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Abstract. Finding a graph with given properties occurs as a sub-
problem of many important problems in A.I. and other areas of com-
puter science. Main approaches to solving such problems include au-
tomated reasoning and constraint satisfaction methods. These can of-
ten be substantially sped up by considering only a subset of graphs
for each equivalence class of isomorphic graphs, motivating the use
of symmetry-breaking constraints for graphs.

We present a symmetry-breaking constraint for directed graphs,
generalizing earlier works that have presented such constraints for
undirected graphs without loops, and experimentally demonstrate
their effectiveness.

1 Introduction

Many search problems exhibit symmetries, and eliminating all or
some of the symmetry may make the search problem exponentially
smaller and easier to solve. Symmetry elimination has been impor-
tant in solving a broad range of problems in AI [3] and other areas of
computer science [5].

A main approach to eliminating symmetry is to partition the states
in the search space to equivalence classes with respect to symmetry,
and then map each encountered state to a canonical representative
of its class [17], thus reducing the number of states to be considered.
This requires the search methods to implement general-purpose sym-
metry eliminations methods. Implementations of automated reason-
ing such as constraint programming or satisfiability checking typ-
ically lack in-built symmetry reduction, and a different approach is
followed, by introducing symmetry-breaking constraints which elim-
inate some of the symmetric solutions from consideration [3].

A specific class of problems solved with automated reasoning
methods is finding a graph with given properties, with applications
for example in network design [13] and automated planning and
decision-making [1, 8, 14, 6].

Graph-finding problems often assume a fixed set of nodes, and the
objective is to choose a set of edges for the graph so that it satisfies
some given constraints. If the names of all or most nodes can be per-
muted arbitrarily, without impacting the given constraints, then each
solution graph is only one representative of an equivalence class of
isomorphic graphs that are all solutions. This permutability is not
recognized by most constraint solvers, and it can lead to unnecessary
search when a high number of isomorphic graphs is considered sep-
arately. Breaking the symmetries in each equivalence class, by con-
sidering only some or only one element of each class, can improve
constraint solvers’ performance substantially.

Symmetry-breaking constraints have been earlier proposed for
directed acyclic graphs [16] and undirected graphs [2]. Many ap-

plications involve general (possibly cyclic) directed graphs, and
symmetry-breaking for them is not covered by existing methods.

In this work, we address symmetry-breaking for arbitrary graphs,
undirected, directed, cyclic and acyclic, and also contribute to the
work by Codish et al. [2] with an alternative symmetry-breaking con-
straint for undirected graphs.

The structure of the paper is as follows. In Section 2 we discuss
the basic ideas in earlier works on constraints for breaking symme-
tries arising from graph isomorphism. Section 3 presents our general
symmetry-breaking constraint that covers both directed and undi-
rected graphs. Section 4 extends the constraint to handle the DAG
symmetry constraint proposed by Shlyakhter [16]. Section 5 special-
izes the constraint to undirected graphs, providing an alternative to
constraints presented earlier. Section 6 experimentally demonstrates
the effectiveness of our constraints on directed graphs, and compares
them to earlier symmetry-breaking constraints for undirected graphs
and directed acyclic graphs. Section 7 briefly discusses related work,
and Section 8 concludes the paper.

2 Background
Any graph can be represented in terms of an adjacency matrix, which
is an N×N 0-1 matrix with element (i, j) indicating whether there is
a directed edge from node i ∈ {1, . . . , N} to node j ∈ {1, . . . , N}.

Shlyakhter [16] proposes reducing symmetry in directed acyclic
graphs by the restriction to strictly triangular matrices, so that from
any node, there are directed edges to other nodes with a higher index
only (the matrix is strictly upper triangular) or with a lower index
only (the matrix is strictly lower triangular.) This restriction not only
guarantees that the graph is acyclic, but also eliminates any permu-
tation of the node indices that would have the directed edges going
into the wrong direction.

