
Overlay Solution for Multimedia Data over Sparse MANETs
Sergio Cabrero1, Xabiel G. Pañeda1, Thomas Plagemann2, Vera Goebel2, Matti Siekkinen3

1Department of Informatics, University of Oviedo, Gijón/Xixón, Spain
2Department of Informatics, University of Oslo, Oslo, Norway

3Department of Computer Science and Engineering, Helsinki University of Technology, Finland

{cabrerosergio, xabiel}@uniovi.es, {plagemann, goebel}@ifi.uio.no, matti.siekkinen@tkk.fi

ABSTRACT
Using Mobile Ad-hoc Networks (MANETs) for audio and video
transmission is very promising for application domains such as
emergency and rescue. However, audio/video streaming services
are not designed for such dynamic and unstable networks. The
problems are even more important in so-called sparse MANETs
where the node density is relatively low so that disconnections
and network partitions are common. We have designed an
architecture that combines MANET routing with caching and
delay tolerant store-carry-forward operations in an overlay
network to improve the quality of audio/video transmission over
sparse MANETs. We have implemented a prototype to evaluate
the architecture. The results from the experiments demonstrate
that our system clearly outperforms simple client-server solutions
when the network has temporal disconnections.

Categories and Subject Descriptors
C.2.2 [Network protocols]: Applications.

General Terms
Algorithms, Design, Experimentation.

Keywords
Audio/video, sparse MANET, overlay, streaming.

1. INTRODUCTION
Mobile ad-hoc networks (MANETs) are a promising
communication technology for environments lacking
communication infrastructure, for example, in an area hit by a
disaster. During the first hours after the disaster, the immediate
goal of the response units is to save human lives. The efficiency
of emergency and rescue operations can be improved by proper
communication services. One such service could be video
streaming from head mounted cameras of the response unit
members to the command and control center. However, it is not
clear whether such a service is feasible, because audio/video
(A/V) streaming services are not designed to address problems
that typically occur in MANETs, such as node mobility causing
route changes, shared medium transmissions, or restricted

bandwidth. In sparse MANETs where the node density is
relatively low, disconnections and network partitions cause
additional problems. For instance, connection loss between
client(s) and server may terminate an existing session, if the
disruption is long enough to produce a timeout in the TCP
connection. Existing A/V streaming services assume connectivity
between source and destination, which causes continuous packet
losses when client(s) and server are in different network
partitions. Moreover, the transport protocols that are used for
streaming services, i.e., UDP and TCP, are both unsuitable. On
the one hand, UDP is unreliable, which is a problem due to packet
losses in MANETs. On the other hand, TCP has been shown to be
problematic in this type of networks [1]. Specifically, TCP
confuses network partitions with path congestion. When sender
and receiver are disconnected, the protocol executes the
exponential back-off algorithm, leading to a long idle connection
period, even if the connectivity is restored.
In this paper, we present a middleware architecture for delay
tolerant streaming over sparse MANETs to support multimedia
streaming. The primary goal of our approach is to deliver as much
video as possible, with the best quality achievable in such an
environment. We describe a prototype implementation of the
architecture and an extensive performance evaluation that
demonstrates that our approach is in most node mobility and
density combinations superior to classical client-server
approaches. When network disconnections between server and
client cannot be immediately overcome, it is unavoidable that
users perceive a pause in the reception. However, as soon as the
client can be reached again the live stream is transmitted to the
client, and also those parts of the stream that could not be
delivered due to the disconnection. At the application level, the
user can decide to watch the live stream and/or the missed part of
the stream in one or more windows, to store it, etc. Thus, certain
audio/visual data might be delayed, but much more data is
available for the user than in the classical client-server approach.
The proposed solution to increase reliability of A/V streaming is
the introduction of session nodes to, for example, cache data
between server and client. In this way, the efficiency of error
control is improved, because a long path in the MANET is
composed out of a set of shorter paths. Furthermore, A/V data can
be delivered to the client in case of network partitions, because
session nodes serve as “message ferries”. To make this idea work,
specialized transport and signaling protocols and proper resource
management is required.
There exist other proposals on many aspects of A/V streaming
over MANETs. In [2], the use of Multiple Description Coding
combined with multiple sources streaming to the same client is
proposed. Thus, A/V content must be pre-distributed to several
nodes that are subsequently used to stream parts of the media

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IWCMC’09, June 21–24, 2009, Leipzig, Germany.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

