and streaming 
them according to the available resources. Indeed, some related 
works try different approaches on this, see [5]. 

2.4 Control 
The Control component implements the streaming control 
protocol (RTSP+). We could define a multimedia session as the 
global process to deliver a specific A/V content, e.g. a live/stored 
video, from a source to a user or users. RTSP+ coordinates nodes 
in the session and establishes the policies that RTP+ must follow 
to stream contents. For example, when two session nodes arrive at 
the same time at the client partition, the Control protocol must 
determine how they will stream to the client with the best quality 

and no replication. Furthermore, the protocol must support sudden 
streaming stops and restarts due to disconnections and not to 
users’ requests. The information from the Overlay Manager can 
be used to determine the available resources for streaming or 
select the session nodes. 

2.5 Overlay Manager 
Management of the overlay network should include features 
related to local and distributed resource monitoring. This 
information can be used with diverse tasks related to the 
streaming of A/V, such as session node selection or resource 
allocation. Several factors could participate in session node 
selection, such as available resources, topology, position, 
movement patterns, existing sessions, their priority or “a priori” 
knowledge. Finally, session node selection is carried out on 
demand of the Control component and Overlay Transport is used 
to communicate with other managers. 

2.6 Gateway 
The Gateway component shields the client and server application 
from all events that are related to disconnections and network 
partitions and, thus, emulates for the application a standard 
streaming environment. In order to support off-the-shelf 
streaming servers and video players, the RTP/RTSP packets from 
the standard streaming server are intercepted and translated into 
the Multimedia Transport and Control protocols at the server 
nodes and back to standard RTP/RTSP messages at the client 
nodes.  

3. PROTOTYPE IMPLEMENTATION 
We have implemented a prototype in Java, called MOMENTUM. 
The purpose is to have a scalable and ready to deploy prototype, 
where our ideas can be added progressively and their validity 
evaluated in environments as close to reality as possible. We have 
chosen the Optimized Link State Routing (OLSR) [10] as the 
underlying routing protocol. For simplicity, we use UDP below 
the Overlay Transport. The chosen multimedia applications are 
OpenRTSP (client) and Live555MediaServer .  

3.1 Overlay Transport 
The Overlay Transport protocol is in charge of sending, receiving, 
storing and forwarding packets of all other components. Standard 
streaming protocols like RTSP and RTP communicate using TCP 
and UDP. In contrast, the Overlay Transport protocol uses only 
UDP below, because of the bad performance of TCP in MANETs 
[1]. In order to increase efficiency, we carry out selective packet 
forwarding. We distinguish the final destination of a packet, for 
example the client is the final destination of video packets, and 
packets are sent only to the next hop in the overlay route that goes 
to the final destination. Otherwise, if the final destination is not in 
the same network partition, packets are delivered to all the nodes 
in the overlay route in the same partition. It is very likely that one 
of these nodes will reach the final destination and forward the 
message. In other words, packets are either sent directly to their 
destination or replicated in session nodes until the delivery is 
possible for one of them. Prioritization of packets is implemented 
by a set of outgoing queues sorted by priority. These queues are 
polled from high to low and the packets sent in this order. In 
addition, a packet is only sent when the destination is connected, 
according to the network routing protocol. Output flow control is 
established with a maximum of 11Mbps. Thus, a delay between 
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packets is introduced to avoid the surpassing of this bitrate. 
Finally, we include acknowledgments and retransmissions for 
Control messages and Overlay Route Announcements. At this 
stage, a 3 second timer triggers a retransmission, if the ACK is not 
received from any of the next hops in the overlay route. This 3 
seconds value has shown a good performance in the 
experimentation, however other techniques such a dynamic (TCP-
like) adjustment of the retransmission timer should be studied. 
We have implemented a first version of the protocol that supports 
route planning, announcement, optimization and updating. The 
intermediate nodes algorithm from the Routing Interface is used 
for initial planning and optimization of the route. Then a Route 
Announcement is spread from the source to all the nodes in the 
route. At each overlay hop, every node optimizes the route by 
planning again the topology for its successors. Once the route is 
established, updates are triggered by the source node of the route 
using a simple connectivity checking. If nodes in the route 
disconnect, the route is reset. All nodes are responsible for 
delivering packets to the disconnected nodes, but thanks to 
Receiver Reports it will only be done by one of them. Receiver 
Reports are messages containing the list of packets already 
received by a node, and they are sent whenever a duplicated 
packet is detected. Thus, memory can be freed and network 
resources are not wasted. 

3.2 Multimedia Transport and Control 
For this first prototype, these protocols are extended versions of 
RTSP and RTP. The first extension done to the control protocol is 
the inclusion of a new field “Session nodes” in the RTSP 
messages. When a node receives a control message it becomes 
part of the session and knows which other nodes are in this 
session. Packet prioritization and other desirable adaptation 
features are not yet included in this prototype. 
In a traditional multimedia session, multimedia streams and 
control channels are differentiated by the connection at transport 
level, in other words the protocol and the ports. This approach is 
not valid for our solution, because data is delivered using a 
common transport channel. For that reason, packets are labeled 
with a stream and session identifier. Therefore, they can be 
processed in the session nodes and delivered correctly in the 
client or server gateways. 

