Metasurfaces

Sergei A. Tretyakov

Department of Electronics and Nanoengineering
School of Electrical Engineering
Aalto University (Finland)

URSI General Assembly, August 2017
Outline

▶ Metasurfaces
▶ Physical optics approach
 ▶ General design methodology
 ▶ Engineering transmission: matched single-layer transmitarrays and non-reflecting absorbers
 ▶ Engineering reflection: metamirrors
▶ Exact synthesis: towards perfect performance
 ▶ Anomalous reflection
 ▶ Multi-port reflectors
 ▶ Managing transmission
Metamaterial: an arrangement of artificial structural elements, designed to achieve advantageous and unusual electromagnetic properties

All the field vectors are averaged over electrically (optically) small volumes each containing many meta-atoms.
Metasurface:
electrically thin composite material layer, designed and optimized to function as a tool to control and transform electromagnetic waves

Two-dimensional versions of metamaterials...

\[J_e = \frac{j\omega p}{S}, \quad J_m = \frac{j\omega m}{S} \]

(S is the unit-cell area). Electric and magnetic current sheets
Perfect lens

Propagating modes — negative refraction

$$\epsilon_r = -1, \quad \mu_r = -1$$

$$n = \sqrt{\epsilon_r \mu_r} = -1$$

Evanescent modes — plasmon resonance

$$R_{\text{half}} \to \infty$$

Two resonant grids

Two resonant grids (metasurfaces!) instead of a backward-wave medium slab

A resonant particle

- 5 mm
- 2.5 mm

Aalto University
School of Electrical Engineering
Can we replace all metamaterial devices with metasurface devices?

Huygens’ principle

Metasurfaces: Many functionalities

Probably the first metasurface: 1898

The intensities of the reflected and transmitted waves, in terms of that of the primary wave, are therefore

\[I' = \frac{k^2c^3}{1+k^2c^2}. \]

(95)

If the wave-length is at all large compared with \(c \), \(kc \) is small, and the reflection is almost total. But, for any given wave-length (large compared with \(a \)), \(kc \) may be made as great as we please by sufficiently diminishing the radius \(b \) of the wires. In this way we can pass to the case of free transmission.
Current work: Software-defined metasurfaces

Metasurface: Electric and magnetic current sheets

\[J_e = \frac{j\omega p}{S}, \quad J_m = \frac{j\omega m}{S} \]

\(S \) is the unit-cell area.
Engineering reflection and transmission
Locally periodical arrays (physical optics)
Only electric current
(only electric polarization)

\[\mathbf{p} = \overline{\alpha}_{ee} \cdot \mathbf{E}_{\text{inc}} = \overline{\alpha}_{ee} \cdot \mathbf{E}_{\text{loc}} \]

\[\overline{I}_t + \overline{R} = \overline{T} \]

Possible functionalities: FSS and some polarizers

Impossible functionalities: Absorbers (50% max absorption), twist polarizers, mirrors with controlled reflection phase, . . .

Both electric and magnetic currents: (electric and magnetic polarizations)

\[
\begin{bmatrix}
 p \\
 m
\end{bmatrix} = \begin{bmatrix}
 \bar{\alpha}_{ee} & 0 \\
 0 & \bar{\alpha}_{mm}
\end{bmatrix} \cdot \begin{bmatrix}
 E_{inc} \\
 H_{inc}
\end{bmatrix} = \begin{bmatrix}
 \bar{\alpha}_{ee} & 0 \\
 0 & \bar{\alpha}_{mm}
\end{bmatrix} \cdot \begin{bmatrix}
 E_{loc} \\
 H_{loc}
\end{bmatrix}
\]
Reflected and transmitted waves

\[E_{\text{ref}} = -\frac{\eta_0}{2} \mathbf{J}_e \pm \frac{1}{2} \mathbf{z}_0 \times \mathbf{J}_m = -\frac{j \omega}{2S} [\eta_0 \mathbf{p} \mp \mathbf{z}_0 \times \mathbf{m}] \]

\[E_{\text{tr}} = E_{\text{inc}} - \frac{\eta_0}{2} \mathbf{J}_e \mp \frac{1}{2} \mathbf{z}_0 \times \mathbf{J}_m = E_{\text{inc}} - \frac{j \omega}{2S} [\eta_0 \mathbf{p} \pm \mathbf{z}_0 \times \mathbf{m}] \]

(S is the unit-cell area, \(\eta_0 \) is the free-space impedance)

The sheet generates different secondary fields at its two sides, and we can control reflection independently of transmission (\(T \neq 1 + R \)).
Non-reflecting thin layers: Huygens’ sheets

\[E_{\text{ref}} = 0 \quad \Rightarrow \quad \eta_0 J_e = \pm z_0 \times J_m, \quad \eta_0 p = \pm z_0 \times m \]

The same relation as between the fields in the incident plane wave.