1056

requested by the client node. In addition, Vista-XL [3] searches
multiple paths between server and client using cross-layer
information. Then, video is divided and sent using these paths,
according to the QoS required. Seo et al. [4] propose an adaptive
video encoding protocol. In this case, an optimal path is selected,
examined and video is encoded taking into account the link
capacity or the number of hops. In [5], a similar approach is
proposed, focusing mainly on link layer parameters and looking
for an optimal streaming rate. A multi-path routing scheme is
used in [7] to improve streaming by finding several paths, better if
disjoint, from the source to the receiver. Finally, MRTP [6] is also
interesting as it proposes a protocol to support multi-path
streaming by extending RTP. Our solution is different from
related work. For example, the main stream solves problems of
dense MANETs, such as looking for optimal paths, while we aim
at sparse MANETs, where it is difficult to find paths.
Furthermore, we try to tackle other problems, such as signaling or
which applications to use, that are normally omitted from the
scope of the existing research.
The remainder of the paper is organized as follows: In Section II,
we describe the design of our solution. We have implemented a
prototype, called MOMENTUM, which is described in Section
III. Section IV presents the evaluation and the results. Section V
concludes the paper.

2. DESIGN
The design of our streaming solution is strongly influenced by our
goal that it has to run in real environments and not only in
simulators. Thus, the system architecture should enable the reuse
of existing tools and protocols, like standard MANET routing
protocols and TCP/UDP, and off-the-shelf video streaming client
and server.

Figure 1. Client-server (a) vs. session node as a relay (b) or as

a ferry (c)
Based on these primary requirements, we have designed our
streaming solution as an overlay network on top of standard
MANETs. The main idea is that the set of nodes that form the
overlay provide delay tolerant transmission of data, but
communicate with each other using standard routing and transport
protocols. Delay tolerant data transmission is achieved by treating
each message in a store-carry-forward [8] manner. The overlay
consists of three types of nodes: client nodes, server nodes, and
session nodes. Server nodes stream multimedia data and client
nodes receive and play multimedia data. Session nodes
collaborate in the data delivery. For example, when server and
client are connected, session nodes could be used as relays,
increasing reliability in the path and improving recovery after
disruptions. However, if server and client are on different network

partitions, a session node, connected to the server, could carry
video to the client partition and forward it. In this way, our
solution benefits from node movement and uses alternative “time”
paths of communication between server and client. Therefore,
multimedia sessions can be established even without direct
connection between server and client. If we compare our overlay
streaming solution to a classical client-server setup (Figure 1(a)),
we observe that the session can be partitioned into multiple
overlay hops and video data can be stored on multiple nodes
(Figure 1(b)) or data can be stored-carried-forwarded by a node
moving from the server partition to the client partition (Figure
1(c)).
The resulting architecture, shown in Figure 2, applies the main
concepts of our proposal and divides the system into components.
It can be defined as a middleware, with multimedia applications
on top and standard network protocols below.

Figure 2. Overlay architecture

2.1 Routing Interface
The Routing Interface component gathers information from the
routing protocol, such as neighbors, topology or hops to other
nodes. This knowledge is often used for route planning and
session node selection. The Routing Interface makes the rest of
the system routing protocol independent.

2.2 Overlay Transport
The Overlay Transport protocol aims to provide efficient
communication between overlay nodes. It tackles MANET issues,
such as disconnections or dynamic topology, and isolates the rest
of the components from them. The protocol should consider
communication requirements of other components, such as those
coming from multimedia services or overlay management. Then it
should apply known network patterns and new mechanisms to
overcome the challenges of MANETs. First, the heterogeneous
nature of traffic requires prioritization and scheduling of packets.
Thus, if a good traffic classification policy is applied, resources
are spent on important content for the user experience. At this
level, priority can change over time and affect packet sending and
storage. In addition, MANETs are an unreliable environment, the
well-known positive ACK and retransmission (PAR) paradigm
can be useful to overcome losses of important packets.
Furthermore, resources of the network can be saved checking the

1057

connectivity of a node before sending packets to it. Finally, a
control flow mechanism, that limits the sending bitrate of the
node, can be useful to avoid network congestions in some
situations. For example, when using the store-carry-forward
paradigm, a node A can store many packets destined to a node B
that is disconnected. When A and B reconnect, A might try to
send all the packets as fast as possible, causing network
congestion and UDP buffer overflows.