Later, Codish et al. [2] formalize, analyze and generalize a class
of symmetry-breaking constraints for undirected graphs first used by
Miller and Prosser [12]. The basic idea is to constrain the rows of the
adjacency matrix to be lexicographically non-decreasing, with each
row understood as a sequence of 0s and 1s. For undirected graphs this
guarantees that swapping two nodes cannot move the matrix earlier
in the lexicographic ordering, in which matrices are understood as
sequence of 0s and 1s read from top to bottom and from left to right.
While this idea works for undirected graphs, for directed graphs it
does not.

Example 1. Consider the adjacency matrix on the left. 0 1 0
1 1 0
1 1 1

  0 0 1
1 1 1
1 0 1





Row 1 lexicographically precedes row 2, which precedes row 3, but
swapping rows and columns 2 and 3 leads to the lexicographically
better matrix above on the right.

The proof showing that node swaps cannot improve the matrix if
the rows are lexicographically increasing [2], relies on the adjacency
matrix having diagonal symmetry, a property that does not hold for
the more general class of directed graphs.

Further, the idea that nodes could be reordered so that the rows
of adjacency matrices are lexicographically non-decreasing does not
work for graphs in general.

Example 2. Consider the following adjacency matrices. The first
one represents a graph with three nodes with self-loops, and the other
two a graph with three nodes that form a cycle, the first with node
ordering 1, 2, 3, and the second with 1, 3, 2. 1 0 0

0 1 0
0 0 1

  0 1 0
0 0 1
1 0 0

  0 0 1
1 0 0
0 1 0


In the first matrix, the rows are lexicographically decreasing, and
swapping any two nodes produces the same matrix. For the other
two matrices, any node swap produces the other matrix, always con-
taining one pair of decreasing rows.

Hence, for some graphs the constraint that the rows have to be
non-decreasing would not be satisfied by any of the adjacency ma-
trices obtained by permuting some the nodes, which means that im-
posing this kind of symmetry-breaking constraint would eliminate
some possible solutions, in some cases incorrectly making problems
unsolvable. Therefore, for symmetry-breaking for general (directed
and undirected) graphs some other property than lexicographically
ordered rows has to be employed.

In this work we look at the idea of lexicographically ordered adja-
cency matrices more thoroughly, and generalize it so that it works
also for directed graphs. Our main result is a symmetry-breaking
constraint for arbitrary directed graphs, which includes undirected
graphs as a special case.

3 Lex-Constraints for Directed Graphs
We make the observation that, in order to assess the impact of swap-
ping two nodes, one cannot focus on the mutual lexicographic or-
dering of the corresponding rows of the adjacency matrix, but must
also observe the corresponding columns. The constraint that we de-
rive checks whether the result of the swap will be a lexicographically
better adjacency matrix, and then rules out any matrix that can be im-
proved by a single swap. Swapping two nodes corresponds to swap-
ping both the corresponding rows and the columns of the adjacency
matrix [2].

Interestingly, we will show that this constraint can be encoded al-
most as easily as the lexicographic ordering constraint on rows, and
that it works equally well for both undirected and directed graphs as
a part of the symmetry-breaking constraint. Further, while the con-
straint by Codish et al. [2] works with increasing lexicographic row
orderings only, our constraint can be equally easily defined for both
increasing and decreasing orderings.

Two sequences are ordered x1 · · ·xn < y1 · · · yn iff there is i such
that xi < yi and xk = yk for all k < i. Two sequences are ordered
σ ≤ σ′ if either σ = σ′ or σ < σ′.