All (properly designed) absorbers, polarizers, non-reflecting FSS, phase-shifting surfaces, . . . are Huygens’ sheets.
Special case: Uniaxial symmetry

\[
\tilde{\alpha}_{ee} = \tilde{\alpha}_{ee}^{co} \tilde{I}_t + \tilde{\alpha}_{ee}^{cr} \tilde{J}_t, \quad \tilde{\alpha}_{mm} = \tilde{\alpha}_{mm}^{co} \tilde{I}_t + \tilde{\alpha}_{mm}^{cr} \tilde{J}_t
\]

\(\tilde{I}_t = \tilde{I} - z_0 z_0\) is the two-dimensional unit dyadic, and \(\tilde{J}_t = z_0 \times \tilde{I}_t\) is the vector-product operator.

Reflected and transmitted fields (normally incident plane waves):

\[
E_{\text{ref}} = -\frac{j \omega}{2S} \left[\left(\eta_0 \tilde{\alpha}_{ee}^{co} - \frac{1}{\eta_0} \tilde{\alpha}_{mm}^{co} \right) \tilde{I}_t + \left(\eta_0 \tilde{\alpha}_{ee}^{cr} - \frac{1}{\eta_0} \tilde{\alpha}_{mm}^{cr} \right) \tilde{J}_t \right] \cdot E_{\text{inc}}
\]

\[
E_{\text{tr}} = \left\{ \left[1 - \frac{j \omega}{2S} \left(\eta_0 \tilde{\alpha}_{ee}^{co} + \frac{1}{\eta_0} \tilde{\alpha}_{mm}^{co} \right) \right] \tilde{I}_t - \frac{j \omega}{2S} \left(\eta_0 \tilde{\alpha}_{ee}^{cr} + \frac{1}{\eta_0} \tilde{\alpha}_{mm}^{cr} \right) \tilde{J}_t \right\} \cdot E_{\text{inc}}
\]

Red = non-reciprocal effect
Magneto-dielectric sheets

Additional possible functionalities: zero-reflection devices (absorbers, FSS, phase-shifting sheets, some polarizers); zero-transmission devices (absorbers, mirrors with controlled reflection phase)

Still impossible: twist-polarizers (except using nonreciprocity), and all devices which require different response when illuminated from different sides
Example: Reciprocal perfect absorbers

Desired performance: Reflected field is zero (both co- and cross-polarized components); Transmitted field is zero (both co- and cross-polarized components)

To ensure zero transmission:

\[1 - \frac{j\omega}{2S} \left(\eta_0 \alpha_{ee}^c + \frac{1}{\eta_0} \alpha_{mm}^c \right) = 0 \]

To ensure zero reflection:

\[\eta_0 \alpha_{ee}^c - \frac{1}{\eta_0} \alpha_{mm}^c = 0 \]

Solution:

\[\eta_0 \alpha_{ee}^c = \frac{1}{\eta_0} \alpha_{mm}^c = \frac{S}{j\omega} \]

Need unit cells with balanced electric and magnetic moments, both at resonance.
From collective polarizabilities to the properties of individual unit cells

Local fields and interaction constants...

\[p = \overline{\alpha}_{ee} \cdot E_{\text{inc}}, \quad p = \overline{\alpha}_{ee} \cdot E_{\text{loc}} \]

\[m = \overline{\alpha}_{mm} \cdot H_{\text{inc}}, \quad m = \overline{\alpha}_{mm} \cdot H_{\text{loc}} \]

\[E_{\text{loc}} = E_{\text{inc}} + \overline{\beta}_{e} \cdot p \]

\[H_{\text{loc}} = H_{\text{inc}} + \overline{\beta}_{m} \cdot m \]