2.2.1 Overlay Routing
The Overlay Transport protocol must include the distributed
nature of our solution. We have designed an Overlay Routing
protocol that benefits from network topology provided by the
Routing Interface. For example, if a node A is on the way to a
node B, maybe not on the optimum path but close to it, the source
can send a message to A, which will forward it to B. Moreover, if
the message is lost on the way from A to B and it has to be
retransmitted, this can be done by A. Extending this idea to video
transmission from the server to possibly many clients and session
nodes, the savings in network resources could be significant.
Overlay routes increase reliability and save resources over
common network paths. We consider that overlay routes can be
planned by the source and progressively optimized by the rest of
the nodes in the route, as shown in Figure 3. The Overlay routing
protocol should notify nodes about new routes, removed routes
and updates due to topology changes.

Figure 3. Overlay routes are planned (a) and optimized (b) on

the fly.

2.3 Multimedia Transport
In contrast with the Overlay Transport protocol, the Multimedia
Transport component contains a specific multimedia transport
protocol (RTP+) for A/V streams. Furthermore, one of its
important tasks is the assignment of Overlay Transport parameters
(priority, reliability, etc.) to multimedia contents. Streams should
be delivered from server to session nodes, between session nodes
and from session nodes to clients. Thus, RTP+ should adapt to
circumstances and available resources in each streaming hop.
RTP+ uses the Overlay Transport protocol to send and receive
messages. Thus, the selection of the adequate Overlay Transport
protocol parameters is also important for RTP+ streaming
success. Finally, there are many interesting approaches that can
be used for stream adaptation. For example, tagging packets
according to their payload, e.g. I, B, or P-frames, and streaming
them according to the available resources. Indeed, some related
works try different approaches on this, see [5].

2.4 Control
The Control component implements the streaming control
protocol (RTSP+). We could define a multimedia session as the
global process to deliver a specific A/V content, e.g. a live/stored
video, from a source to a user or users. RTSP+ coordinates nodes
in the session and establishes the policies that RTP+ must follow
to stream contents. For example, when two session nodes arrive at
the same time at the client partition, the Control protocol must
determine how they will stream to the client with the best quality

and no replication. Furthermore, the protocol must support sudden
streaming stops and restarts due to disconnections and not to
users’ requests. The information from the Overlay Manager can
be used to determine the available resources for streaming or
select the session nodes.

2.5 Overlay Manager
Management of the overlay network should include features
related to local and distributed resource monitoring. This
information can be used with diverse tasks related to the
streaming of A/V, such as session node selection or resource
allocation. Several factors could participate in session node
selection, such as available resources, topology, position,
movement patterns, existing sessions, their priority or “a priori”
knowledge. Finally, session node selection is carried out on
demand of the Control component and Overlay Transport is used
to communicate with other managers.

2.6 Gateway
The Gateway component shields the client and server application
from all events that are related to disconnections and network
partitions and, thus, emulates for the application a standard
streaming environment. In order to support off-the-shelf
streaming servers and video players, the RTP/RTSP packets from
the standard streaming server are intercepted and translated into
the Multimedia Transport and Control protocols at the server
nodes and back to standard RTP/RTSP messages at the client
nodes.

3. PROTOTYPE IMPLEMENTATION
We have implemented a prototype in Java, called MOMENTUM.
The purpose is to have a scalable and ready to deploy prototype,
where our ideas can be added progressively and their validity
evaluated in environments as close to reality as possible. We have
chosen the Optimized Link State Routing (OLSR) [10] as the
underlying routing protocol. For simplicity, we use UDP below
the Overlay Transport. The chosen multimedia applications are
OpenRTSP (client) and Live555MediaServer .

3.1 Overlay Transport
The Overlay Transport protocol is in charge of sending, receiving,
storing and forwarding packets of all other components. Standard
streaming protocols like RTSP and RTP communicate using TCP
and UDP. In contrast, the Overlay Transport protocol uses only
UDP below, because of the bad performance of TCP in MANETs
[1]. In order to increase efficiency, we carry out selective packet
forwarding. We distinguish the final destination of a packet, for
example the client is the final destination of video packets, and
packets are sent only to the next hop in the overlay route that goes
to the final destination. Otherwise, if the final destination is not in
the same network partition, packets are delivered to all the nodes
in the overlay route in the same partition. It is very likely that one
of these nodes will reach the final destination and forward the
message. In other words, packets are either sent directly to their
destination or replicated in session nodes until the delivery is
possible for one of them. Prioritization of packets is implemented
by a set of outgoing queues sorted by priority. These queues are
polled from high to low and the packets sent in this order. In
addition, a packet is only sent when the destination is connected,
according to the network routing protocol. Output flow control is
established with a maximum of 11Mbps. Thus, a delay between

