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Abstract Most conventional magnetic materials used in the electronic devices are
ferrites, which are composed of micrometer-size grains. But ferrites have small
saturation magnetization, therefore the performance at GHz frequencies is rather
poor. That is why functionalized nanocomposites comprising magnetic nanoparti-
cles (e.g. composed of Fe, Co) with dimensions ranging from a few nm to 100 nm,
and embedded in dielectric matrices (e.g. silicon oxide, aluminium oxide) have a
significant potential for the electronics industry. When the size of the nanoparticles
is smaller than the critical size for multidomain formation, these nanocomposites
can be regarded as an ensemble of particles in single-domain states and the losses
(due for example to eddy currents) are expected to be relatively small.

Here we review the theory of magnetism in such materials, and we present a
novel measurement method used for the characterization of the electromagnetic
properties of composites with nanomagnetic insertions. We also present a few exper-
imental results obtained on composites consisting of iron nanoparticles in a dielec-
tric matrix.

1 Introduction

For a long time have ferrites been the best choice of material for various applica-
tions requiring magnetic response at radio frequencies (RF). In recent times, there
has been a strong demand both from the developers and the end-users side for
decreasing the size of the modern-day portable communication devices and to add
new functionalities that require access to broader communication bands or to other
bands than those commonly used in communication between such devices. All this
should be achieved without increasing power consumption; rather, a decrease would
be desired. The antenna for example is a relatively large component of modern-
day communication devices. If the size of the antenna is decreased by a certain
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factor, then the resonance frequency of the antenna is increased by the same factor
[1]. As a result, in order to compensate this increase in the resonance frequency,
the antenna cavity may be filled with a material in which the wavelength of the
external radiation field is reduced by the same factor. The wavelength λ inside a
material of relative dielectric permittivity ε and the relative magnetic permeability
µ is given by λ = λ0/

√
εµ where λ0 is the wavelength in vacuum. Hence, it is

possible to decrease the wavelength inside the antenna – and therefore also the size
of the antenna – by increasing the permittivity or the permeability or the both. Once
the size reduction is fixed – that is, εµ is fixed – the relative strength between the
permittivity and the permeability needs to be decided. It is known that the balance
between these two affects the bandwidth of the antenna. Generally speaking, high-ε
and low-µ materials decrease the bandwidth of the microstrip antenna while low-ε
and high-µ materials keep the bandwidth unchanged or even increase it [2].

Typical high-µ materials are magnetically soft metals, alloys, and oxides. Of
these, metals and alloys are unsuitable for high-frequency applications since they
are conducting. On the other hand, non-conducting oxides – such as the ferrites
mentioned above – have been used and are still being used in many applications.
Their usefulness originates from poor conductivity and the ferrimagnetic ordering.
But ferrites are limited by low saturation magnetization which results in a low fer-
romagnetic resonance frequency and a cut-off in permeability below the communi-
cation frequencies [3]. The ferromagnetic resonance frequency has to be well above
the designed operation frequency to avoid losses and to have significant magnetic
response. However, modern standards such as the Global System for Mobile com-
munications (GSM), the Wireless Local Area Network (WLAN), and the Wireless
Universal Serial Bus (Wireless USB) operate in the Super High Frequency (SHF)
band or in its immediate vicinity [4]. The frequency range covered by the SHF band
is 3–30 GHz and it cannot be accessed by the ferrites whose resonance frequency is
typically of the order of hundreds of MHz [3]. Hence, other kinds of materials need
to be developed for the applications mentioned.

The important issue related to the miniaturization by increasing the permittivity
and/or the permeability is the introduced energy dissipation. In some contexts, losses
are good in a sense that they reduce the resonance quality factor and hence increase
the bandwidth. The cost is increased energy consumption which goes to heating of
the antenna cavity. In general, several processes contribute to losses in magnetic
materials. At low frequencies, the dominant loss process is due to hysteresis: it
becomes less important as the frequency increases, due to the fact that the motion of
the domain walls becomes dampened. The eddy current loss plays a dominant role in
the higher-frequency range: the power dissipated in this process scales quadratically
with frequency. In this paper will have a closer look at this source of dissipation,
which can be reduced in principle by using nanoparticles instead of bulk materials.
Another important process which we will discuss is ferromagnetic resonance (due
to rotation of the magnetization).

All these phenomena limit the applicability of standard materials for high-
frequency electronics. However, the SHF band may be accessed by the so called
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magnetic granularmaterials. A granular material is composed of a non-conducting
matrix with small (metallic) magnetically soft inclusions. Such composites have
both desired properties; they are non-conducting and magnetically soft. Granular
materials are of special interest at the moment since the synthesis of extremely
small magnetic nanoparticles has taken major leaps during the past decades.
Especially the synthesis of monodisperse FePt nanoparticles [5] and the synthe-
sis of shape and size controlled cobalt nanoparticles [6] have generated interest
because these particles can be produced with a narrow size distribution. In addition,
small nanoparticles exhibit an intriguing magnetic phenomenon called superpara-
magnetism. Superparamagnetic nanoparticles are characterized by zero coercivity
and zero remanence which can lead to a decrease in loss in the magnetization
process [7].

There have been numerous studies investigating dielectric and magnetic
responses of different granular materials. For example, an epoxy-based compos-
ite containing 20% (all percentages in this article are defined as volume per vol-
ume) rod-shaped CrO2 nanoparticles has been demonstrated to have a ferromag-
netic resonance around 8 GHz and relative permeability of 1.2 [8]. Similarly, a
multimillimetre-large self-assembled superlattice of 15 nm FeCo nanoparticles has
been shown to have a ferromagnetic resonance above 4 GHz [9].

This raises the interesting question of whether it would be possible in general
to design novel nanocomposite materials with specified RF and microwave elec-
tromagnetic properties, aiming for example at very large magnetic permeabilities
and low loss at microwave frequencies. Such properties should arise from the inter-
particle exchange coupling effects which, for small enough interparticle separation,
extends over near-neighbour particles, and from the reduction of the eddy currents
associated with the lower dimensionality of the particles. In this paper, we aim at
evaluating the feasibility of using magnetic polymer nanocomposites as magneti-
cally active materials in the SHF band.

The structure of the paper is the following: in Sect. 2 we review briefly the
physics of ferromagnetism in nanoparticles, namely the existence of single-domain
states (Sect. 2.1), ferromagnetic resonance and the Snoek limit (Sect. 2.3), and eddy
currents (Sect. 2.3). In Sect. 3 we discuss theoretically issues such as the require-
ments stated by thermodynamics on the possibility of dispersing nanoparticles in
polymers (Sect. 3.1). A set of rules governing the effective high-frequency mag-
netic response in magnetic nanocomposites is developed in Sect. 3.2. Then we
describe the experimental details and procedures used to prepare and character-
ize the nanocomposites (Sect. 4). We continue to Sect. 5 where we first discuss a
measurement protocol which allow us to measure the electromagnetic properties
of the iron nanocomposites (Sect. 5.1). Finally, as the main experimental result of
this paper, magnetic permeability and dielectric permittivity spectra between 1–14
GHz are reported in Sect. 5.2 for iron-based nanocomposites (containing Fe/FeO
nanoparticles in a polystyrene matrix) as a function of the nanoparticle volume frac-
tion. This paper ends with a discussion (Sect. 6) on how to improve the magnetic
performance in the SHF band.
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2 Magnetism in Nanoparticles

Magnetic behavior in ferromagnetic nanoparticles is briefly reviewed in this sec-
tion c.f. [10–12]. The focus is especially in the so called single-domain magnetic
nanoparticles which lack the typical multi-domain structure observed in bulk ferro-
magnetic materials. The topics to be discussed are: (A) when does the single-domain
state appear, (B) what is its ferromagnetic resonance frequency, and (C) what are the
sources of energy dissipation in single-domain nanoparticles.