For our simple case

\[\frac{1}{\alpha_{ee}} = \frac{1}{\alpha_{ee}^{\text{co}}} + \beta_{e}, \quad \frac{1}{\alpha_{mm}} = \frac{1}{\alpha_{mm}^{\text{co}}} + \frac{\beta_{e}}{\eta_{0}^{2}} \]
We need particles with the polarizabilities equal to

$$\frac{1}{\eta_0 \alpha_{ee}} = \frac{1}{\alpha_{mm} / \eta_0} = \text{Re}\left(\frac{\beta_e}{\eta_0}\right) + j \frac{\omega^3}{6\pi c^2} + j \frac{\omega}{2S}$$

Balanced (optimal) lossy particles. Resonance frequency of particles in free space is different from that in the array.

For dense arrays,

$$\frac{1}{\eta_0} \text{Re}(\beta_e) \approx \frac{0.36}{\sqrt{\epsilon_0 \mu_0} a^3}$$

(a is the array period, $S = a^2$ is the cell area)
Symmetric all-frequency-matched single-layer absorber: topology

Polarizabilities are balanced
Frequency response

![Graph showing frequency response with R, T, and A labels.](https://meta.aalto.fi)
Reciprocal symmetric perfect absorbers

Experiment
Engineering transmission: Matched transmitarrays (Huygens’ metasurfaces)
Locally periodical arrays (physical optics)
Matched (Huygens’) transmitarrays: Design target

Desired performance: Reflected field is zero (both co- and cross-polarized components); Transmitted field is co-polarized and its phase is shifted by the angle ϕ.

There is no reflection if

$$\eta_0 \hat{\alpha}_{ee}^{co} - \frac{1}{\eta_0} \hat{\alpha}_{mm}^{co} = 0, \quad \eta_0 \hat{\alpha}_{ee}^{cr} - \frac{1}{\eta_0} \hat{\alpha}_{mm}^{cr} = 0$$

There is no cross-polarized transmission if

$$\eta_0 \hat{\alpha}_{ee}^{cr} + \frac{1}{\eta_0} \hat{\alpha}_{mm}^{cr} = 0$$

The transmitted field has the desired phase shift (and the same amplitude as the incident field) if

$$1 - \frac{j \omega}{2S} \left(\eta_0 \hat{\alpha}_{ee}^{co} + \frac{1}{\eta_0} \hat{\alpha}_{mm}^{co} \right) = e^{j \phi}$$
The collective polarizabilities should satisfy

\[
\eta_0 \hat{\alpha}_{ee}^{\text{co}} - \frac{1}{\eta_0} \hat{\alpha}_{mm}^{\text{co}} = 0
\]

\[
\eta_0 \hat{\alpha}_{ee}^{\text{cr}} - \frac{1}{\eta_0} \hat{\alpha}_{mm}^{\text{cr}} = 0, \quad \eta_0 \hat{\alpha}_{ee}^{\text{cr}} + \frac{1}{\eta_0} \hat{\alpha}_{mm}^{\text{cr}} = 0
\]

\[
1 - \frac{j\omega}{2S} \left(\eta_0 \hat{\alpha}_{ee}^{\text{co}} + \frac{1}{\eta_0} \hat{\alpha}_{mm}^{\text{co}} \right) = e^{j\phi}
\]

Solution:

\[
\hat{\alpha}_{ee}^{\text{cr}} = \hat{\alpha}_{mm}^{\text{cr}} = 0, \quad \eta_0 \hat{\alpha}_{ee}^{\text{co}} = \frac{1}{\eta_0} \hat{\alpha}_{mm}^{\text{co}} = \frac{S}{j\omega} \left(1 - e^{j\phi}\right)
\]
What should be the individual polarizabilities of array particles?