Consider the following matrix, with columns and rows i and j
written explicitly. When swapping nodes i and j, only columns i and

j and rows i and j change, and the remaining entries in the matrix
remain unchanged.



a1,i a1,j

...
...

ai−1,i ai−1,j
ai,1· · · ai,i−1 ai,i ai,i+1· · · ai,j−1 ai,j ai,j+1· · · ai,n

ai+1,i ai+1,j

...
...

aj−1,i aj−1,j
aj,1· · · aj,i−1 aj,i aj,i+1· · · aj,j−1 aj,j aj,j+1· · · aj,n

aj+1,i aj+1,j

...
...

an,i an,j


After the swap, the contents of the matrix are as follows.



a1,j a1,i

...
...

ai−1,j ai−1,i
aj,1· · · aj,i−1 aj,j aj,i+1· · · aj,j−1 aj,i aj,j+1· · · aj,n

ai+1,j ai+1,i

...
...

aj−1,j aj−1,i
ai,1· · · ai,i−1 ai,j ai,i+1· · · ai,j−1 ai,i ai,j+1· · · ai,n

aj+1,j aj+1,i

...
...

an,j an,i


To compare the matrices before and after the swap, it suffices to

lexicographically compare the entries that may have changed, as vec-
tors obtained by reading them row by row from top to bottom, and
each row read from left to right.

There is some redundancy in these sequences, and they can be
simplified, as demonstrated by the following lemma.

Lemma 1. Let σ1, σ2, σ3, σA and σB be any sequences such that
|σA| = |σB |. Then σ1σAσ2σBσ3 < σ1σBσ2σAσ3 iff σ1σAσ2σ3 <
σ1σBσ2σ3.

Proof. σ1σAσ2σBσ3 < σ1σBσ2σAσ3 if and only if σA < σB if
and only if σ1σAσ2σ3 < σ1σBσ2σ3.

In other words, both orderings hold if and only if σA < σB , as
the first possible differences in the sequences are in σA and σB . If
σA = σB , then the sequences are the same. Hence for the second
occurrences of σA and σB the ordering σB < σA cannot impact the
overall ordering, and therefore they can be ignored.

Hence we can ignore the symbols in one position in both se-
quences, if the same symbols occur earlier in the sequences the other
way round. This allows restricting the lexicographic comparison to
only a part of the entries that the (i, j) swap may change: column i
and row i will be compared to column j and row j.

Now we define the constraint lex≤
i,j by requiring that the adjacency

matrix does not become lexicographically smaller by the (i, j) swap.
This is by comparing the possibly changing elements of the matrix,
as shown below, to the elements in the same positions after the swap.

a1,i · · · ai−1,i

ai,1 · · · ai,n

ai+1,i · · · an,i

After the swap these entries have the following contents.



a1,j · · · ai−1,j

aj,1 · · · aj,i−1aj,jaj,i+1 · · · aj,j−1aj,iaj,j+1 · · · aj,n

ai+1,j · · · aj−1,jai,jaj+1,j · · · an,j

So we compare these vectors lexicographically, element by ele-
ment a1,i < a1,j , . . . , an,i < an,j , and require that the first vector
is not lexicographically strictly greater than the second. The lengths
of both vectors are 2n − 1, most easily seen from the three compo-
nents of the first vector, which respectively have lengths i−1, n, and
n− (i+ 1) + 1.

Several encodings of lexicographical comparison of Boolean vec-
tors as formulas exist [4]. In Section 6 we use what is closest to AND
decomposition with common sub-expression elimination.

A simple encoding lexicographical comparison of Boolean vectors
as a propositional formula is by the following recursive definition,
where the bi represent individual Boolean values 0 and 1, the σi are
sequences of Boolean values, and ϵ is the empty sequence.

ϵ ≤ ϵ = ⊤
b1σ1 ≤ b2σ2 = (¬b1 ∧ b2) ∨ ((b1 ↔ b2) ∧ (σ1 ≤ σ2)

As the vectors to be compared have 2n− 1 elements, and these for-
mulas have a size that is linear in 2n − 1 for a graph with n nodes.
For the pairwise comparisons of rows used by Codish et al. [2] the
vectors have n− 1 elements, and the comparisons are encoded simi-
larly. The reason needing only n− 1 elements in the comparisons is
the diagonal symmetry of the adjacency matrix of undirected graphs.
Later we see in Section 5 that our comparison specialized to undi-
rected graphs similarly only has n − 1 elements, and hence leads to
constraints of essentially the same size as those of Codish et al. [2].