1058

packets is introduced to avoid the surpassing of this bitrate.
Finally, we include acknowledgments and retransmissions for
Control messages and Overlay Route Announcements. At this
stage, a 3 second timer triggers a retransmission, if the ACK is not
received from any of the next hops in the overlay route. This 3
seconds value has shown a good performance in the
experimentation, however other techniques such a dynamic (TCP-
like) adjustment of the retransmission timer should be studied.
We have implemented a first version of the protocol that supports
route planning, announcement, optimization and updating. The
intermediate nodes algorithm from the Routing Interface is used
for initial planning and optimization of the route. Then a Route
Announcement is spread from the source to all the nodes in the
route. At each overlay hop, every node optimizes the route by
planning again the topology for its successors. Once the route is
established, updates are triggered by the source node of the route
using a simple connectivity checking. If nodes in the route
disconnect, the route is reset. All nodes are responsible for
delivering packets to the disconnected nodes, but thanks to
Receiver Reports it will only be done by one of them. Receiver
Reports are messages containing the list of packets already
received by a node, and they are sent whenever a duplicated
packet is detected. Thus, memory can be freed and network
resources are not wasted.

3.2 Multimedia Transport and Control
For this first prototype, these protocols are extended versions of
RTSP and RTP. The first extension done to the control protocol is
the inclusion of a new field “Session nodes” in the RTSP
messages. When a node receives a control message it becomes
part of the session and knows which other nodes are in this
session. Packet prioritization and other desirable adaptation
features are not yet included in this prototype.
In a traditional multimedia session, multimedia streams and
control channels are differentiated by the connection at transport
level, in other words the protocol and the ports. This approach is
not valid for our solution, because data is delivered using a
common transport channel. For that reason, packets are labeled
with a stream and session identifier. Therefore, they can be
processed in the session nodes and delivered correctly in the
client or server gateways.

3.3 Overlay Management

Figure 4. Session node selection code

The Overlay Manager’s current task is the selection of session
nodes. As we have discussed, this can be a complex task. The
results presented in this paper have been obtained using a simple
algorithm that carries out the selection of session nodes depending
on the connectivity between client and server. Thus, when the
server/client node needs to send a message (source) to the

client/server (destination), session nodes are checked (see Figure
4 for pseudocode).

3.4 Gateway
The Gateway must translate RTSP/RTP to our extended
protocols. Thus, it must intercept and also send messages from/to
the applications. In addition, it communicates with the
applications using RTCP, so they do not start unilateral session
shutdowns. We have checked that the server needs periodic RTCP
Receiver Reports to keep the session open. The Gateway
generates them, pretending to be the client because the real client
application may be disconnected.

3.5 Routing Interface

Figure 5. Intermediate nodes algorithm

The Routing Interface component gathers information from the
routing protocol, which is often used for route planning and
session node selection. The overlay currently uses a proactive
underlying routing protocol (OLSR), because it maintains full
state of the network topology and in this way provides crucial
information for the overlay management and routing. The
algorithm of Figure 5 is implemented to calculate the set of nodes
in the path from one node to another using the information
declared by TC messages from OLSR, see [10]. It is used for
session node selection and overlay route planning. Its result is a
set of nodes that stays topologically in the middle of two others,
or, in other words, the nodes surrounding the shortest path.

4. EVALUATION
4.1 Experiment setup
In order to understand and quantify the tradeoffs of performing
classical client-server streaming versus delay tolerant overlay
solutions of streaming protocols for sparse MANETs, we have
performed several experiments with our current prototype. We
assume that a traditional client-server solution will work more
efficiently than our overlay approach in fully connected networks,
but with increasing amount of route changes and network
partitionings and mergings the advantages of the overlay
approach should overcome the additional overhead introduced by
it. Furthermore, it is obvious that there are certain scenarios with
very low density and mobility in which none of these streaming
solutions are feasible. In order to identify the regions in the
mobility/density space in which the different approaches are
preferable, we aim to cover in our experiments the entire
(realistic) mobility density space.
For our studies, we use the MANET emulator NEMAN [9],
because it allows us to run on top of virtual network interfaces
(TAP interfaces) our prototype code without any modifications.
NEMAN accepts standard ns-2 scenario files as input and is able
to simulate MANETs on a single PC and run for each of these

SN: Session nodes, DC: Stored Destination connectivity

if (SN == null || DC != isConnected(destination))
 DC = isConnected(destination)
 if (DC == true)