We again use the connection between the polarizabilities of particles in infinite arrays and the same particles in free space:

\[
\frac{1}{\eta_0 \alpha_{ee}} = \frac{1}{\eta_0 \tilde{\alpha}_{ee}^{co}} + \frac{\beta_e}{\eta_0}, \quad \frac{1}{\alpha_{mm}/\eta_0} = \frac{1}{\tilde{\alpha}_{mm}^{co}/\eta_0} + \frac{\beta_e}{\eta_0}
\]

From here,

\[
\frac{1}{\eta_0 \alpha_{ee}} = \frac{1}{\alpha_{mm}/\eta_0} = \frac{1}{\eta_0} \text{Re}(\beta_e) - \frac{\omega}{2S} \frac{\sin \phi}{1 - \cos \phi} + j \frac{k^3}{6\pi \sqrt{\varepsilon_0 \mu_0}}
\]
Designing particles and the transmitarray

Balanced spirals, racemic arrangement

Experimental set-up
Measured performance

General bianisotropic sheets
(electric, magnetic, and magnetoelectric properties)

\[
\begin{bmatrix}
J_e \\
J_m
\end{bmatrix} = \begin{bmatrix}
\Xi & \Xi \\
\Xi & \Xi
\end{bmatrix} \begin{bmatrix}
\hat{Y}_{ee} & \hat{Y}_{em} \\
\hat{Y}_{me} & \hat{Y}_{mm}
\end{bmatrix} \cdot \begin{bmatrix}
E_{\text{inc}} \\
H_{\text{inc}}
\end{bmatrix}
\]

The same in terms of the dipole moments of unit cells \(p \) and \(m \):

\[
\begin{bmatrix}
J_e \\
J_m
\end{bmatrix} = \begin{bmatrix}
\Xi \\
\Xi
\end{bmatrix} \begin{bmatrix}
\alpha_{ee} & \alpha_{em} \\
\alpha_{me} & \alpha_{mm}
\end{bmatrix} \cdot \begin{bmatrix}
E_{\text{inc}} \\
H_{\text{inc}}
\end{bmatrix}
\]

\[
J_e = j\omega p / S, \quad J_m = j\omega m / S
\]

\[
\begin{bmatrix}
p \\
m
\end{bmatrix} = \begin{bmatrix}
\Xi \\
\Xi
\end{bmatrix} \begin{bmatrix}
\alpha_{ee} & \alpha_{em} \\
\alpha_{me} & \alpha_{mm}
\end{bmatrix} \cdot \begin{bmatrix}
E_{\text{inc}} \\
H_{\text{inc}}
\end{bmatrix}
\]
Uniaxial symmetry

Electric and magnetic polarization:

\[\vec{\alpha}_{ee} = \vec{\alpha}_{ee}^{co} \vec{I}_t + \vec{\alpha}_{ee}^{cr} \vec{J}_t, \quad \vec{\alpha}_{mm} = \vec{\alpha}_{mm}^{co} \vec{I}_t + \vec{\alpha}_{mm}^{cr} \vec{J}_t \]

Magnetoelectric coupling:

\[\vec{\alpha}_{em} = \vec{\alpha}_{em}^{co} \vec{I}_t + \vec{\alpha}_{em}^{cr} \vec{J}_t, \quad \vec{\alpha}_{me} = \vec{\alpha}_{me}^{co} \vec{I}_t + \vec{\alpha}_{me}^{cr} \vec{J}_t \]

\(\vec{I}_t = \vec{I} - z_0 z_0 \) is the two-dimensional unit dyadic, and \(\vec{J}_t = z_0 \times \vec{I}_t \) is the vector-product operator.

Reciprocal and nonreciprocal coupling:

\[\vec{\alpha}_{em} = (\vec{\chi} + j\vec{\kappa}) \vec{I}_t + (\vec{\nabla} + j\vec{\Omega}) \vec{J}_t, \quad \vec{\alpha}_{me} = (\vec{\chi} - j\vec{\kappa}) \vec{I}_t + (-\vec{\nabla} + j\vec{\Omega}) \vec{J}_t. \]

Red = non-reciprocal effect
Reflected and transmitted fields
Most general uniaxial sheets