Similarly to Codish et al., we can use this constraint for all pairs
of consecutive nodes i, i + 1 for i ∈ {1, . . . , n − 1}. Unlike the
row-wise lexicographic comparison in the basic form of the Codish
et al. constraint, lex≤

i,j ∧ lex≤
j,k does not entail lex≤

i,k, and hence the
quadratic-size constraint lex≤

i,j for all 1 ≤ i < j ≤ n can be useful.

Theorem 2. If an adjacency matrix M satisfies the constraint lex≤
i,j ,

then M ≤ M ′ for the matrix M ′ obtained by doing any column and
row swap (i, j) for 1 ≤ i < j ≤ n.

Proof. Sketch: The constraint lex≤
i,j is defined so that either no ele-

ment in M is changed by the column swap (i, j), or the first differing
element in the first row that differs, is 0 in M and 1 in M ′, and hence
M ≤ M ′.

Limiting node swaps to consecutive nodes i, i+1 produces weaker
symmetry-breaking than considering all possible node swaps.

Example 3. Node swaps (1, 2) or (2, 3) do not lexicographically
improve the matrix on the left. But swapping nodes 1 and 3 leads to
the minimal matrix on the right. 0 1 1

0 1 0
1 0 0

  0 0 1
0 1 0
1 1 0


Even though often quite strong, the constraints we have defined

above do not in general eliminate all symmetry, so there may be more
than one graph satisfying the constraint. Importantly, however, the
canonical graph in every equivalence class of isomorphic graphs does
satisfy these constraints.

4 Directed Acyclic Graphs

Obviously, the constraints given in the preceding section work also
for the subclass of directed acyclic graphs. However, the question
arises, whether these constraints are compatible with Shlyakhter’s
[16] requirement that the adjacency matrix is strictly upper triangu-
lar, and whether combining these two will yield performance im-
provements in constraint solving.

The issue is that the constraints in Section 3 attempt to rule out
node numberings by checking whether a node swap could lead to
a lexicographically better adjacency matrix, while considering arbi-
trary such matrices, and not only strictly upper triangular ones. What
if the lexicographically best strictly upper triangular adjacency ma-
trix could be improved by a node swap that leads to a matrix that is
not strictly upper triangular?

Example 4. Consider the following adjacency matrix on the left,
and the lexicographically increasing order. Note that this is the lexi-
cographically best strictly upper triangular matrix for this graph, as
any other permutation of the node names breaks strict upper trian-
gularity.  0 0 1

0 0 1
0 0 0

  0 1 0
0 0 0
0 1 0


Now consider the node swap (2, 3), which results in the matrix on
the right, which is not strictly upper triangular.

There are similar examples for lexicographically decreasing or-
ders. For the matrix below on the left, the (2, 3) swap produces the
lexicographically better matrix, on the right, which is not strictly up-
per triangular. 0 1 1

0 0 1
0 0 0

  0 1 1
0 0 0
0 1 0


So the constraints developed in Section 3 sometimes rule out the

lexicographically best adjacency matrix that is strictly upper trian-
gular. One way to combine the constraints is to only consider swaps
that do not break strict upper triangularity.

To devise a symmetry-breaking constraint for adjacency matrices
that must satisfy strict upper triangularity, as proposed by Shlyakhter
[16], consider the (i, j) swap.



a1,i a1,j

...
...

ai−1,i ai−1,j

0 · · · 0 0 ai,i+1 · · · ai,j−1 ai,j ai,j+1 · · · ai,n

0 ai+1,j

...
...

0 aj−1,j

0 · · · 0 0 0 · · · 0 0 aj,j+1 · · · aj,n

0 0
...