SN = Random selection among intermediate nodes
 else

SN = Random selection among neighbors
else
 Use SN

S: Source node, T: Target node, IN: Intermediate nodes

h = hops from S to T
IN[h] = T + neighbors of T at distance h of S
while (h > 0)
{
 for each n in N[h]
 IN[h-1] += neighbors of n at distance h-1 of S
 h--
}

1059

nodes our protocols (including the application at client and server)
in independent processes.
We generate two types of Random Waypoint mobility scenarios
with a duration of 1000 seconds. Firstly, we vary the node density
from 2 - 20 nodes with speeds ranging from 1 - 20 m/s in an area
of 1000x600 meters. Secondly, we consider larger scenarios,
3000x1000 meters, with 30, 40 and 50 nodes and the same speed
variation, 1-20 m/s with a duration of 1000 seconds. The
communication range of the nodes is 250 meters. As workload we
use a 1200 seconds long action video encoded in MPEG-2. The
video is composed of a single stream, with the same priority for
all the packets in it. Since the video is longer than the experiment,
our results are similar to a live video situation. Finally, cross
traffic, packet losses, collisions, etc. are not considered in these
preliminary experiments. For each mobility scenario, we evaluate
the client/server approach using directly the MANET, and our
solution, labeled as MOMENTUM. Each experiment is repeated
five times and the values we report are the average values.

4.2 Results
In Figure 6, we show a comparison of the amount of video
received at the client. In order to illustrate our results for the
entire mobility/density space in a concise way, we plot for each
combination of number of nodes and node speed the relative
improvement of MOMENTUM to the client-server solution. The
surface of the bubble expresses the difference in bytes from one
solution to the other, colored green when MOMENTUM receives
more video and gray when the client-server solution is better.

Figure 6. Relative increase of received video

We can see that in most of the scenarios MOMENTUM is
superior. In bigger scenarios with 30, 40 and 50 nodes results are
similar. We have found that the scenarios that present better
results of the client-server approach are the ones in which client
and server nodes are in the same partition during a high
percentage of the experiment duration. We have studied and will
design solutions to improve the behavior in these cases, although
our solution is designed for scenarios that lack connectivity. The
delay introduced by MOMENTUM and other communication
issues are the main factors behind the better performance of
client-server in these scenarios. For example, if an overlay route
breaks, there is an idle time where packets are stored before the
session goes on. In addition, the Overlay Transport protocol
introduces an artificial output bitrate limitation (11 Mbps). This

makes the delay of the packets in our solution bigger than the
packet of the client-server approach, which is close to zero in the
emulation environment. However, our solution will pay off in a
real environment with limited network bandwidth.
These results show that disconnections and disruptions can be
overcome using store-carry-forward approaches. However, during
live video streaming, a temporal disconnection of the client
implies a disruption in the video delivery and might cause a
frozen frame in the video player. In such a case, an adequate
buffer dimensioning is a powerful tool to obtain a smooth user
experience. Therefore, we compare in the next set of experiments
the seconds of video that are received in two different scenarios.

Figure 7. Video seconds with (a) 12 nodes at 10 m/s and (b) 18

nodes at 18 m/s
Figure 7(a) shows the amount of received video in a scenario with
12 nodes moving with an average speed of 10 m/s. Specifically, it
represents the accumulated seconds of video received by the
client at every second of the experiment duration. In the first 150
seconds, it is impossible for both solutions to establish the
session. Then, both are streaming and we can observe a small
delay suffered by MOMENTUM. After 400 seconds, a sudden
disconnection occurs and none of the solutions are able to reach
the client for a significant period of time. While for the client-
server approach this is the end of the streaming session, our delay
tolerant solution overcomes this situation by sending more video
through ferry nodes that reach the client at some point,
approximately at 850s. Hence, these results prove the validity of
message ferrying applied to multimedia transmission in our
system.
In contrast to Figure 7(a), Figure 7(b) shows an unfavorable
scenario, where client-server receives more video. The scenario is
composed of 18 nodes moving at an average speed of 18 m/s. The
session is established from almost the beginning of the