Normally incident plane wave:

\[
E_{\text{ref}} = - \frac{j \omega}{2S} \left[\left(\eta_0 \tilde{\alpha}_{ee}^\text{co} \pm \tilde{\alpha}_{em}^\text{cr} \pm \tilde{\alpha}_{me}^\text{cr} - \frac{1}{\eta_0} \tilde{\alpha}_{mm}^\text{co} \right) \mathbb{I}_t \right. \\
+ \left(\eta_0 \tilde{\alpha}_{ee}^\text{cr} \mp \tilde{\alpha}_{em}^\text{co} \mp \tilde{\alpha}_{me}^\text{co} - \frac{1}{\eta_0} \tilde{\alpha}_{mm}^\text{cr} \right) \mathbb{J}_t \left. \right] \cdot E_{\text{inc}}
\]

\[
E_{\text{tr}} = \left\{ \left[1 - \frac{j \omega}{2S} \left(\eta_0 \tilde{\alpha}_{ee}^\text{co} \pm \tilde{\alpha}_{em}^\text{cr} \mp \tilde{\alpha}_{me}^\text{cr} + \frac{1}{\eta_0} \tilde{\alpha}_{mm}^\text{co} \right) \mathbb{I}_t \\
- \frac{j \omega}{2S} \left(\eta_0 \tilde{\alpha}_{ee}^\text{cr} \mp \tilde{\alpha}_{em}^\text{co} \pm \tilde{\alpha}_{me}^\text{co} + \frac{1}{\eta_0} \tilde{\alpha}_{mm}^\text{cr} \right) \mathbb{J}_t \right\} \cdot E_{\text{inc}}
\]

This allows the most general device synthesis, within the physical optics approximation.
Reflected and transmitted fields

Reciprocal sheets

\[\hat{\alpha}^{\text{cr}}_{\text{em}} + \hat{\alpha}^{\text{cr}}_{\text{me}} = 2j\Omega, \quad \hat{\alpha}^{\text{cr}}_{\text{me}} - \hat{\alpha}^{\text{cr}}_{\text{em}} = 2\kappa \]

\[E_{\text{ref}} = -\frac{j\omega}{2S} \left(\eta_0 \hat{\alpha}^\text{co}_{\text{ee}} \pm 2j\Omega - \frac{1}{\eta_0} \hat{\alpha}^\text{co}_{\text{mm}} \right) E_{\text{inc}} \]

\[E_{\text{tr}} = \left[1 - \frac{j\omega}{2S} \left(\eta_0 \hat{\alpha}^\text{co}_{\text{ee}} + \frac{1}{\eta_0} \hat{\alpha}^\text{co}_{\text{mm}} \right) \right] E_{\text{inc}} \mp \frac{\omega}{S} \kappa z_0 \times E_{\text{inc}} \]

Magnetic response \((\alpha_{\text{mm}})\) controls matching; omega coupling \((\Omega)\) controls asymmetry in reflections from two sides; chirality \((\kappa)\) controls polarization transformation in transmission.
General bianisotropic sheets

Additional possible functionalities: All what was still impossible with magneto-dielectric sheets

Still impossible: Nothing (if not forbidden by basic physics)
Engineering reflections: Metamirrors

Required collective polarizabilities

Desired performance: Transmitted field is zero; Lossless reflection; Reflection phase ϕ for one side and θ for the other.

No transmission:

$$1 - \frac{j\omega}{2S} \left(\eta_0 \tilde{\alpha}_{ee}^{co} \pm \tilde{\alpha}_{em}^{cr} \mp \tilde{\alpha}_{me}^{cr} + \frac{1}{\eta_0} \tilde{\alpha}_{mm}^{co} \right) = 0, \quad \eta_0 \tilde{\alpha}_{ee}^{cr} + \tilde{\alpha}_{em}^{co} \pm \tilde{\alpha}_{me}^{co} + \frac{1}{\eta_0} \tilde{\alpha}_{mm}^{cr} = 0$$

Desired reflection coefficients:

$$- \frac{j\omega}{2S} \left(\eta_0 \tilde{\alpha}_{ee}^{co} + \tilde{\alpha}_{em}^{cr} + \tilde{\alpha}_{me}^{cr} - \frac{1}{\eta_0} \tilde{\alpha}_{mm}^{co} \right) = e^{j\phi}$$

$$- \frac{j\omega}{2S} \left(\eta_0 \tilde{\alpha}_{ee}^{co} - \tilde{\alpha}_{em}^{cr} - \tilde{\alpha}_{me}^{cr} - \frac{1}{\eta_0} \tilde{\alpha}_{mm}^{co} \right) = e^{j\theta}$$
Several possible realizations. Assuming that we will use only reciprocal unit cells:

\[
\begin{align*}
\eta_0 \hat{\alpha}_{ee}^{co} &= \frac{S}{j\omega} \left(1 - \frac{e^{j\phi} + e^{j\theta}}{2}\right) \\
\hat{\alpha}_{em}^{cr} &= -\frac{S}{j\omega} \left(1 - \frac{e^{j\phi} - e^{j\theta}}{2}\right) \\
\frac{1}{\eta_0} \hat{\alpha}_{mm}^{co} &= \frac{S}{j\omega} \left(1 + \frac{e^{j\phi} + e^{j\theta}}{2}\right)
\end{align*}
\]

