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Abstract. An important problem in data and knowledge representa-
tion is the possibility of default rules that conflict. If the application of
both of two default rules leads to a contradiction, they cannot both be
applied. Systems that support the use of default rules may either remain
indifferent or prioritize one rule over the other. In this paper a priori-
tized version of autoepistemic logic is presented. Priorities determine a
subset of all stable expansions of a set, the preferred stable expansions.
The priority notion is declarative, unlike e.g. some recent approaches to
priorities in default logic that modify the semi-constructive definition of
extensions of Reiter. Computationally the new priority notion can nev-
ertheless be seen as a mechanism for pruning search trees in procedures
for autoepistemic reasoning, as demonstrated by procedures given in the
paper.

1 Introduction

Default rules are used in many areas of knowledge representation, e.g. links in
inheritance hierarchies [Touretzky et al., 1987] and correctness assumptions in
diagnostic reasoning [Reiter, 1987] can be seen as default rules. A problem in
these and other areas of knowledge representation is how to deal with conflicting
defaults. A safe way is to resort to skepticism and consider all possible ways of
resolving the conflicts between defaults. In diagnostic reasoning this corresponds
to the computation of all diagnoses. Another way is to bring more knowledge –
priority information – to the system so that conflicts can be solved in a prin-
cipled way: e.g. in single-inheritance the class-inclusion relation directly acts as
priority information. Explicitly represented priority information is necessary e.g.
for solving conflicts in multiple-inheritance.

Conflicts between defaults, as described above, show up in nonmonotonic log-
ics and other formalizations of defeasible reasoning. Default logic [Reiter, 1980]
and autoepistemic logic [Moore, 1985] generate several extensions and stable ex-
pansions for many sets of rules and facts. Similarly circumscription [McCarthy,
1980] sanctions distinct classes of minimal models. If conflicts are left unresolved,
the convention is to take the intersection of the extensions, the stable expansions,
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or the sets of formulae true in minimal models. The priorities can be coded in
default rules. In default logic, for example, the justifications in semi-normal de-
faults can be used for blocking the application of a low-priority rule in favour of
a higher-priority rule [Reiter and Criscuolo, 1981]. However, representing such
dependencies explicitly in rules is inconvenient, and complicates the maintenance
of sets of rules.

There have been several proposals to incorporate priorities in consistency-
based nonmonotonic logics in an abstract form, or to introduce related systems
that involve explicit priorities, e.g. [Lifschitz, 1985; Konolige, 1988; Brewka, 1989;
MacNish, 1991; Ryan, 1992; Tan and Treur, 1992; Brewka, 1992; Baader and Hol-
lunder, 1993]. Some of the earlier proposals concern only simple defaults that cor-
respond to prerequisite-free normal default rules of default logic [Brewka, 1989;
Ryan, 1992]. The expressivity of these systems is insufficient. In the propositional
case, prioritized circumscription [Lifschitz, 1985] is closely related to preferred
subtheories of Brewka [Brewka, 1989], and hence the defaults expressible are es-
sentially prerequisite-free normal. Konolige [Konolige, 1988] and Toyama et al.
[Toyama et al., 1991] give variants of autoepistemic logic in which the syntactic
form of defaults is not restricted. MacNish [MacNish, 1991] introduces priorities
in default logic, but he encounters serious problems. For example, the extensions
his system produces are not default extensions as defined by Reiter [Reiter, 1980].
Tan and Treur [Tan and Treur, 1992] present a very general scheme for bringing
priorities in default logic.

Baader and Hollunder [Baader and Hollunder, 1993] consider arbitrary par-
tial orders of unrestricted default rules of default logic. They give a version of
Reiter’s semi-constructive definition of default extensions, in which priorities
restrict the order of application of default rules. Brewka [Brewka, 1992] has a
similar definition. The generality of these systems is comparable to our priori-
tized autoepistemic logic. However, it seems that these approaches, like those of
MacNish, and Tan and Treur, are likely to run into difficulties: the conclusions
that are obtained are sometimes unintuitive, or can be explained only on the
basis of the mechanism using which they were produced. The semi-constructive
definition of extensions is the basis of these proposals, and the principle used is
roughly the following: always apply a highest priority rule among all applicable
rules that have not already been applied. Consider a default theory consisting of
the following formulae and rules (Brewka has given an example similar to this).