...
0 0


After the swap, the contents of the matrix are as follows.





a1,j a1,i

...
...

ai−1,j ai−1,i

0 · · · 0 0 0 · · · 0 0 aj,j+1 · · · aj,n

ai+1,j 0
...

...
aj−1,j 0

0 · · · 0 ai,j ai,i+1 · · · ai,j−1 0 ai,j+1 · · · ai,n

0 0
...

...
0 0


We can see from this matrix that strict upper triangularity is pre-

served if and only if the elements (i + 1, j), . . . , (i, j) and (i, i +
1), . . . , (i, j − 1) are all 0. So it suffices to impose this condition
to make it compatible with strict upper triangularity. The resulting
symmetry-breaking constraint for directed acyclic graphs is

Alex≤
i,j =

(
j−1∧

k=i+1

¬ak,j ∧
j∧

k=i+1

¬ai,k

)
→ lex≤

i,j .

Further, the lex≤
i,j constraint on the right can be improved by ob-

serving that all elements on the diagonal and below are zero, and do
not need to be compared. As a result, no reference to those need to be
made at all, and – as in standard implementations of the Shlyakhter
scheme – it is sufficient to represent only those ai,j with i < j. The
lexicographic comparison simplifies to the following.

a1,i · · · ai−1,iai,j+1 · · · ai,n ≤ a1,j · · · ai−1,jaj,j+1 · · · aj,n

5 Undirected Graphs
For undirected graphs, due to the diagonal symmetry of the adja-
cency matrix, the general constraint from Section 3 can be simplified,
limiting the lexicographic comparison for (i, j) swaps to

a1,i, . . . , ai,i, . . . , ai,n

≤ a1,j , . . . ai−1,j , aj,j , aj,i+1, . . . , aj,j−1, aj,i, aj,j+1, . . . , aj,n.

We denote the corresponding swap test by U lex≤
i,j . The vectors being

compared here have n−1 elements, in contrast to the 2n−1 elements
in the general case for directed graphs.

Codish et al. [2] have introduced two types of lexicographic con-
straints that break symmetry for undirected graphs. Their basic sym-
metry breaking constraint requires the rows of the matrix to be lexi-
cographically sorted. They also introduce a new relation ≤{i,j} that
lexicographically compares rows i and j after removing columns i
and j from both rows. Their improved symmetry-breaking constraint
imposes ≤{i,j} on all pairs for rows i and j such that i < j. Here,
we show that our constraint is strictly stronger than their basic sym-
metry breaking constraint. We also prove that in the case of simple
graphs (graphs without self-loops), our constraints is equivalent to
the improved symmetry breaking constraint of Codish et al.

Theorem 3. If an adjacency matrix M satisfies U lex≤
i,i+1 then row

i of M is lexicographically ordered before row i+ 1 of M .

Proof. Assume the contrary: row i is not lexicographically ordered
before row i+1. The proof of Theorem 1 of [2] shows that swapping
rows i and i + 1 results in a matrix M ′ such that M ′ < M , which
contradicts our Theorem 2.

Theorem 3 together with Example 5 below show that our con-
straint is strictly stronger than the basic symmetry breaking con-
straint of Codish et al.

Example 5. Consider the adjacency matrix on the left. 0 1 1
1 0 0
1 0 0

  0 1 0
1 0 1
0 1 0


The rows of the matrix are ordered lexicographically, but swapping
the first two nodes would lead to the matrix on the right that is lexi-
cographically ordered before. Of these two matrices, only the second
one satisfies our constraint lex≤

0,1 ∧ lex≤
1,2. Notice that the rows of

this matrix are not lexicographically ordered.

Theorem 4. For simple undirected graphs, U lex≤
i,j is equivalent to

≤{i,j} of Codish et al. [2].