Need lossless bianisotropic unit cells (omega coupling, no chirality).
Shapes of wire “omega” particles
Example: Deflecting metamirror

Example: Focusing metamirror

Focal length $\approx 0.65\lambda_0$
Measured results: Focusing metamirror

Operating frequency 5 GHz, bandwidth \approx 5\%, reflectivity \approx 86\%, focal distance 0.65λ, f-number $f/D = 0.23$, focal spot size $2.8\lambda \times 0.9\lambda$, metasurface thickness $\lambda/7.6$, diameter 2.8λ, the focusing reflector is transparent outside of the resonant band.
Oblique incidence: Focal spot shift

Simulation results

0° 5° 10° 15°
Three primary feeds at different positions create three beams in different directions.

Multifunctional metasurfaces

Example three-layer surface

\[H < \lambda \]

\[\vec{E}_{\text{inc}} \]

\[\vec{k} \]

\[X \]

\[Y \]

\[Z \]

\[\frac{E}{E_{\text{inc}}} \]

\[\left| \frac{E}{E_{\text{inc}}} \right|^2 \]
Physical optics is an approximation!

How one can create metasurfaces for *perfect* control of reflection and transmission?
Conventional design approach: Physical optics (the phased-array principle)

The incident wave is $e^{-jkx \sin \theta_i}$ and the reflected wave is $e^{-jkx \sin \theta_r}$.

The reflection coefficient is set to

$$R = \exp[jkx(\sin \theta_i - \sin \theta_r)] = \exp(j\Phi_r(x))$$

At every point we want to have full power reflection (or transmission):

$$|R| = 1 \quad \text{or} \quad |T| = 1$$

Gradient phase ("the generalized reflection law"):

$$\sin \theta_i - \sin \theta_r = \frac{1}{k} \frac{d\Phi_r(x)}{dx}$$
But such reflectors do not produce the desired reflected fields!

\[|R| \neq 1 \quad \text{or} \quad |T| \neq 1 \]

Power efficiency:

\[\zeta_r = 1 - \left(\frac{Z_r - Z_i}{Z_r + Z_i} \right)^2 = \frac{4 \cos \theta_i \cos \theta_r}{(\cos \theta_i + \cos \theta_r)^2} \]

Efficiency results

Conventional design ("generalized reflection law")

\[
\sin \theta_i - \sin \theta_r = \frac{1}{k_1} \frac{d\Phi_r(x)}{dx}, \quad Z_s(x) = j \frac{\eta_1}{\cos \theta_i} \cot[\Phi_r(x)/2]
\]

\(\theta_i = 0^\circ, \quad \theta_r = 70^\circ.\) Efficiency 75.7\%.
“Active-lossy design”

\[E_r = E_i \frac{\sqrt{\cos \theta_i}}{\sqrt{\cos \theta_r}}, \quad Z_s(x) = \frac{\eta_1}{\sqrt{\cos \theta_i \cos \theta_r}} \frac{\sqrt{\cos \theta_r} + \sqrt{\cos \theta_i} e^{j\Phi_r(x)}}{\sqrt{\cos \theta_i} - \sqrt{\cos \theta_r} e^{j\Phi_r(x)}} \]

Efficiency 100%
But how can we realize it?