a
b : c
c

a : ¬c
¬c

a : b
b

Let the three rules be prioritized in the order indicated, i.e. b:c/c has the highest
priority. With the above default theory, the second and third default rules are
both initially applicable. Hence apply the second one and obtain ¬c. Now only
the third rule is applicable and b – the prerequisite of the highest priority rule
– is obtained. The unintuitivity is that the lowest priority rule is applied in all
extensions of the theory, and hence the prerequisite of the highest priority rule
b:c/c belongs to all extensions. Despite this fact the highest priority rule does not
become applicable because it is blocked by the the rule a:¬c/¬c. The problem in



this example that shows up both in Baader and Hollunder’s and Brewka’s work,
is that the application of high-priority defaults may depend on the application
of low-priority rules in unobvious ways. It may be difficult to devise versions of
Reiter’s semi-constructive definition of extensions that avoid this kind of prob-
lems. Furthermore, there does not seem to be alternative, declarative ways of
characterizing the preferred extensions in these approaches.

In this paper, we give a definition of priorities in autoepistemic logic. Prior-
ities declaratively select a subset of all stable expansions of a set, the preferred
stable expansions. Priorities on default rules can be defined in a way that prop-
erly fulfills the principle “apply the highest priority default if possible.” For
example, the problem illustrated in the above example is avoided.

2 Prioritized autoepistemic logic

Prioritized autoepistemic logic is defined as an extension of autoepistemic logic
of Moore [Moore, 1985]. Different versions of autoepistemic logic are obtained
by basing it on different monotonic logics, like classical propositional logic or
predicate logic. The language of the classical logic on which an autoepistemic
logic is based on is denoted by L. To obtain the language Lae of an autoepis-
temic logic, L is extended with the operator L which is read “is believed”. The
definition of autoepistemic logic extends the notion of a model and the relation
|= to cover also formulae beginning with the operator L. These formulae are
treated as atomic formulae.

Autoepistemic logics describe the reasoning capabilities of ideally rational
agents. An agent is logically omniscient, i.e. it believes all logical consequences
of its own beliefs, and it is capable of introspection, i.e. for each proposition φ
either Lφ or ¬Lφ is its belief depending on whether φ is its belief. The beliefs
of an autoepistemic agent are based on a set of initial premises. Given a set of
initial premises Σ, possible states of belief T of an autoepistemic agent are the
solutions of the following equation [Moore, 1985].

T = {φ ∈ Lae|Σ ∪ {Lφ|φ ∈ T} ∪ {¬Lφ|φ 6∈ T} |= φ}

The sets T are stable expansions of Σ. When Σ contains conflicting defaults,
there may be several stable expansions. If at least some of the preferences of the
autoepistemic agent are available, the number of stable expansions that corre-
spond to possible states of belief can be reduced, and by cautious reasoning, i.e.
taking the intersection of the stable expansions, more formulae can be inferred.
Prioritized autoepistemic logic is an explication of the preference mechanism
used by an autoepistemic agent.

Definition 1. Let Φ ⊆ Lae be a set of formulae, and let P ⊆ Φ × Φ be a
transitive and asymmetric relation such that all strict total orders T ⊇ P are
well-orderings1. Then P = 〈Φ,P〉 is a prioritization.
1 An ordering P on a set D is a well-ordering if every non-empty subset S of D has

an element σ such that τPσ for no τ ∈ S.



The formulae in Φ represent those beliefs that are relevant in determining
which state of belief the agent is going to choose. The relation φPψ expresses
that the agent is more reluctant to accept the belief φ than the belief ψ, i.e. when
having to believe one of them the agent chooses ψ. We have chosen to prefer
the absence of formulae of Φ in stable expansions rather than their presence.
The opposite, i.e. preferring the presence of formulae in stable expansions, can
be easily achieved by allowing formulae +φ in prioritizations, where +φ means
simply ¬Lφ. We call formulae +φ in prioritizations positive and other formulae
negative.

The relation P is asymmetric and hence it describes strict preferences. The
transitivity property makes the prioritization an ordering relation. The well-
ordering property rules out the existence of infinite chains of less and less be-
lievable beliefs, and thereby guarantees that any two stable expansions can be
ordered. The partial order P is used lexicographically. Consider two stable ex-
pansions E1 and E2 given a strict total order P on Φ. If the least element of Φ
belongs to E1 but not to E2, then prefer E2 to E1, and if it belongs to E2 but
not to E1, then prefer E1 to E2. If the formula belongs to both of them or to
none of them, the next formula of Φ is considered and so on. Hence in case of
strict total orders a set of most preferred stable expansions naturally arises.