2.1 Existence Criteria for the Single-Domain State

A magnetic domain is a uniformly magnetized region within a piece of ferro-
magnetic or ferrimagnetic material. Magnetic domains are separated by boundary
regions called the domain walls (DW) in which the magnetization gradually rotates
from the direction defined by one of the domains to the direction defined by the
other. The domain wall thickness (dDW), which depends on the material’s exchange
stiffness coefficient (A) and the anisotropy energy density (K ), extends from 10 nm
in high-anisotropy materials to 200 nm in low-anisotropy materials. The domain
thickness, on the other hand, depends more on geometrical considerations. For
example, in one square centimeter iron ribbon, 10 µm thick, the domain wall spac-
ing is of the order of 100 µm. The spacing increases if the thickness is reduced.
Reducing the thickness over a critical value leads to the complete disappearance of
the domain walls. That state is called the single-domain (SD) state. Between mul-
tidomain and single-domain states there may be a vortex state: this is not discussed
however here. Similarly, the domains in spherical nanoparticles vanish below a cer-
tain diameter which is of the order of few nanometers or few tens of nanometers.
In hard materials this diameter (dSD,HARD) can be estimated to be roughly ([11],
p. 303):

dSD,HARD ≈ 18

√
AK

µ0 M2
S

, (1)

where MS is the saturation magnetization and µ0 is the vacuum permeability. The
equation is based on the assumption that the magnetization follows the energetically
favorable directions (easy axes or easy planes) defined by the anisotropy. The single-
domain diameter given by Eq. (1) should be always compared to the domain wall
thickness given by ([11], p. 283)

dDW = π

√
A
K

. (2)

If the diameter of the particle is less than the wall thickness, it is obvious that it
cannot support the wall. The condition dSD,HARD > dDW, leads to the criterion
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Q def= 18
π

K

µ0 M2
S

> 1. (3)

On the other hand, in magnetically soft nanoparticles the magnetization does not
necessary follow the easy directions. In the perfectly isotropic case, that is K = 0,
the surface spins are oriented along the spherical surface and a vortex core is formed
in the center of the particle if the particle is above the single-domain limit. The
single-domain diameter (dSD,SOFT) of a perfectly isotropic nanoparticle is given by
([11], p. 305),

dSD,SOFT ≈ 6

√
A

µ0 M2
S

[
ln

dSD,SOFT

a
− 1

]
, (4)

where a is the lattice constant. This equation can be solved by the iteration method.
The single-domain diameter is more difficult to estimate if the anisotropy is non-
zero but does not meet the requirement of Eq. (3). In that case, the single-domain
diameter is likely to rest between the values predicted by Eqs. (1) and (4).

Single-domain diameters, domain wall thicknesses and other relevant physi-
cal quantities for selected ferromagnetic metals are shown in Table 1. The addi-
tional surface-induced anisotropy has been neglected. The uniaxial hexagonal close
packed (HCP) cobalt is the only strongly anisotropic material with Q ≈ 1. The
body centered cubic (BCC) iron and the FCC nickel fall in between hard and soft
behavior.

Table 1 The saturation magnetization (MS) [13], the anisotropy energy density K [13, 14], the
Q-factor Eq. (3), the single-domain diameter in the hard material approximation dSD,HARD Eq. (1),
single-domain diameter in the isotropic material limit dSD,SOFT Eq. (4), and the domain wall width
dDW Eq. (2), for iron, cobalt, and nickel. The exchange stiffnesses used in the calculations are
from [15]

MS K dSD,HARD dSD,SOFT dDW
(emu/cm3) (erg/cm3) Q (nm) (nm) (nm)

Iron (BCC) 1707 4.8 × 105 0.075 5 89 63
Cobalt (HCP) 1440 4.5 × 106 0.996 26 169 26
Nickel (FCC) 485 −5.7 × 104 0.110 13 173 113

2.2 Ferromagnetic Resonance and the Snoek Limit

The two major processes contributing to the magnetization change are the domain
wall motion and the domain rotation. The resonance frequency of the domain wall
motion is typically less than the resonance frequency of the domain rotation. Hence,
the only process active in the highest frequencies is the domain rotation which is
associated with the ferromagnetic resonance (FMR).
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The natural1 ferromagnetic resonance was first explained by Snoek to be the
resonance of the magnetization vector ( &M) pivoting under the action of some energy
anisotropy field ( &HA) [16]. The origin of the anisotropy is not restricted. It can be
induced, for example, by an external magnetic field, magnetocrystalline anisotropy
or shape anisotropy. It is common to treat any energy anisotropy as if it was due to
an external magnetic field.

The motion of the magnetization around in the anisotropy field is described by
the Landau-Lifshitz equation [17],

d &M
dt

= −ν( &M × &HA) − 4πµ0λ̂

M2
S

( &M × ( &M × &HA)), (5)

where λ̂ is the relaxation frequency (not the resonance frequency) and ν is the gyro-
magnetic constant given by ([10], p. 559)

ν = g
eµ0

2m
≈ 1.105 × 105g(mA−1s−1) ≈ 2.2 × 105mA−1s−1, (6)

where g is the gyromagnetic factor (taken to be 2), e is the magnitude of the electron
charge and m is the electron mass.

If the Landau-Lifshitz equation is solved, one obtains the resonance condition
([10] p. 559)

fFMR = (2π)−1νHA, (7)

where fFMR is the resonance frequency and HA is the magnitude of the anisotropy
field.

For example, for HCP cobalt the magnetocrystalline anisotropy energy density
(UA) is given by ([10], p. 264)

UA = K sin2θ ≈ K
(

θ2 − 1
3
θ4 + . . .

)
, (8)

1“Natural” is used so that this resonance is distinguished from the dimensional resonance asso-
ciated with standing waves within a sample of finite size. The dimensional resonance takes
place when the end-to-end length (L) of the sample times two is equal to an integer multiple
of the wavelength of the radiation (λ) in the material. The same is mathematically expressed as
L = nλ/2 = n/2λ0/

√
εµ where λ0 is the wavelength in vacuum and n is a positive integer. The

resonance frequency ( fr ) is given by fr = c/λ0 = nc/2L
√

εµ where c is the speed of light. For
example, the first dimensional resonance in a 10 mm long sample with εµ = 9 is approximately
5 GHz. The dimensional resonance can be avoided in experiments by carefully estimating the
product εµ and designing the sample length accordingly.



Magnetic Nanocomposites at Microwave Frequencies 263

where θ is the angle between the easy axis and the magnetization. The energy den-
sity due to an imaginary magnetic field is given by ([10], p. 264)

UA = −µ0 HA MScos θ ≈ −µ0 HA MS

(
1 − 1

2
θ2 + . . .