We need either active elements (gain) or strong non-locality (receiving in “lossy regions” and radiating in “active regions”)

Design concept: Inhomogeneous leaky-wave antenna

Select reactive surface impedance Z_{s0} such that a surface wave is supported:

$$\beta_s = k_1 \sqrt{1 - \frac{Z_1^2}{Z_{s0}^2}}$$

Periodically modulating the surface, couple to plane waves with

$$\sin \theta_n = \frac{\beta_s}{k_1} = \sqrt{1 - \frac{Z_1^2}{Z_{s0}^2}} + n \sin \theta_r$$

Next we LINEARLY modulate the reflection phase, to receive and radiate from/to the desired directions:
Numerical results

\[\Phi_r(x) = \begin{cases}
(sin \theta_r - sin \theta_n) k_1 x - \Phi_0 & 0 \leq x < x_1 \\
(sin \theta_i - sin \theta_n) k_1 (x - D) - \Phi_0 & x_1 \leq x < D.
\end{cases} \]

Efficiency 100% with a lossless reflector: an inhomogeneous reactive boundary.
Design for experimental realization

Array of rectangular patches on a grounded dielectric substrate.

Numerically calculated efficiency 94%
(< 100% due to losses in copper and dielectric)

Target operational frequency 8 GHz.

1.575 mm thick Rogers 5880 substrate ($\varepsilon_r = 2.2$, $\tan \delta = 0.0009$), copper patches.

The sample size $11.7\lambda \times 7\lambda$ (440 mm \times 262.5 mm).
Experimental results

Fixed bi-static antenna positions, at 0° and 70°.
Rotating sample ($\phi = 0$ corresponds to the normal incidence).

-90 -60 -30 0 30 60 90
ϕ (deg)

|S_{21}| (dB)

-90 -80 -70 -60 -50 -40 -30

Metamirror sample

Experimentally measured power efficiency 93.8% at 8.08 GHz
(numerically simulated: 94% at 8 GHz).

Reference metal plate

-90 -60 -30 0 30 60 90
ϕ (deg)

|S_{21}| (dB)
Simple special case $\theta_r = \pm \theta_i$

General case: “active-lossy” surface

$$E_r = E_i \frac{\sqrt{\cos \theta_i}}{\sqrt{\cos \theta_r}}, \quad Z_s(x) = \frac{\eta_1}{\sqrt{\cos \theta_i \cos \theta_r}} \frac{\sqrt{\cos \theta_r} + \sqrt{\cos \theta_i} e^{j\Phi_r(x)}}{\sqrt{\cos \theta_i} - \sqrt{\cos \theta_r} e^{j\Phi_r(x)}}$$

If $\theta_r = \pm \theta_i$, the surface is purely reactive at every point:

$$E_r = E_i,$$
$$Z_s(x) = j \frac{\eta_1}{\sqrt{\cos \theta_i}} \cot \frac{\Phi_r(x)}{2}$$

Specular reflection or retroreflection
Three-channel mirror

At $\theta_i = 0^\circ$ and $\theta_i = \pm 70^\circ$ angles, the observer sees himself as in a mirror normally oriented in respect to him.
Results

Exact synthesis of transmitting metasurfaces

\[\zeta_{r,TE} = 1 - \left(\frac{Z_t - Z_i}{Z_t + Z_i} \right)^2 = \frac{4\eta_1\eta_2 \cos \theta_i \cos \theta_t}{(\eta_2 \cos \theta_i + \eta_1 \cos \theta_t)^2}, \quad \zeta_{r,TM} = \frac{4\eta_1\eta_2 \cos \theta_i \cos \theta_t}{(\eta_2 \cos \theta_i + \eta_1 \cos \theta_t)^2} \]

Homogenization model

Involving only *tangential* fields:

\[E_{t1} = \overline{Z}_{11} \cdot \mathbf{n} \times \mathbf{H}_{t1} + \overline{Z}_{12} \cdot (-\mathbf{n} \times \mathbf{H}_{t2}) \]

\[E_{t2} = \overline{Z}_{21} \cdot \mathbf{n} \times \mathbf{H}_{t1} + \overline{Z}_{22} \cdot (-\mathbf{n} \times \mathbf{H}_{t2}) \]
Equations for Z-parameters

Equating the normal components of the Poynting vector:

$$E_t = E_i \sqrt{\frac{\cos \theta_i}{\cos \theta_t}} \sqrt{\frac{\eta_2}{\eta_1}} e^{j\phi_t}$$

Substituting the desired field values:

$$e^{-jk_1 \sin \theta_i z} = Z_{11} \frac{1}{\eta_1} \cos \theta_i e^{-jk_1 \sin \theta_i z} - Z_{12} \frac{1}{\sqrt{\eta_1 \eta_2}} \sqrt{\cos \theta_i \cos \theta_t} e^{-jk_2 \sin \theta_t z + j\phi_t}$$

$$e^{-jk_2 \sin \theta_t z + j\phi_t} = Z_{21} \frac{1}{\sqrt{\eta_1 \eta_2}} \sqrt{\cos \theta_i \cos \theta_t} e^{-jk_1 \sin \theta_i z} - Z_{22} \frac{\cos \theta_t}{\eta_2} e^{-jk_2 \sin \theta_t z + j\phi_t}$$

Two equations, four design parameters.