Sometimes not all preferences of an autoepistemic agent are known: the or-
dering in the prioritization may be properly partial. It seems that the most
natural meaning for the partiality is obtained by extending the partial order
to a total order, and then performing ordinary lexicographic comparison using
the total order. Different notions of most preferred stable expansions are ob-
tained depending on whether only one total order is considered in comparisons
or whether different total orders may be used for different stable expansions.
The first alternative, a variant of which is used by Brewka [Brewka, 1989], is to
take the most preferred stable expansions to be the ones that are according to
a single strict total order lexicographically preferred (not necessarily properly)
to all other stable expansions. The second alternative, a variant of which is used
by Ryan [Ryan, 1992]2, is to take the most preferred stable expansions to be the
ones that are lexicographically preferred (not necessarily properly) to all other
stable expansions according to possibly different total orders.

The second definition essentially defines an ordering on stable expansions,
the maximal elements of which are the most preferred stable expansions. The
first definition – which we adopt – in general does not correspond to any such
ordering.

Definition 2 (P-preferredness). Let P = 〈Φ,P〉 be a prioritization and Σ a
set of formulae. Then E is a P -preferred stable expansion of Σ if and only if
it is a stable expansion of Σ and there is a strict total order T of Φ such that
T ⊇ P and for all stable expansions E′ of Σ the following holds.

For all φ ∈ Φ(φ ∈ E\E′ implies there is ψ,ψT φ and ψ ∈ E′\E).
2 Ryan does not mention the possibility of stating the meaning of the partiality in his

priorities this way.



Example 1. The diagram below on the left depicts the prioritization P = 〈Φ,P〉 =
〈{α, β, γ}, {(α, β), (γ, β)}〉. Whenever aPb, a is depicted below b. The other
two diagrams represent respectively the stable expansions E1 and E2 such that
E1 ∩ Φ = {β, γ} and E2 ∩ Φ = {α}.

There are two strict total orders that extend P, call them T1 and T2, which
are shown below.

Because α ∈ E2\E1 and there are no formulae ψsuchthatψT1α, E1 is a
P -preferred stable expansion. Similarly, because γ ∈ E1\E2 and there are no
formulae ψ,ψT2γ, E2 is a P -preferred stable expansion.

The decision problems of prioritized autoepistemic logic are prioritized cau-
tious reasoning and prioritized brave reasoning, which correspond to the mem-
bership of formulae in all P -preferred stable expansions and the membership in
some P -preferred stable expansions, respectively.

Theorem 1. When the underlying logic is the classical propositional logic, pri-
oritized cautious and brave reasoning are respectively Πp

2 -hard and in Πp
3 , and

Σp
2 -hard and in Σp

3 .

Proof. Outline: the hardness results of prioritized reasoning are immediate appli-
cations of the respective results of ordinary autoepistemic logic [Gottlob, 1992].
The membership in the third level of the polynomial hierarchy is because guess-
ing a stable expansion (not) containing a formula takes nondeterministic poly-
nomial time, and the test that the stable expansion is preferred (i.e. that there
are no better stable expansions) uses a Πp

2 -oracle.

3 Relation to other formalisms

Brewka’s [Brewka, 1989] preferred subtheories and Ryan’s [Ryan, 1992] ordered
theory presentations (OTPs) can be seen as prioritized versions of Reiter’s
default logic restricted to prerequisite-free normal defaults. OTPs are richer
in using natural consequences of formulae. There is an exact translation of
Brewka’s preferred subtheories to prioritized autoepistemic logic. The formu-
lae φ in a theory T translate simply into ¬L¬φ → φ, and the priorities into
〈{¬φ|φ ∈ T}, {(¬φ,¬ψ)|φ < ψ}〉. The preference notion used by Ryan differs



slightly from the one used by us and Brewka. Instead of requiring that a sin-
gle total ordering of the prioritization partial order exists, it suffices that for
every other stable expansion there is some total ordering of the prioritization
using which preferredness is achieved. Hence the difference between these two
preference notions is that of ∀∃ and ∃∀.

Definition 3. Let E be a stable expansion of Σ and P = 〈Φ,P〉 a prioritization.
Then E is P -maximal if and only if for all stable expansions E′ of Σ, there is a
strict total order T ⊇ P such that

for all φ ∈ Φ(φ ∈ E\E′ implies there is ψ such that ψT φ, ψ ∈ E′\E).

With this preference notion the translation of OTPs to prioritized autoepis-
temic logic is almost like that of preferred subtheories. A formula φ of an OTP
is translated to formulae in {¬L¬ν→ν|φ |=˘ν} where each ν is a natural conse-
quence of φ. Ryan’s idea in defining natural consequences is the conjunctivity in
formulae. Ryan can be seen – like Brewka – as constructing maximal consistent
subsets of the formulae in an OTP except that if e.g. p∧q cannot be consistently
included in the set, some of its natural consequences – e.g. p or q – possibly can.
Each formula has an infinite number of natural consequences, but Ryan [Ryan,
1992] conjectures that the conjuncts of a suitable conjunctive normal form of φ
can be used instead of them. Complete proofs of these correspondences are given
in [Rintanen, 1993].