)
. (9)

By comparing the exponents one obtains

HA = 2K
µ0 MS

≈ 0.62 T
µ0

, (10)

and from Eq. (7)

fFMR = (2π)−1νHA ≈ 17 GHz. (11)

It is tempting to use nanoparticles with as high anisotropy as possible in order to
maximize the FMR frequency. Unfortunately, the permeability decreases with the
increasing anisotropy; for uniaxial materials the relative permeability µ is given by
([10], p. 493),

µ = 1 + µ0 M2
Ssin2θ

2K
. (12)

It is easy to show that that Eqs. (7),(10), and (12) lead to

〈µ〉 · fFMR = νMS

3π
, (13)

where 〈µ〉 is the angular average of the relative permeability (which we assume
much larger than the unit). This equation is known as the Snoek limit. It is an
extremely important result since it predicts the maximum permeability achievable
with a given FMR frequency as a function of the saturation magnetization. It can be
shown to be valid for both the uniaxial and cubic materials (taken that K > 0). Some
values for the maximum relative permeability as a function of the FMR frequency
and the saturation magnetization are shown in Table 2.

It has been found out that the Snoek limit can be exceeded in materials of negative
uniaxial anisotropy [18]. In that case, the magnetization can rotate in the easy plane
perpendicular to the c-axis. Such materials obey the modified Snoek limit ([10],
p. 561)

µ · fFMR = νMS

3π

√
HA1

HA2
, (14)

where HA1 is the anisotropy field along the c-plane (small) and HA2 is the anisotropy
field out of the c-plane (large). One such material is the Ferroxplana [12].
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Table 2 Maximum relative permeability (µ) Eq. (13) achievable in cubic and uniaxial materials
with positive anisotropy as a function of the saturation magnetization (MS) and the FMR frequency
( fFMR)

Saturation magnetization µ0 MS

fFMR (GHz) 0.1 T 0.3 T 0.5 T 1.0 T 2.0 T

0.1 19.7 57.7 94.3 187.60 374.2
0.5 4.7 12.2 19.7 38.3 75.6
1.0 2.9 6.6 10.3 19.7 38.3
2.0 1.9 3.8 5.7 10.3 19.7
5.0 1.4 2.1 2.9 4.7 8.5

2.3 Eddy Currents and Other Sources of Loss

Magnetic materials can dissipate energy through various processes when magne-
tized. When the oscillation period of the external driving field is long, the main
sources of loss are the processes that contribute to the hysteresis. The hysteresis
loss is linearly proportional to the frequency of the driving field since the loss during
one complete hysteresis cycle (B-H loop) is proportional to the area within the cycle
(assuming that the hysteresis loop does not change with the frequency). The main
contribution to the hysteresis comes from the domain wall motion and pinning and a
smaller contribution is due to the magnetization rotation and domain nucleation. The
domain wall motion is damped as the frequency is increased over the domain wall
resonance so that only the magnetization rotation persists to the highest frequen-
cies. In addition to the domain rotation hysteresis, the loss in the SHF band stems
also from the electrical currents induced by the changing magnetic field inside the
particles.

A change in the magnetic field (B) inside a piece of material with finite resis-
tivity (ρ) induces an electric field which generates an electric current as stated by
the Faraday’s law. This current is called eddy current. It dissipates energy into the
sample through the electrical resistance. For example, the averaged loss power 〈P〉
in a spherical nanoparticle of radius r can be calculated to be2

2 Assume that a spherical nanoparticle (radius r , resistivity ρ ), is placed in an alternating mag-
netic field so that the magnetic field inside the particle is B. According to the Faraday’s equa-
tion 2πx E (x) = −πx2dB/dt where x is the distance from the particle center and E (x) is
the electric field. The differential current d I circulating around the cylindrical shell at the dis-
tance x is given by d I = 2πx E (x) /d R where the differential resistance d R is given by
d R = ρ2πx/h (x) dx where h(x) is the height of the cylindrical shell and dx is the thick-
ness of the shell. Now the dissipated power can be calculated from P =

∫
2πx E (x) d I =

(π/ρ)(d B/dt)2 ∫ r
0 x3

√
r2 − x2dx . Changing the integration variable from x to rsin ϕ simplifies

the integral to P = (π/ρ) (d B/dt)2 r5 ∫ π/2
0

(
sin3ϕ − sin5ϕ

)
dϕ where the integral part is equal

to 2/15. Assuming that the magnetic field is given by B = B̂sin 2π f leads to the result given in
Eq. (15).
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〈P〉 = 2π

15
1
ρ

r5

〈(
d B
dt

)2
〉

= 4π3

15ρ
r5

(
f B̂

)2
, (15)

where f is the frequency of the driving field and B̂ is the amplitude of the oscil-
lating component of the total magnetization. From Eq. (15) it is obvious that the
loss power per unit volume increases as r2, indicating that the loss can be decreased
by using finer nanoparticles. Notice that the loss power will vanish above the FMR
resonance since there cannot be magnetic response above that frequency, that is
B̂ → 0.

For example, the loss power per unit volume (p) in cobalt nanoparticles can be
calculated to be

p ≈ 32
( r

nm

)2
(

f
GHz

)2
(

B̂
T

)2
W

cm3 . (16)

If the volume of the magnetic element is 0.1 cm3, the radius of the nanoparticles
5 nm, and B̂ = 1.8 T one obtains 0.26 mW for loss power.

It has been shown that this simple approach is inadequate to describe the eddy
current loss in materials containing domain walls [10]. The eddy currents in mul-
tidomain materials are localized at the domain walls, which leads to a roughly
four-times increase in the loss. However, since there are no walls present in single-
domain nanoparticles and the magnetization reversal can take place by uniform rota-
tion, this model is considered here to be adequate in describing the eddy current loss
in single-domain nanoparticles.

One more matter to be addressed is the penetration depth of the magnetic field
into the nanoparticles. Because the eddy currents create a magnetic field counter-
acting the magnetic field that induced the eddy currents, the total magnetic field is
reduced when moving from the nanoparticle surface towards its core. The depth (s)
at which the magnetic field is reduced by the factor 1/e is called the skin-depth and
it is given by ([10], p. 552),

s =
√

2ρ

ωµµ0
. (17)

For example, from Eq. (17) the skin-depth for cobalt (ρ = 62 n)m and µ= 10) at
1 GHz is 1.3 µm and at 10 GHz 400 nm. Hence, cobalt nanoparticles that are less
than 100 nm in diameter would already be on the safe side. The situation is rather
different in typical ferrites for which ρ ≈ 104 )m and µ=103, giving 5 cm for
the skin depth. Therefore ferrites can be used in the bulk form in near-microwave
applications.
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3 Magnetic Polymer Nanocomposites

In the simplest form a polymer nanocomposite is a blend of small particles
(the diameter is less than 100 nm) incorporated in a polymeric matrix. Polymer
nanocomposites are characterized by the convergence of three different length
scales: the average radius of gyration of the polymer molecules (RG), the aver-
age diameter of the nanoparticles (2r), and the average nearest-neighbor distance
between the particles (d), as shown in Fig. 1. In such composites, the polymer chains
may not adopt bulk-like conformations [19]. Associated with this, there can be a
change in the polymer dynamics which can lead to either an increase or a decrease
in the glass transition temperature. Furthermore, the nanoparticles bring their own
flavor to the nanocomposite – magnetism, in our particular case.