3.3 Overlay Management 

 
Figure 4. Session node selection code 

The Overlay Manager’s current task is the selection of session 
nodes. As we have discussed, this can be a complex task. The 
results presented in this paper have been obtained using a simple 
algorithm that carries out the selection of session nodes depending 
on the connectivity between client and server. Thus, when the 
server/client node needs to send a message (source) to the 

client/server (destination), session nodes are checked (see Figure 
4 for pseudocode). 

3.4 Gateway 
The Gateway must translate RTSP/RTP to our extended 
protocols. Thus, it must intercept and also send messages from/to 
the applications. In addition, it communicates with the 
applications using RTCP, so they do not start unilateral session 
shutdowns. We have checked that the server needs periodic RTCP 
Receiver Reports to keep the session open. The Gateway 
generates them, pretending to be the client because the real client 
application may be disconnected. 

3.5 Routing Interface 

 
Figure 5. Intermediate nodes algorithm 

The Routing Interface component gathers information from the 
routing protocol, which is often used for route planning and 
session node selection. The overlay currently uses a proactive 
underlying routing protocol (OLSR), because it maintains full 
state of the network topology and in this way provides crucial 
information for the overlay management and routing. The 
algorithm of Figure 5 is implemented to calculate the set of nodes 
in the path from one node to another using the information 
declared by TC messages from OLSR, see [10]. It is used for 
session node selection and overlay route planning. Its result is a 
set of nodes that stays topologically in the middle of two others, 
or, in other words, the nodes surrounding the shortest path.  

4. EVALUATION 
4.1 Experiment setup 
In order to understand and quantify the tradeoffs of performing 
classical client-server streaming versus delay tolerant overlay 
solutions of streaming protocols for sparse MANETs, we have 
performed several experiments with our current prototype. We 
assume that a traditional client-server solution will work more 
efficiently than our overlay approach in fully connected networks, 
but with increasing amount of route changes and network 
partitionings and mergings the advantages of the overlay 
approach should overcome the additional overhead introduced by 
it. Furthermore, it is obvious that there are certain scenarios with 
very low density and mobility in which none of these streaming 
solutions are feasible. In order to identify the regions in the 
mobility/density space in which the different approaches are 
preferable, we aim to cover in our experiments the entire 
(realistic) mobility density space. 
For our studies, we use the MANET emulator NEMAN [9], 
because it allows us to run on top of virtual network interfaces 
(TAP interfaces) our prototype code without any modifications. 
NEMAN accepts standard ns-2 scenario files as input and is able 
to simulate MANETs on a single PC and run for each of these 

SN: Session nodes, DC: Stored Destination connectivity 
 
if (SN == null || DC != isConnected(destination))  
   DC = isConnected(destination) 
   if (DC == true) 

SN = Random selection among intermediate nodes 
   else 

SN = Random selection among neighbors 
else 
         Use SN 

S: Source node, T: Target node, IN: Intermediate nodes 
 
h = hops from S to T 
IN[h] = T + neighbors of T at distance h of S 
while (h > 0) 
{ 
   for each n in N[h] 
       IN[h-1] += neighbors of n at distance h-1 of S 
   h-- 
} 
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nodes our protocols (including the application at client and server) 
in independent processes. 
We generate two types of Random Waypoint mobility scenarios 
with a duration of 1000 seconds. Firstly, we vary the node density 
from 2 - 20 nodes with speeds ranging from 1 - 20 m/s in an area 
of 1000x600 meters. Secondly, we consider larger scenarios, 
3000x1000 meters, with 30, 40 and 50 nodes and the same speed 
variation, 1-20 m/s with a duration of 1000 seconds. The 
communication range of the nodes is 250 meters. As workload we 
use a 1200 seconds long action video encoded in MPEG-2. The 
video is composed of a single stream, with the same priority for 
all the packets in it. Since the video is longer than the experiment, 
our results are similar to a live video situation. Finally, cross 
traffic, packet losses, collisions, etc. are not considered in these 
preliminary experiments. For each mobility scenario, we evaluate 
the client/server approach using directly the MANET, and our 
solution, labeled as MOMENTUM. Each experiment is repeated 
five times and the values we report are the average values. 

4.2 Results 
In Figure 6, we show a comparison of the amount of video 
received at the client. In order to illustrate our results for the 
entire mobility/density space in a concise way, we plot for each 
combination of number of nodes and node speed the relative 
improvement of MOMENTUM to the client-server solution. The 
surface of the bubble expresses the difference in bytes from one 
solution to the other, colored green when MOMENTUM receives 
more video and gray when the client-server solution is better. 