1060

experiment and the streaming is constant in both cases. However,
there is a disconnection of one of the session nodes used as a relay
by our proposal. Then, packets stop reaching the client, the
session needs to be reconfigured, and at the end of the emulation
the client-server approach shows a better performance. Although
we are working to solve this type of issues, if the disruption has
occurred at the beginning of the scenario and not at the end,
MOMENTUM would have time to recover and the total amount
of video delivered by both solutions would be the same.
Furthermore, we think that relay session nodes, like the one
producing the disruption here, will show their real potential in
scenarios with packet losses.
In Figure 8 we extrapolate the results in a density against mobility
domain. When density and mobility are low, it is very difficult to
find communication paths and no solution will work properly. In
sparse MANETs with different ranges of mobility, our solution is
better than others. Mobility helps us to establish communication
paths with session nodes acting as ferries, although they move
freely. Moreover, if there was “a priori” knowledge about node
movement, we could use that to obtain better results. In addition,
we increase reliability when there are continuous topology
changes. There are scenarios where networks are connected and
are almost static. In such a situation, the client-server paradigm
can work together with other ideas, for example multipath routing
to avoid link congestions.

Figure 8. MOMENTUM application area

5. CONCLUSIONS
In this paper, we propose a solution to support A/V streaming
over sparse MANETs. We have presented an architecture and
described the necessary protocols to solve the main issues in this
environment. In addition, we have implemented and emulated a
prototype. The results show how our design outperforms client-
server solutions in this environment.
The prototype development and evaluation processes confirm our
architectural choices. Although we know that there is still room
for improvements, the division in independent components has
been very adequate when it is necessary to fine tune parts of the
system. A good initial architecture, such as this one, will
definitely speed up the evolution of the components and
protocols. In addition, it will ease the testing of new ideas.
For future work, our first step will be the complete
implementation and evaluation of our ideas. In addition, we
consider the improvement of some aspects. For example, other
session node selection algorithms could be designed and

evaluated to see which one is better depending on the situation.
For this purpose, resources of the nodes, node movement patterns
and other useful information could be added as parameters of the
algorithm. We also aim for a full development of the multimedia
protocols, both for Control and Multimedia Transport.
Specifically, the Control protocol should be capable of making
decisions in a broad variety of scenarios. The first step for the
Multimedia Transport protocol could be the implementation of an
adaptive streaming mechanism. The Overlay Transport protocol
could also be revised, improving retransmissions and testing
different prioritization policies to see which one best suits
streaming applications. Finally, we aim to achieve an exhaustive
evaluation with other simulators, real test-beds, other routing
protocols, more scenarios, realistic physical layer, and
background traffic.

6. ACKNOWLEDGMENTS
This work has been funded by the Spanish National Research
Program (FUTURMEDIA Project TSI2007-60474), the
Norwegian Research Council (DT-STREAM Project
183312/S10), and it received support from the EU Network-of-
Excellence CONTENT.

7. REFERENCES
[1] G. Holland, N. Vaidya. "Analysis of TCP Performance over

Mobile Ad Hoc Networks," Wireless Networks, Springer,
2002.

[2] C.O. Chow, H. Ishii. "Enhancing real-time video streaming
over mobile ad hoc networks using multipoint-to-point
communication," Computer Communications, Elsevier,
2007.

[3] G.D. Delgado, V.C. Frias, M.A. Igartu. "ViStA-XL: A
Cross-Layer Design for Video-Streaming over Ad hoc
Networks," 3rd Int. Symp. Wireless Communication
Systems, 2006.

[4] J. Seo, E Cho, S. Yoo. "Protocol Design for Adaptive Video
Transmission over MANET," Lecture Notes in Computer
Science, Springer, 2006.

[5] E. Setton, T. Yoo, X Zhu, A. Goldsmith, B. Girod, "Cross-
layer design of ad hoc networks for real-time video
streaming," IEEE Wireless Communications, 2005.

[6] S. Mao, D. Bushmitch, S. Narayanan, S. S. Panwar. "MRTP:
A Multi-Flow Realtime Transport Protocol for Ad Hoc
Networks," IEEE Transactions on Multimedia, 2006.

[7] S. Kompella, S. Mao, Y. Thomas Hou, H.D. Sherali, "Cross-
Layer Optimized Multipath Routing for Video
Communications in Wireless Networks," IEEE Journal on
Selected Areas in Communications, 2007.

[8] W. Zhao, M.H. Ammar, "Message ferrying: proactive
routing in highly-partitioned wireless ad hoc networks," 9th
IEEE Workshop on Future Trends of Distributed Computing
Systems, 2003.

[9] M. Pužar, T. Plagemann, "NEMAN: A Network Emulator
for Mobile Ad-Hoc Networks," 8th Int. Conf. on
Telecommunications, 2005.

[10] T. Clausen, P. Jacquet, "Optimized Link State Routing
Protocol (OLSR)," RFC 3626. 2003.

1061