The most severe problem faced in polymer nanocomposites is the aggregation of
nanoparticles. The thermodynamic stability of the nanoparticle dispersion has been
addressed in the recent literature experimentally, theoretically and through com-
puter simulations. The experiments have showed that nanoparticles aggregate even
at small particle volume fractions – less than 1% in many compositions [20]. Theo-
retical considerations and computer simulations have revealed that the quality of the
nanoparticle dispersion depends delicately on the balance between the entropic and
the enthalpic contributions – quite similarly as in polymer blends [21]. The solution
for the dispersion dilemma has been pursued by modifying the nanoparticle sur-
face, changing the architecture and size of the polymer and by applying alternative
processing conditions.

The simulation results and the theoretical arguments presented in the literature
are often difficult to interpret. Furthermore, they do not take into account the mag-
netic interactions in magnetic nanocomposites. The aim of Sect. 3.1 is to ana-
lyze the factors affecting the dispersion quality of magnetic nanoparticles in non-
magnetic polymers. Section 3.2 discusses the effective magnetic response of such
nanocomposites.

Fig. 1 A schematic
illustration of a polymer
nanocomposite. The average
radius of the nanoparticles
(2r) (filled dark circles), the
average radius of gyration of
the polymer molecules (RG)
(the thick black line inside the
filled light-gray circle) and
the average nearest-neighbor
distance (d) between the
nanoparticles are of the same
magnitude

d

2r

RG
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3.1 Factors Affecting the Nanoparticle Dispersion Quality

3.1.1 Attractive Interparticle Interactions

There has been considerable interest in modifying chemically the nanoparticle sur-
face towards being more compatible with the polymer [22, 23]. Especially important
surface modification techniques are the grafting-techniques. They involve either a
synthesis of polymer molecules onto nanoparticle surface (grafting-from) or attach-
ment of functionalized polymers onto the the nanoparticle surface (grafting-to). The
advantage of the grafting-techniques is that they can make the nanoparticle surface
not only enthalpically compatible with a polymer, but the grafted chains also exhibit
similar entropic behavior as the surrounding polymer molecules. One disadvantage
is that these techniques require precise knowledge of the chemistry involved.

It is well-established that a monolayer of small molecules attached to the
nanoparticle surface is not enough to significantly enhance the quality of the dis-
persion even if the surface molecules were perfectly compatible with the polymer –
that is, they were identical to the constitutional units of the polymer. This is due
to the fact that the London dispersion force3 acting between the nanoparticles is
effective over a length which increases linearly with the nanoparticle diameter. This
is proven in the following.

The London dispersion energy (ULONDON) between two identical spheres, diam-
eters 2r , separated by a distance d was first shown by Hamaker to be [24],

ULONDON = − A121

6

[
(2r)2

2(2r + d)2 + (2r)2

2
(
(2r + d)2 − (2r)2)

+ ln

(

1 − (2r)2

(2r + d)2

) ]

, (18)

where A121 is the effective Hamaker for the nanoparticles (phase 1) immersed in
the polymeric matrix (phase 2). The Hamaker constants are typically listed for two
objects of the same material in vacuum from which the effective value can be cal-
culated by using the approximation [24]

A121 ≈
(√

A11 −
√

A22

)2
, (19)

where A11 is the Hamaker constant for the nanoparticles and A22 is the Hamaker
constant for the medium. The typical effective Hamaker constant for metal particles
immersed in organic solvent or a polymer is approximately 25·10−20 J. By using this
value, the London potential Eq. (18) is plotted for 5 nm metal particles in Fig. 2a and
for 15 nm particles in Fig. 2b. The distance

(
dkBT ,LONDON

)
over which the London

3Despite of its name it is an attractive force.
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Fig. 2 Comparison between the London dispersion force and the magnetic dipolar interaction
between two identical metal nanoparticles. (a) The reduced London potential Eq. (18) (grey thin
curve), the magnetic dipolar energy Eq. (24) (black thin curve) and the total interaction energy
(black thick curve) between two 5 nm metal nanoparticles. (b) The same for two metal particles
15 nm in diameter. The magnetic dipolar energy curve is overlapping with the total interaction
curve. (c) The distance between the particle surfaces as a function of the particle diameter when the
interaction energy is comparable to the thermal energy. The black line corresponds to the magnetic
interaction Eq. (25) and the grey to the London dispersion Eq. (20). (d) Schematic illustration and
definition of the used variables

dispersion force is effective can be estimated by setting the interaction energy equal
to the thermal energy and by solving for the distance. The result is4

dkBT ,LONDON = (α − 1) · 2r ≈ 2r
3

, (20)

where α is a constant in excess of unity and typically around 1.33 for metals
immersed in organic medium. This linear dependence is shown in Fig. 2c. Typically,

4By setting ULONDON = −kBT and defining a reduced variable α = 1 + dkBT,LONDON/2r one
can rewrite Eq. (18) as 6kBT/A121 = 1/(2α2) + 1/[2

(
α2 − 1

)
] + ln

(
1 − 1/α2) ≡ f (α) . This

equation can be solved for α by plotting y = f (α) and y = 6kBT/A121 and by locating the point
of intersection. The effective distance can be calculated by inserting the obtained intersection point
into the equation defining the reduced variable.
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nanoparticles are covered with a monolayer of alkyl chains ranging up to 20 carbon-
carbon bonds in length. Even if the chains were totally extended and rigid, their
length would be only roughly 2 nm. Such a shielding layer can protect only nanopar-
ticles less than 12 nm in diameter from aggregation.

Fortunately, the thermodynamic equilibrium is not solely dependent on the
enthalpy which always drives the system towards the phase separation. The addi-
tional component is entropy which opposes the separation. The Gibbs free energy
(G) which determines the thermodynamic stability in the constant temperature and
the constant pressure is given by G = H −T S, where H is enthalpy and S is entropy.
The entropic term per unit volume in a mixture of nanoparticles and small molecular
weight solvent molecules can be estimated to be5

− T S
V

= −kBT
VS

[
ln

(
x

x − φ

)
+ φ

x
ln

(
x − φ

φ

) ]
≈ −kBT

VS

φ

x
ln

x
φ

, (21)

where VS is the volume of the solvent molecule, φ is the volume fraction of
the nanoparticles and x is the volume ratio between a nanoparticle and a solvent
molecule. In the case of x = 1 the equation properly reduces to

− T S
V

= −kBT
VS

[−φln φ − (1 − φ) ln (1 − φ)] , (22)

which corresponds to the entropy of mixing between two molecules of the same
size.

For example, the volume of a toluene molecule is approximately 0.177 nm3 and
the volume of a 10 nm nanoparticle is 524 nm3. In that case x ≈ 3000. Equa-
tion (21) states that the entropy of mixing is reduced by a factor 1/1300 in a 1%
nanocomposite when compared to a situation in which both the nanoparticles and
the solvent molecules were of the same size. Without a proof, it is suggested that
the magnitude of the entropy is even less when the nanoparticles are mixed with
polymer molecules. The suggestion is justifiable due to the entropic restrictions
introduced by covalent bonding between the monomer units.