Perfect lossless design

\[e^{-jk_1 \sin \theta_i z} = jX_{11} \frac{1}{\eta_1} \cos \theta_i e^{-jk_1 \sin \theta_i z} - jX_{12} \frac{1}{\sqrt{\eta_1 \eta_2}} \sqrt{\cos \theta_i \cos \theta_t} e^{-jk_2 \sin \theta_t z + j\phi_t} \]

\[e^{-jk_2 \sin \theta_t z + j\phi_t} = jX_{21} \frac{1}{\sqrt{\eta_1 \eta_2}} \sqrt{\cos \theta_i \cos \theta_t} e^{-jk_1 \sin \theta_i z} - jX_{22} \frac{\cos \theta_t}{\eta_2} e^{-jk_2 \sin \theta_t z + j\phi_t} \]

Unique solution [where \(\Phi_t(z) = -k_2 \sin \theta_t z + \phi_t + k_1 \sin \theta_i z \)]:

\[X_{11} = -\frac{\eta_1}{\cos \theta_i} \cot \Phi_t \]

\[X_{22} = -\frac{\eta_2}{\cos \theta_t} \cot \Phi_t \]

\[X_{12} = X_{21} = -\frac{\sqrt{\eta_1 \eta_2}}{\sqrt{\cos \theta_i \cos \theta_t}} \frac{1}{\sin \Phi_t} \]
Anomalous refraction requires bianisotropy (omega coupling)

Unit-cell polarizabilities

\[
\tilde{\alpha}_{\text{ee}}^{yy} = \frac{S}{j\omega \eta_1 \cos \theta_t + \eta_2 \cos \theta_i} \cos \theta_i \cos \theta_t \left[2 - \left(\sqrt{\frac{\eta_1 \cos \theta_t}{\eta_2 \cos \theta_i}} + \sqrt{\frac{\eta_2 \cos \theta_i}{\eta_1 \cos \theta_t}} \right) e^{-j\Phi_t(z)} \right]
\]

\[
\tilde{\alpha}_{\text{mm}}^{zz} = \frac{S}{j\omega \eta_1 \cos \theta_t + \eta_2 \cos \theta_i} \frac{\eta_1 \eta_2}{\eta_1 \cos \theta_t + \eta_2 \cos \theta_i} \left[2 - \left(\sqrt{\frac{\eta_1 \cos \theta_t}{\eta_2 \cos \theta_i}} + \sqrt{\frac{\eta_2 \cos \theta_i}{\eta_1 \cos \theta_t}} \right) e^{-j\Phi_t(z)} \right]
\]

\[
\tilde{\alpha}_{\text{em}}^{yz} = -\tilde{\alpha}_{\text{me}}^{yz} = \frac{S}{j\omega \eta_1 \cos \theta_t + \eta_2 \cos \theta_i} \eta_2 \cos \theta_i - \eta_1 \cos \theta_t
\]

where \(S \) is the unit-cell area.

Bianisotropic omega layers, e.g. arrays of \(\Omega \)-shaped particles, arrays of split rings, double arrays of patches (different patches on the two sides of a thin dielectric substrate), asymmetric three-layer structures, …
Experimental realization

Ultimate efficiency for conventional Huygens’ metasurfaces: 75.7%

Measured efficiency: 81%

Conclusions

▶ Metasurfaces are electrically thin composite material layers, designed and optimized to function as tools to control and transform electromagnetic waves

▶ Bianisotropic metasurfaces allow (nearly) full control of reflection and transmission properties, but advanced functionalities require strongly non-local structures

This work has been supported in part by the Academy of Finland (project METAMIRROR) and EU H2020 program (FET OPEN project VISORSURF).