Hierarchic autoepistemic logic [Konolige, 1988] and multi-agent autoepis-
temic logic of Toyama et al. [Toyama et al., 1991] support the expression of
priorities, and do not make syntactic restrictions to the form of defaults. In hi-
erarchic autoepistemic logic the introspection ability of an autoepistemic agent
is restricted. Sets of formulae are divided into a number of layers. On layer n,
the formula Lmφ (m < n) refers to believing φ on layer m. This mechanism ef-
fectively resolves conflicts between defaults: there is only one expansion for each
layered set of formulae. A drawback of the logic is that priorities are obligatory:
if conflicting defaults are on the same layer, an inconsistency results. This logic
can be embedded in ordinary autoepistemic logic [Przymusinska, 1989]. Unlike
Konolige’s logic, our logic allows the expression of partial priorities. Partiality
implies the possibility of several preferred stable expansions. Multi-agent au-
toepistemic logic generalizes autoepistemic logic to several agents. Each agent
can access the beliefs of other agents. Toyama et al. demonstrate how specificity
in inheritance reasoning can be conveniently represented in this logic. Priorities
may be partial, in which case conflicts between defaults produce several expan-
sions. The suitability of the multi-agent logic of Toyama et al. for other uses
of priorities than expressing specificity is open. Multi-agent autoepistemic logic
can be translated into Moore’s autoepistemic logic [Rintanen, 1993].

The logics of Baader and Hollunder [Baader and Hollunder, 1993] and Brewka
[Brewka, 1992] bring priorities to default logic and allow prerequisites in default
rules. These logics cannot be easily translated into prioritized autoepistemic
logic. Our logic works properly for the example discussed in the introduction.



Example 2. The example given in the introduction can be expressed as formulae
of autoepistemic logic as follows.

Σ = {a, Lb ∧ ¬L¬c→c, La ∧ ¬Lc→¬c, La ∧ ¬L¬b→b}

Three schemes of using priorities in our logic are obvious. Either give priorities on
the justifications, on the conclusions, or on whole application conditions (prereq-
uisites and justifications) of the defaults. That is, the above defaults can be prior-
itized in the order indicated using either P = 〈Φ,P〉 where Φ = {¬c, c,¬b} and P
totally orders Φ in the order ¬c, c,¬b, or P ′ that orders the formulae +c,+¬c,+b
in this order, or P ′′ that orders the formulae +(b∧¬L¬c),+(a∧¬Lc),+(a∧¬L¬b)
in this order. There are two stable expansions for the above set Σ.

E1 = {a, b, c,¬L¬c, . . .} E2 = {a, b,¬c,¬Lc, . . .}

According to our definition, E1 is P -preferred and P ′-preferred and P ′′-preferred,
like expected, but E2 is not. This is opposite to the result given by systems of
Baader and Hollunder [Baader and Hollunder, 1993] and Brewka [Brewka, 1992].

The reason for the unintuitive conclusions in logics of [Baader and Hollunder,
1993; Brewka, 1992] is that the applicability of high-priority rules may depend
on the temporally prior application of lower-priority rules. In these logics, the
order in which defaults become applicable is a significant factor in determining
which extensions the priorities select. Our definition of prioritized autoepistemic
logic does not depend on such procedural aspects of application of defaults.

4 Automated reasoning with priorities

In this section we give procedures for automated reasoning with priorities. Our
procedures use full sets developed by Niemelä for handling stable expansions
computationally. Alternatively we could use similar definitions by Shvarts [Shvarts,
1990]. The relevant subset of a stable expansion of a set Σ is the set Sf L(Σ) of
subformulae of Σ that begin with the L operator. The set Sf qL(Σ) is the subset
of Sf L(Σ) consisting of those subformulae of Σ that begin with L and are not
inside another L in Σ. The following definitions and theorems are from [Niemelä,
1990].

Definition 4. A set Λ is Σ-full if it satisfies the following conditions.

Λ ⊆ Sf L(Σ) ∪ {¬Lχ|Lχ ∈ Sf L(Σ)}
for all Lχ ∈ Sf L(Σ), Lχ ∈ Λ iff Σ ∪ Λ |= χ

for all Lχ ∈ Sf L(Σ), ¬Lχ ∈ Λ iff Σ ∪ Λ 6|= χ

Theorem 2. For a set of sentences Σ there is a bijective mapping from the
Σ-full sets to the stable expansions of Σ.