Proof. The constraint U lex≤
i,j expands to a1,i, . . . , ai,i, . . . , ai,n ≤

a1,j , . . . ai−1,j , aj,j , aj,i+1, . . . , aj,j−1, aj,i, aj,j+1, . . . , aj,n. We
can rewrite the left-hand side of this constraint by considering the
symmetry of the matrix as

ai,1, . . . , ai,i−1, ai,i, ai,i+1, . . . , ai,j−1, ai,j , ai,j+1, . . . , ai,n.

Also considering the symmetry, the right-hand side becomes

aj,1, . . . , aj,i−1, aj,j , aj,i+1, . . . , aj,j−1, aj,i, aj,j+1, . . . , aj,n.

Now, because the graph is simple, we have ai,i = aj,j = 0, and be-
cause of symmetry ai,j = aj,i. Therefore, lexicographically compar-
ing these two sequences is equivalent to lexicographically comparing
rows i and j while ignoring columns i and j.

6 Experiments
We have experimented with all three variants of our symmetry-
breaking constraint: for undirected graphs, for directed graphs, and
for directed acyclic graphs.

In the first experiment, we compare our constraint for undirected
graphs to the constraints by Codish et al. [2] with the extremal graph
problems they experimented with. After that, we investigate our con-
straints for directed graphs (both general and acyclic) with directed
variants of the same extremal graph problems.

We used the KisSAT SAT solver (version 1.0.3) for all our experi-
ments, and ran the experiments with an Intel i7-3930K CPU with 32
GB of RAM under Ubuntu Linux.

We first implemented the extremal graph problems considered by
Codish et al. [2] which determine the maximum number of edges an
undirected graph with v nodes and no cycles of length ≤ 4 can have.

We compared the Codish et al. constraints to ours on these prob-
lems, and give the results in Table 1. The columns lex≤

i,i+1are for
our constraint applied to pairs of consecutive nodes as lex≤

i,i+1 for
1 ≤ i < n, and by lex≤

i,j the constraint applied to all pairs of nodes
as lex≤

i,j for 1 ≤ i < j ≤ n. The UNSAT column is the sum of the
CPU times spent by the SAT solver to determine unsatisfiability of
all formulas that represent the problem for E + 1 edges, where E is
the maximum number of edges possible for the given graph, and for
different applicable values of δ and ∆, as used by Codish et al. [2].
The SAT column is the CPU time it took to find a satisfiable formula
from among the formulas that represent E edges, for different values



of δ and ∆, with all formulas solved in parallel, and solvers stopped
as soon as one of the solvers determined satisfiability.

Timeouts (over 3600 seconds) are indicated in the tables with TO,
and dashes − are for cases where the degree lower δ and upper bound
∆ parameters (as used by Codish et al. [2]) conflicted, trivially show-
ing unsatisfiability without any SAT solving needed.

The results show our constraints to be roughly equally effective in
speeding up constraint solving as the constraints by Codish et al. [2].
So our constraints, when specialized to the undirected case, work
quite well.1 As observed by Codish et al., the symmetry-breaking
constraints tend to moderately slow down the solution of satisfiable
instances, while they speed up unsatisfiable ones substantially.

Then we consider a directed version of the same problem, but
without directed counterparts of the δ and ∆ parameters that Codish
et al. [2] obtained from theoretical results for the class of undirected
graphs they considered. Our experiment just compares two versions
of our symmetry-breaking constraint, as there are no comparable ear-
lier works on symmetry-breaking for directed graphs.

This experiment, with results shown in Table 2, confirms the effec-
tiveness of our symmetry-breaking constraint for directed graphs, in
comparison to the case with no symmetry-breaking at all. Also, the
lex≤

i,jconstraint systematically beats lex≤
i,i+1, despite the quadratic

number of lexicographic comparisons.
Finally, we solved the same problem for directed acyclic graphs,

for which the existing constraint is Shlyakhter’s [16] restriction to
strictly upper triangular adjacency matrices, in which i < j for
all edges (ni, nj). The results from this experiment in Table 32

demonstrate that combining Shlyakhter’s constraint with our con-
straint leads to a performance improvement, but the improvement
is not quite as dramatic as the one seen for undirected or general di-
rected graphs. So the restriction to strictly upper triangular matrices
alone is quite effective, despite its utter simplicity. Interestingly, and
unlike in the previous experiments, symmetry constraints are effec-
tive in reducing runtimes also in the satisfiable cases, at least for the
larger instances, in comparison to the Shlyakhter constraint.