If the nanoparticles are magnetic, they interact with each other more strongly than
non-magnetic nanoparticles. The magnetic dipolar interaction energy (UM) between
two particles, 2r in diameter, is given by [10]

UM = µ0

4π(d + 2r)3 (3 (m1 · r̂ ) (m2 · r̂ ) − m1 · m2) , (23)

5Assume that an arbitrary lattice of N sites is filled with N1 nanoparticles and N2 solvent molecules.
Each nanoparticle incorporates x lattice sites and each solvent molecule one lattice site. Then the
number of microstates ()) is approximately ) ≈ N !/((N − N1)!N1!). Notice that N − N1 += N2
in contrast to the mixing theory of small molecules of same size. The Eq. (22) is obtained from
the definition of entropy S = kBln ) by simple algebraic manipulation and by assuming that the
density of the nanoparticles is low (N1 , N ).
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where r̂ is the unit vector between the particles, d is the distance between the particle
surfaces and m1 and m2 are the magnetic moments of the particles. Assuming that
the particles are magnetically single-domain, their saturation magnetization is MS
and that the magnetization vectors are parallel to each other and to the unit vector,
the interaction energy is reduced to

UM = −8π

9
r6

(d + 2r)3 µ0 M2
S . (24)

Similarly to the effective distance of the London dispersion force, one can derive
the distance at which the magnetic energy is comparable to the thermal energy. It is
given by

dkBT,MAGNETIC =
(

8π

9
µ0 M2

S

kBT

) 1
3

r2 − 2r. (25)

To give an example, the magnetic interaction energy Eq. (24) is drawn for two
pairs of cobalt particles, 5 nm and 15 nm in diameter, in Fig. 2a and b, respectively.
The interaction between the 5 nm particles is dominated by the London dispersion
potential and only weakly modified by the magnetic interaction. In the case of the
15 nm particles, the magnetic interaction is effective over a distance of 50 nm, ren-
dering the London attraction negligible. In order to shield magnetic nanoparticles
from such a long-ranging interaction with a protective shell is unpractical. First of
all, the maximum achievable nanoparticle volume fraction

(
φ̂MAGNETIC

)
is lim-

ited by the shielding. If the shielding layer volume is not taken to be a part of the
nanoparticle volume, the maximum achievable volume fraction (neglecting entropic
considerations) is proportional to

φ̂MAGNETIC ∝ r3

(
dkBT,MAGNETIC + 2r

)3 ∝ r−3. (26)

On the other hand, the maximum volume fraction
(
φ̂LONDON

)
limited by shielding

against the London attraction does not depend on the nanoparticle size:

φ̂LONDON ∝ r3

(
dkBT,LONDON + 2r

)3 = const. (27)

Second, the shielding against the magnetic dipolar attraction by using the conven-
tional grafting techniques is difficult due to the enormous length required from the
grafted chains.

Based on the considerations presented in this section, it is unlikely that a uni-
form dispersion of magnetic nanoparticles of decent size can be achieved by using
the conventional shielding strategy. The magnetic interaction starts to dominate the
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free energy when the magnetic nanoparticles are 10 nm in diameter or larger. Fur-
thermore, the entropic contribution decreases approximately as x−1 where x is the
volume of the nanoparticle relative to the volume of the solvent molecule. Hence,
the dispersion dilemma needs to be approached from some other point of view than
the conventional shielding strategy.

3.1.2 Effect of the Polymer Size, Architecture, and Functionalization

A general dispersion strategy proposed by Mackay et al. suggests that the quality
of a nanoparticle dispersion is strongly enhanced if the radius of gyration of the
polymer is larger than the average diameter of the nanoparticle [20]. The radius of
gyration (RG) for a polymer molecule which is interacting neutrally with its sur-
roundings is given by RG ≈ √

C/6
√

Na where N is the number of monomers, a
is the length of a single monomer and C is the Flory ratio. For the polystyrene that
for example we use the equation yields 16 nm for the radius of gyration (C ≈ 9.9,
N ≈ 2400 and a ≈ 0.25 nm). It is based on the assumption that small particles
can be incorporated within polymer chains easily but large particles prevent chains
from achieving their true bulk conformations. In other words, large particles stretch
the polymer molecules and hence introduce an entropic penalty. Pomposo et al.
have verified the Mackay’s proposition in a material consisting of polystyrene and
crosslinked polystyrene nanoparticles [25]. Such a system is ideal in a sense that
the interaction between the polymer matrix and the nanoparticles is approximately
neutral. That emphasizes the entropic contribution to the free energy. However, if the
main contribution to the free energy is enthalpic, as it is in magnetic nanocompos-
ites, one should use the Mackay’s proposition with a considerable care. The entropic
enhancement is most likely much smaller than the enthalpic term, rendering the
improvement in the dispersion quality negligible.

One other remedy for the dispersion dilemma is to replace the linear polymer by
a star-shaped one. It has been shown both theoretically [21] and experimentally [26]
that it can lead to a spontaneous exfoliation of a polymer-nanoclay composite. It has
been also demonstrated that replacing polystyrene in a polystyrene-nanoclay com-
posite by a telechelic hydroxyl-terminated polystyrene results in exfoliation. Since
the polymer-nanoclay composites are geometrically different from the polymer-
nanoparticle composites, one cannot directly state that these techniques would also
work with polymer-nanoparticles composites.

3.2 Effective Magnetic Response

The effective relative permeability of a nanocomposite containing spherical mag-
netic inclusions can be determined from several different effective medium theories
(EMT) [27]. The two most popular are the Maxwell-Garnett formula

µ = 1 + 3φ
µNP−1

µNP + 2 − φ (µNP − 1)
, (28)
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Fig. 3 The effective relative permeability of a nanocomposite containing spherical magnetic inclu-
sions (µNP = 10) as a function of the nanoparticle volume fraction. The Maxwell-Garnett theory
prediction (black line) was obtained from Eq. (28) and the Bruggeman theory prediction (grey line)
from Eq. (29)

and the symmetric Bruggeman formula

µNP − µ

µNP + 2µ
φ + 1 − µ

1 + 2µ
(1 − φ) = 0, (29)

where µ is the effective relative permeability, µNP is the relative permeability of the
nanoparticles and φ is the nanoparticle volume fraction. The effective relative per-
meability of a nanocomposite containing spherical particles (µNP = 10) is plotted
in Fig. 3 according to both Eqs. (28) and (29). Below 20% filling, the dependence
of the permeability on the volume fraction is approximately linear. However, the
rate of the linear increase is not as high as would be expected for homogeneous
mixing. The Bruggeman theory has been shown to agree with the experiments with
similar materials as studied in this article [28]. Before using the Bruggeman the-
ory one needs to know what is the permeability of the nanoparticles. For uniaxial
single-grain particles it is ([10], p. 439)

µNP,UNIAXIAL = 1 + µ0 M2
Ssin2θ

2K
(30)

and for cubic particles

µNP,CUBIC =






1 + µ0 M2
Ssin2θ

2K , K > 0

1 − 3µ0 M2
Ssin2θ

4K , K < 0

. (31)

where θ is the angle between the easy axis and the external field. Perme-
abilities of some ferromagnetic metals are calculated in Table 3. It should be pointed
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Table 3 The saturation magnetization MS [13], the anisotropy energy density (K) [13, 14], and
the calculated relative permeabilities µNP (from Eqs. (30) and (31)) for selected ferromagnetic
metals. 〈µNP〉 refers to the calculation where the permeability has been averaged over the isotropic
distribution of the easy axes

MS K µNP
(emu/cm3) (erg/cm3) (θ = π/2) 〈µNP〉

Iron (BCC) 1707 4.8 × 105 39 26
Cobalt (HCP) 1440 4.5 × 106 4 3
Nickel (FCC) 485 −5.7 × 104 40 27

out that once again the surface anisotropy has been neglected, and that it is most
likely that the experimentally determined permeabilities are smaller than those in
Table 3.