 
Figure 6. Relative increase of received video 

We can see that in most of the scenarios MOMENTUM is 
superior. In bigger scenarios with 30, 40 and 50 nodes results are 
similar. We have found that the scenarios that present better 
results of the client-server approach are the ones in which client 
and server nodes are in the same partition during a high 
percentage of the experiment duration. We have studied and will 
design solutions to improve the behavior in these cases, although 
our solution is designed for scenarios that lack connectivity. The 
delay introduced by MOMENTUM and other communication 
issues are the main factors behind the better performance of 
client-server in these scenarios. For example, if an overlay route 
breaks, there is an idle time where packets are stored before the 
session goes on. In addition, the Overlay Transport protocol 
introduces an artificial output bitrate limitation (11 Mbps). This 

makes the delay of the packets in our solution bigger than the 
packet of the client-server approach, which is close to zero in the 
emulation environment. However, our solution will pay off in a 
real environment with limited network bandwidth. 
These results show that disconnections and disruptions can be 
overcome using store-carry-forward approaches. However, during 
live video streaming, a temporal disconnection of the client 
implies a disruption in the video delivery and might cause a 
frozen frame in the video player. In such a case, an adequate 
buffer dimensioning is a powerful tool to obtain a smooth user 
experience. Therefore, we compare in the next set of experiments 
the seconds of video that are received in two different scenarios. 

 
Figure 7. Video seconds with (a) 12 nodes at 10 m/s and (b) 18 

nodes at 18 m/s 
Figure 7(a) shows the amount of received video in a scenario with 
12 nodes moving with an average speed of 10 m/s. Specifically, it 
represents the accumulated seconds of video received by the 
client at every second of the experiment duration. In the first 150 
seconds, it is impossible for both solutions to establish the 
session. Then, both are streaming and we can observe a small 
delay suffered by MOMENTUM. After 400 seconds, a sudden 
disconnection occurs and none of the solutions are able to reach 
the client for a significant period of time. While for the client-
server approach this is the end of the streaming session, our delay 
tolerant solution overcomes this situation by sending more video 
through ferry nodes that reach the client at some point, 
approximately at 850s. Hence, these results prove the validity of 
message ferrying applied to multimedia transmission in our 
system. 
In contrast to Figure 7(a), Figure 7(b) shows an unfavorable 
scenario, where client-server receives more video. The scenario is 
composed of 18 nodes moving at an average speed of 18 m/s. The 
session is established from almost the beginning of the 
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experiment and the streaming is constant in both cases. However, 
there is a disconnection of one of the session nodes used as a relay 
by our proposal. Then, packets stop reaching the client, the 
session needs to be reconfigured, and at the end of the emulation 
the client-server approach shows a better performance. Although 
we are working to solve this type of issues, if the disruption has 
occurred at the beginning of the scenario and not at the end, 
MOMENTUM would have time to recover and the total amount 
of video delivered by both solutions would be the same. 
Furthermore, we think that relay session nodes, like the one 
producing the disruption here, will show their real potential in 
scenarios with packet losses. 
In Figure 8 we extrapolate the results in a density against mobility 
domain. When density and mobility are low, it is very difficult to 
find communication paths and no solution will work properly. In 
sparse MANETs with different ranges of mobility, our solution is 
better than others. Mobility helps us to establish communication 
paths with session nodes acting as ferries, although they move 
freely. Moreover, if there was “a priori” knowledge about node 
movement, we could use that to obtain better results. In addition, 
we increase reliability when there are continuous topology 
changes. There are scenarios where networks are connected and 
are almost static. In such a situation, the client-server paradigm 
can work together with other ideas, for example multipath routing 
to avoid link congestions. 

 
Figure 8. MOMENTUM application area 

5. CONCLUSIONS 
In this paper, we propose a solution to support A/V streaming 
over sparse MANETs. We have presented an architecture and 
described the necessary protocols to solve the main issues in this 
environment. In addition, we have implemented and emulated a 
prototype. The results show how our design outperforms client-
server solutions in this environment. 
The prototype development and evaluation processes confirm our 
architectural choices. Although we know that there is still room 
for improvements, the division in independent components has 
been very adequate when it is necessary to fine tune parts of the 
system. A good initial architecture, such as this one, will 
definitely speed up the evolution of the components and 
protocols. In addition, it will ease the testing of new ideas. 
For future work, our first step will be the complete 
implementation and evaluation of our ideas. In addition, we 
consider the improvement of some aspects. For example, other 
session node selection algorithms could be designed and 

evaluated to see which one is better depending on the situation. 
For this purpose, resources of the nodes, node movement patterns 
and other useful information could be added as parameters of the 
algorithm. We also aim for a full development of the multimedia 
protocols, both for Control and Multimedia Transport. 
Specifically, the Control protocol should be capable of making 
decisions in a broad variety of scenarios. The first step for the 
Multimedia Transport protocol could be the implementation of an 
adaptive streaming mechanism. The Overlay Transport protocol 
could also be revised, improving retransmissions and testing 
different prioritization policies to see which one best suits 
streaming applications. Finally, we aim to achieve an exhaustive 
evaluation with other simulators, real test-beds, other routing 
protocols, more scenarios, realistic physical layer, and 
background traffic.  
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