7 Related Work

There is a long history of symmetry-breaking for constraint satisfac-
tion problems [3], addressing the permutability of different aspects of
constraints, including variables and their possible values, which leads
to symmetry, as well as the detection of symmetries [15, 18]. Lexi-
cographic orderings have been used as part of symmetry-breaking
methods, and hence symmetry has been one of the motivations for
investigating constraints for lexicographic orderings [7].

Closest related work is that of Codish et al. [2] who break symme-
tries by imposing an increasing lexicographic ordering on rows of ad-
jacency matrices of undirected graphs. Our work presents a substan-
tially generalized symmetry-breaking, also by lexicographic order-

1 Note that some of the formulas which Codish et al. say are solved without
search (in 0.0 seconds) by their solver and encodings, require substantial
time with our implementation of all of the constraints. We have not deter-
mined the cause of this. Codish et al. leave some details of their imple-
mentation unexplained, including how the basic lexicographic comparison
is implemented. Also, we have not implemented equi-propagation and par-
tial evaluation which are part of the BEE solver used by them. Except for
these a couple of cases, our runtimes are similar, and in some cases better
than those reported by them.

2 The maximum edge numbers for a given number of vertices for digraphs
no length ≤ 4 undirected cycles seems to follow the integer sequence
A002620 https://oeis.org/A002620 a(n) = floor(n

2
)×ceiling(n

2
). Inter-

estingly, this is also the maximum number of edges for undirected graphs
without triangles (cycles of length 3).

ings, but covering all graphs, also directed ones, and both increasing
and decreasing orderings. We have further shown how our constraint
can be specialized to undirected graphs as well as to acyclic graphs,
where acyclicity is maintained by Shlyakhter’s [16] constraint on the
adjacency matrix being strictly upper-triangular.

Breaking all symmetry in undirected graphs has been investigated
by Itzhakov and Codish [10] and Heule [9]. These constraints are
practical for small graphs with 10 nodes or less.

Kirchweger and Szeider [11] have implemented a method for
symmetry-breaking for graphs inside a SAT solver. Specialized
constraints and propagators may have a far better performance
than symmetry-breaking constraints expressed in terms of general-
purpose primitive constraints, but they require implementation work
for every solver in which they are to be used. Constraints such as
ours are applicable with any solver framework that can express basic
Boolean constraints.

8 Conclusion
We have presented a symmetry-breaking constraint for both directed
and undirected graphs, generalizing earlier works that limited to di-
rected acyclic graphs or undirected graphs. Our constraint is based
on ordering adjacency matrices of graphs lexicographically, and ac-
curately representing the impact of node swaps on the ordering.

Unlike earlier constraints for undirected graphs, our constraint can
enforce equally well both increasing and decreasing lexicographic
orderings of adjacency matrices. Our experiments demonstrate that
our constraint breaks symmetries equally effectively as the con-
straints by Codish et al. [2], which cover undirected graphs only.

Our constraint works with an earlier constraint for directed acyclic
graphs that requires edges to go from lower indexed nodes to higher
indexed nodes, which is weaker in breaking symmetries than con-
straints based on lexicographic orderings, and that our constraints
substantially speed up constraint solving also in this case.

None of these constraints break all symmetry, as typically multiple
elements in a symmetry class satisfy the constraints, not only the
canonical element. Future work includes tightening the constraints
further, and finding more specialized and more effective constraints
for specific sub-classes of graphs.
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Table 2. Runtimes for directed graphs
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