The effective magnetic response of a polymer nanocomposite containing single-
domain nanoparticles can be determined from the following rules:

• The FMR frequency determines the high-frequency limit of the magnetic
response. The FMR frequency is determined from the effective anisotropy field
by using Eq. (7).

• The permeability below the FMR is dispersion-free since the only magnetization
process taking place in single-domain particles is the domain rotation (which is
associated with the FMR).

• The magnitude of the permeability is determined from the Bruggeman theory,
Eq. (29).

• The permeability of the nanoparticles – which is used in the Bruggeman
theory – is determined from the effective anisotropy energy density and the satu-
ration magnetization according to the Eqs. (30) and (31).

The anisotropy used in the calculations should be the true total anisotropy:
the sum of the (bulk) magnetocrystalline anisotropy, the surface anisotropy,
and the anisotropy due to magnetic field. Especially if the bulk anisotropy is
small, the surface anisotropy can be the dominant term. Since the experimental
data on the surface anisotropy is scarce, it has been neglected in the analysis
so far.

4 Preparation and Characterization

In this section we describe the experimental details and procedures used to prepare
and characterize the nanocomposites.

4.1 High Volume Fraction Nanocomposites for High-Frequencies

Nanocomposites containing iron nanoparticles for the SHF band characteriza-
tion were made according to the following procedure. First, a desired amount of
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Table 4 Compositions of the nanocomposites prepared for electromagnetic characterization

Designation Nanoparticle type ϕ (%)

PS/QS-Fe 5% Quantum sphere iron 5
PS/QS-Fe 10% Quantum sphere iron 10
PS/QS-Fe 15% Quantum sphere iron 14.7

nanoparticles (provided by Quantum Sphere, from now on abbreviated QS) were
weighted and mixed with 15 ml of toluene (Fluka, purity better than 99.7%). The
desired amount of polystyrene was added and allowed to dissolve before vigurously
sonicating the solution to break nanoparticle aggregates. The toluene was allowed
to evaporate, resulting in a dark polystyrene-like film which was then collected.

Using this method, we have prepared nanocomposites of iron nanoparticles, with
three different concentrations, 5, 10 and 15% (see Table 4).

4.2 Transmission Electron Microscopy: Structural Analysis

The nanoparticles were imaged with a TEM (FEI Company model Tecnai G2
BioTwin) in bright field at the acceleration voltage of 120 kV. Before imaging the
alignment of the microscope was checked and corrected. The image was recorded
with a digital camera (Gatan model UltrascanTM 1000) and its contrast and bright-
ness was adjusted after acquisition. An image of iron nanoparticles is shown in
Fig. 4.

Fig. 4 Bright field TEM images of the quantum sphere iron (scale bar is 50 nm)
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4.3 Magnetometry: Low-Frequency Permeability

Static hysteresis loops (the magnetization versus the applied field) of the nanoparti-
cles were measured with a Superconducting Quantum Interference Device (SQUID)
magnetometer (Quantum Design model MPMS XL) at 300 K. Roughly 1 mg of the
nanoparticles was encapsulated in a piece of aluminum foil (approximately 100 mg)
and attached to the plastic straw sample holder with Kapton tape. The permeability
was extracted from the measured magnetization curve by fitting a straight line to
the low-field part of the curve. The demagnetizing factor was approximated to be
zero because the nanoparticles were compressed into flat layers inside the aluminum
wrap and the layer surface was aligned along the external field.

4.4 X-Ray Diffraction: Structure of the Nanoparticles

The nanoparticle structure was analyzed with XRD. The diffraction intensities of the
nanoparticles were measured as a function of the diffraction angle 2θ with a diffrac-
tometer (PANalytical model X’Pert PRO MRD) using Cu Kα radiation (wavelength
of 0.154056 nm) at room temperature. The XRD patterns of QS-Fe nanoparticles
is shown in Fig. 5. The samples were prepared by filling a circular cavity (35 mm
in diameter and 0.7 mm high) bored into an acrylic glass plate with the particles.
The powder was compressed and smoothed with a piece of a silicon wafer. The
adhesion between the powder and the plate was sufficient to hold the powder within
the cavity even though the plate was turned vertically for the measurement. The
sample was scanned from 30◦ to 90◦ for one hour. The resulting data was processed
by first stripping off the peaks due to the Cu Kα2 radiation and by filtering the
background noise. The data was smoothed if the signal-to-noise ratio was poor.
Second, the Lorentzian function was fitted to all peaks using the (self-implemented)
Gauss-Newton algorithm. The performance of the algorithm was excellent in the
case of well-defined peaks, but vague peaks had to be fitted manually. From the fitted
peaks the angle, the FWHM and the intensity (integrated over the peak area) were
extracted. Based on these values, the composition of nanoparticles was determined.
Furthermore, the coherently scattering domain size was estimated from broadening
of the FWHM. The natural width of a peak due to diffractometer was determined
by measuring an annealed silicon powder sample and assuming that the coherently
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Fig. 5 XRD spectrum of iron nanoparticles
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scattering domains were so large that their contribution to the broadening of the
FWHM was negligible. The broadening due to the lattice strain was assumed to be
minimal.

4.5 Summary

To summarize our results (see Table 5), we find that The Quantum Sphere iron
(QS-Fe) nanoparticles are roughly 20–30 nm in diameter and most of the particles
exhibit a core-shell structure. Based on the XRD analysis, the core is suggested to
comprise 9 nm BCC iron crystallites and the shell 3 nm FeO crystallites. The com-
position was determined to be a 50–50% balance between the oxide and the metal
phases. The measured saturation magnetization (125 emu/g) is in rough agreement
with the metal volume fraction estimated from XRD and the saturation magnetiza-
tion given in literature for pure iron (218 emu/g) [13].

Table 5 Summary of the nanoparticles and their properties. Particle diameters d were estimated
from the TEM images and the crystalline composition and the average crystallite diameters dCRYST
from the XRD measurement

MS Crystal dcryst
d nm (emu/g) µ (nm) ϕ (%) (nm)

Quantum sphere iron 20–30 125 12.3 Fe (BCC) 50 ± 5 9 ± 1
FeO 50 ± 5 3 ± 1

5 High-Frequency Properties

5.1 Coaxial Airline Technique: Permittivity and Permeability
in the SHF Band

A broadband coaxial airline method developed in [29] was used to measure the
complex permittivity and the complex permeability of magnetic composites in
the superhigh-frequency band (SHF). The technique involves measurement of the
reflection parameters S11 and S22, the transmission parameters S12 and S21, and the
group delay through a sample inserted inside a 7 mm precision coaxial airline. The
measurement was done by connecting the coaxial airline to a vector network ana-
lyzer (Rohde and Schwarz ZVA40) using a pair of high-performance cables (Anritsu
3671K50-1). Prior to the measurement, the errors due to the loss and reflection in the
cables, connectors and the network analyzer were removed by performing a SOLT
calibration up to both ends of the RF cables.

The sample required in the coaxial waveguide measurement is a cylinder, 7.00
mm in diameter, with a 3.04 mm hole in the middle. Its thickness can be adjusted
between 4 and 10 mm in order to avoid the dimensional resonance. The sam-
ples were made by hot-pressing each nanocomposite inside a polished 7 mm hole
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drilled through a steel plate. Prior to the pressing, the plate and the nanocomposites
inside the holes were sandwiched between two sheets of poly(ethylene terephtha-
late) and further between two solid steel plates. The assembly was inserted into a
hot-press (Fontijne model TP 400) at 160◦C and kept there for two minutes. After
the nanocomposite had softened, a 400 kN force was applied over the plates. After
waiting for another two minutes, the pressure was released and the plate system
was disassembled. The holes containing the softened and compressed nanocompos-
ites were refilled and the pressing was done again. The filling was repeated one
more time. After the third pressing, the assembly was placed between two metal
plates cooled with circulating water under a 400 kN force. After the plates had
cooled down to room temperature, the pressure was released and the plates were
disassembled. Before detaching the solidified cylindrical samples, the plate with
the samples was sandwiched between two 5 mm thick steel plates with 3.1 mm
holes exactly above and under of each of the 7 mm holes in the central plate.
All the three plates were aligned with respect to each other and clamped together.
The assembly was fixed under a vertical boring machine and holes were drilled
through the nanocomposites through the guiding 3.10 mm holes in the upper plate.
The used drill bit was 2.9 mm in diameter since it was found out that the drilling
produced holes 0.1–0.2 mm wider than the drill bit. After drilling, the construc-
tion was disassembled and the samples were detached by gently pushing them
out of the holes. If necessary, the pellets were finished by carefully removing
any imperfections with sandpaper. The sample dimensions were measured with a
caliper.

Below we briefly present the measurement method; the mathematical relations
between the S-parameters and the material parameters are given. More discussions,
including detailed error analysis of the method we use, are presented in [29]. Basi-
cally, the method is developed based on the multiple reflection model, as shown
schematically in Fig. 6.

When the wave arrives at the first interface at z = 0, the reflection and transmis-
sion occurs. This means part of the wave is reflected with a coefficient ,, and part
of it is transmitted with a coefficient T21. The transmitted wave then travels through
the second medium and gets reflected again at the second interface with a coefficient

Fig. 6 The model of multiple
reflection between two
interfaces. Figure republished
with permission (c©IEEE
2009) from [29]
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, while part of it is transmitted through the second interface with a coefficient T12.
It can be seen from Fig. 6 that this transmission and reflection continuously occurs
(ideally) an infinite number of times or until the wave has lost all of its energy.

To find the total reflection coefficient in this model, we need to sum up all the
reflected waves. The superposition of waves can be calculated in the same way as
the summation of vectors in which both amplitude and phase must be considered.
We know that a wave traveling a distance L through the second medium has a prop-
agation factor given by

P = e−γ2 L , (32)

where γ2 = iω/v2 = iωn2/c.
The total reflection coefficient can then be expressed as follows

,tot = , + T21T12,P2 + T21T12,
3 P4 + . . . = ,(1 − P2)

1 − ,2 P2 , (33)

where

, =
1 −

√
ε2µ1
ε1µ2

1 +
√

ε2µ1
ε1µ2

, (34)

and

T12 = 1 + , = 2

1 +
√

ε1µ2
ε2µ1

=
√

ε2µ1

ε1µ2
T21. (35)

Similarly, the total transmission coefficient in terms of , and P is

Ttot = P
(
1 − ,2)

1 − ,2 P2 . (36)

In practice, the study of discontinuities within a transmission line is done via
the measurement of S-parameters. Considering the measurement setup as illustrated
schematically in Fig. 7, we can see that when a wave travels from the first port to
the first interface, it accumulates a phase change of −γ1L1, where γ1 = iωn1/c ≈
iω/c. Similarly, from the second interface to the second port, it will pick up another
phase change of −γ1L2. This means

S21 = S12 = e−γ1(L1+L2)Ttot = e−γ1(L1+L2)
P(1 − ,2)

1 − ,2 P2 , (37)

S11 = e−2γ1 L1,tot = e−2γ1 L1
,

(
1 − P2)

1 − ,2 P2 , (38)
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Fig. 7 The diagram of a
transmission line containing
two interfaces and the planes
at which scattering
parameters are measured.
Figure republished with
permission ( c©2009 IEEE)
from [29]

L1 L L2

Port 1
Calibration Plane

Port 2
Calibration Plane

Air              Sample           Air

and

S22 = e−2γ1 L2,tot = e−2γ1 L2
,

(
1 − P2)

1 − ,2 P2 . (39)

In principle, there are many ways to obtain the material parameters based on the
above equations. The method presented here is chosen because it does not require
the measurement of L1 and L2; as a result, material parameters can be accurately
determined.

The algorithm proceeds further by first defining two reference-plane invariant
quantities, namely

A = S11S22

S21S12
= ,2

(1 − ,2)2

(1 − P2)2

P2 , (40)

and

B = e2γ1(Lair−L)(S21S12 − S11S22) = P2 − ,2

1 − ,2 P2 . (41)

Next, Eq. (41) is solved for P2,

P2 = B + ,2

1 + B,2 . (42)

Then, simply by substituting P2 into (40), a new expression for A is obtained,

A = ,2(1 − B)2

(B + ,2)(1 + B,2)
, (43)

which gives us

,2 = −A(1 + B2) + (1 − B)2

2AB
±

√
−4A2 B2 +

[
A(1 + B2) − (1 − B)2

]2

2AB
, (44)
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where the sign in this equation is chosen so that |,| ≤ 1. As we can see, these
expressions for P2 and ,2 are reference-plane invariant.

In the next step, another quantity is defined, namely

R = S21

So
21

= eγ1 L P(1 − ,2)

1 − P2,2 . (45)

Substituting P2 from Eq. (42) into Eq. (45), we get a new expression for P ,

P = R
1 + ,2

1 + B,2 e−γ1 L . (46)

By using Eqs. (44) and (46), we can determine the other constitutive parameters
of materials, for example the complex index of refraction,

n = n′ + in′′ = √
µrεr = 1

γ1L
ln

(
1
P

)
. (47)

Similar to the Nicolson-Ross Weir algorithm, [30, 31], the method requires the
evaluation of group delay for choosing the correct result. But, it should be noted
that, only the real part of n, in Eq. (47), is multi-valued, the imaginary part is not,
i.e. every root provides the same n′′. So measuring the imaginary part of the index
of refraction does not require the evaluation of the group delay. This concept could
be practically useful for examples when energy loss resonances are studied.

In case of non-magnetic materials, determining the complex permittivity from
εr = n2 provides a better alternative relative to the NRW method. This is
because, this way, one does not need to calculate the relative wave impedance
z = (1 + ,)/(1 − ,), which exhibits high errors at and around the Bragg resonance
frequencies [32].

As discussed in [29], extra steps must be done if this method is applied to measure
materials with unknown magnetic properties. One way to do so, is to simply use one
of the roots ±, of Eq. (44), and simultaneously plot the spectra of both εr and µr .
Then, based on chemical analysis, the permeability spectra can be extracted. This
algorithm is based on the fact that the sign of , only swaps the values of permittivity
and permeability.

5.2 Nanocomposites: Permittivity and Permeability
in the SHF Band

We now present our experimental results corresponding to a nanocomposite com-
prising iron nanoparticles (20–30 nm, BCC) in polystyrene (PS/QS-Fe) (Figs. 8, 9,
and 10).
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Fig. 8 The complex relative permeability (real part in the left figure and imaginary part in the right
figure) of PS/QS-Fe nanocomposites between 2 and 12 GHz. The three sets of points correspond
to samples with 5% (squares), 10% (dots), and 15% (triangles) magnetic inclusions

–

–

–

Fig. 9 The complex relative permittivity (real part in the left figure and imaginary part in the right
figure) of PS/QS-Fe nanocomposites between 2 and 12 GHz. The three sets of points correspond
to samples with 5% (squares), 10% (dots), and 15% (triangles) magnetic inclusions

All the composites 5, 10 and 15% exhibited mild ferromagnetic resonances
between 6 and 8 GHz. These resonances correspond to the anisotropy fields between
0.20 and 0.27 T. The expected anisotropy field calculated from bulk BCC iron
magnetocrystalline anisotropy is 56 mT. This large difference may be explained by
additional anisotropy components due to surface effects or particle-particle inter-
actions. In the case of surface anisotropy the broadening of the resonance peak
would be due to the finite size distribution of the nanoparticles, and in the case
of particle-particle interactions due to variations of the polarizing field due to irreg-
ular spatial arrangement and orientation of the particles. The Snoek limit (Eq. 13)
predicts that no higher relative magnetic permeability than 8.5 can be achieved at
5 GHz in (positive) uniaxial and cubic materials which are either bulk or composites
containing spherical inclusions. According to the Bruggeman theory (Eq. 29) the
effective relative permeability is at maximum one sixth of 8.5 in a nanocomposite
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Fig. 10 The complex index of refraction (real part in the left figure and imaginary part in the right
figure) of PS/QS-Fe nanocomposites between 2 and 12 GHz. The three sets of points correspond
to samples with 5% (squares), 10% (dots), and 15% (triangles) magnetic inclusions

containing less than 15% magnetic inclusions. We find a relative permeability of the
order µ = 1.3 in the 15% nanocomposite, which is already pushing the Snoek limit.
The exact determination of whether the Snoek limit has been exceeded depends on
the nature of the anisotropy which would require precise knowledge of the surface
contribution.

The permeabilities (both real and imaginary) in all composites were roughly con-
stants over the measurement range. While the real part increased roughly linearly
with the volume fraction, there was much larger jump in the imaginary part from
10 to 15% than from 5 to 10%. This behavior could be attributed to the increase in
conductivity due to exceeding the percolation threshold.

The relative permittivities were observed to increase with the nanoparticle vol-
ume fraction from approximately 2.5, which is a typical value for polystyrene. The
imaginary parts were observed to be significantly larger than 10−4 (a typical value
for pure polystyrene). The increase in both the real part and the imaginary part is
understood to be due to the electrical polarizability of the nanoparticles in the elec-
tric field. The dispersion for the 5% and the 10% composites was also comparatively
lower than for the 15% sample (Fig. 10).

6 Conclusions: How to Improve the Performance
in the SHF Band

The high-frequency magnetic performance is always a compromise between the
permeability and the FMR frequency. Increasing the magnetic anisotropy, no mat-
ter wherefrom it originates, decreases the permeability but increases the FMR
frequency. Only increasing the saturation magnetization increases both the perme-
ability and the FMR frequency (Eq. 13). Hence, the saturation magnetization should
be maximized while a compromise needs to be done with the anisotropy. Further
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degree of freedom stems from the shape of the magnetic inclusions. It is well known
that the resonance frequency of an arbitrary magnetic body with the demagnetization
factors Nx , Ny and Nz is given by the Kittel formula [12]

fFMR = (2π)−1ν

√[
HA + (Nx − Nz) MS

] [
HA +

(
Ny − Nz

)
MS

]
, (48)

from which the well known resonance formulas for bulk, film, rod and sphere can
be derived (ν is the gyromagnetic constant, defined as in Eq. (6)). In the cases of
spheres (Nx = Ny = Nz = 1/3) and bulk material (Nx = Ny = Nz = 0), the
resonance frequency is directly proportional to the anisotropy field (as was assumed
in Subsection 2.2). In the infinite rod limit (Nx = Ny = 1/2, Nz = 0) the FMR
frequency is linearly proportional to the saturation magnetization (assuming that
MS 1 HA) and in the thin film limit (Nx = Ny = 0, Nz = 1) to the square root
of the saturation magnetization and the anisotropy field (assuming that MS 1 HA).
Even in the case of HCP cobalt, which has a high anisotropy field of µ0 HA ≈
0.63 T, the highest resonance frequency is obtained in the non-isotropic geometries,
namely the infinite rod and the thin film. The same conclusion is valid for the BCC
iron (µ0 HA ≈ 56 mT), and the FCC nickel (µ0 HA ≈ 16 mT). However, due to
the surface anisotropy, in the end the anisotropy field in nanoscale rods, spheres
and films can be much larger than in bulk. It should be understood that the FMR
frequency depends on the shape of the magnetic inclusions, but obtaining qualitative
results from calculations without knowing the surface anisotropy is not possible
(as already pointed out in Sect. 2.2). In addition, the FMR frequency depends on
particle-particle interactions.

The volume fraction of the inclusions has obviously an effect on both the
resonance frequency and the permeability. The permeability of a nanocomposite
with spherical inclusions can be calculated directly from the Bruggeman theory
(Sect. 3.2) but in all the other cases the Bruggeman equation must be solved itera-
tively and self-consistently with the Landau-Lifshitz equation [33]. The results from
such calculations indicate that (1) the FMR frequency of a nanocomposite contain-
ing spherical inclusion does not depend on the volume fraction and (2) in all other
cases the FMR frequency smoothly varies from the single-inclusion limit to the
homogeneous bulk limit. Hence, the set of rules for predicting the high-frequency
magnetic performance stated in Sect. 3.2 are valid only for spherical nanoparticles.
As argued above, the FMR resonance is the lowest in the bulk and spherical particle
limits. The results presented in Sect. 5.2 agree with the literature in a sense that the
FMR frequency was found out to vary only a little with the nanoparticle volume
fraction. The small variation might be due to slight deviations from ideal spherical
form or due to the aggregation of the nanoparticles.

The magnetic performance in nanocomposites could be improved by taking all
the above considerations into account when designing the material. In addition, it
is preferential to use monodisperse, single-crystal nanoparticles in order to observe
well-defined resonance peaks. Without such information, quantitative evaluation of
the magnetic performance is difficult. Also, the surface effects such as the surface
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anisotropy have to be taken into account since nanoparticles have a huge surface-to-
volume ratio compared to bulk materials. Because the magnitude and the symmetry
of the surface anisotropy is difficult to calculate, it cannot be taken in practice into
consideration before the measurement. Instead, it is the deviation of the observed
FMR frequency from the value expected from bulk magnetocrystalline anisotropy
that indicates the magnitude of the surface anisotropy. After having decided the
target permeability and resonance frequency and having approximated the type and
the volume fraction of the magnetic inclusions, one still needs to find the appro-
priate processing route which can lead to such a nanocomposite. As argued in this
article, and also accepted in literature, homogeneous blends of plain nanoparticles
in polymers are almost impossible to achieve even at the lowest filling ratios. In the
high-frequency applications the role of the nanoparticles is not just an additive since
the practical volume fractions (from the application perspective) begin from 10%.
Hence, the nanoparticles should be a supporting part of the nanocomposite – not an
additive.

Suppressing the large permittivity and dielectric loss will be a difficult task. The
imaginary losses can be reduced by using single-crystal nanoparticles in which the
conduction electron scattering is suppressed. Tackling the real part is much more
difficult, since all metallic nanoparticles are highly conductive and their polarizabil-
ity should of the same order.
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