Definition 5. Given a set of sentences Σ and a sentence φ

Σ |=L φ iff Σ ∪ SBΣ(φ) |= φ

where SBΣ(φ) = {Lχ ∈ Sf qL(φ)|Σ |=L χ} ∪ {¬Lχ|Lχ ∈ Sf qL(φ), Σ 6|=L χ}.

Theorem 3. Let Λ be a Σ-full set. Then ∆ = {φ|Σ ∪ Λ |=L φ} is the unique
stable expansion of Σ for which Λ ⊆ {Lφ|φ ∈ ∆} ∪ {¬Lφ|φ 6∈ ∆}.

Definition 6. Let Σ be a set of formulae and Λ a Σ-full set. Define SEΣ(Λ) =
{φ|Σ ∪ Λ |=L φ}.

This way of representing stable expansions immediately suggests a decision
procedure: generate all candidate full sets, test whether they are indeed full, and
if they are, test the membership of a formula in the respective stable expansion.

The number of candidate full sets for a set of formulae Σ is exponential on the
size of Σ: there are 2|Sf L(Σ)| such sets. The problem that arises in these decision
procedures is how to effectively reduce the size of the search space formed by the
candidate full sets. In the stratified case [Gelfond, 1987; Marek and Truszczyński,
1991] there is an efficient way of reducing this search space as shown in [Niemelä
and Rintanen, 1992]. In fact, search is completely avoided.

With prioritized autoepistemic reasoning, an obvious algorithm for auto-
mated reasoning is to construct all stable expansions (their full sets), test the
preferredness condition for each of them, and then test the membership of a for-
mula in the preferred ones. This however is inefficient, and can be improved at
least in cases where the prioritizations are on formulae φ for which Lφ ∈ Sf L(Σ).
The procedures that use full sets (or something similar) produce search trees
where the edges of the tree correspond to the inclusion of a formula Lφ or ¬Lφ
in the full set, and the leafs of the tree correspond to candidate full sets, i.e. the
set of formulae on the path from the root of the tree to a leaf. The idea is to
use priorities for pruning the search tree. Roughly, the basic reduction step is
to ignore a subtree T of the search tree that corresponds to full sets containing
Lφ (respectively ¬Lφ for a positive φ), whenever there was a full set containing
¬Lφ (respectively Lφ) and all full sets corresponding to T contain exactly the
same formulae Lψ or ¬Lψ for formulae ψ that are more important than φ. In
this case, the subtree T is guaranteed not to contain full sets of preferred stable
expansions.

It is essential for our procedures that the order in which full sets are generated
in our algorithms fulfills the following: the case Lφ ∈ Λ is considered before the
case ¬Lφ ∈ Λ for positive formulae +φ, and the case ¬Lφ ∈ Λ before the case
Lφ ∈ Λ for negative formulae φ. Two subprocedures and the main procedure of
our algorithms are shown in Figure 1. For the clarity of presentation, the handling
of positive formulae +φ in prioritizations is not discussed. The modifications
required for them are straightforward. The reason for giving them a separate
treatment in the procedures instead of using them as a shorthand for ¬Lφ, is
that this way the constraint Lφ ∈ Sf L(Σ) works symmetrically for positive +φ.

The main procedure traverses the search space of 2|Sf L(Σ)| full sets of a set
Σ. The pruning of the search tree is performed by the procedure extendible,



PROCEDURE extendible(P,Λ,Q)
BEGIN
〈Φ,P〉 := P ;
IF Φ = ∅ THEN RETURN true;
A := {φ ∈ Φ|φ is P-minimal in Φ,Lφ ∈ Λ implies Lφ ∈

⋂
Q};

IF A = ∅ THEN RETURN false;
φ := any member of A;
P ′ := 〈Φ\{φ},P ∩ (Φ\{φ} × Φ\{φ})〉;
IF Lφ ∈ Λ THEN RETURN extendible(P ′, Λ,Q)
ELSE RETURN extendible(P ′, Λ, {Λ′ ∈ Q|¬Lφ ∈ Λ′})

END

PROCEDURE next(P,Σ,Λ,Q)
BEGIN
〈Φ,P〉 := P ;
A := {φ ∈ Φ|φ is P-minimal in Φ,Lφ ∈ Λ implies Lφ ∈

⋂
Q};

IF A = ∅ THEN RETURN any φ such that Lφ ∈ Sf L(Σ)\Sf qL(Λ);
B := {φ ∈ A|Lφ 6∈ Λ,¬Lφ 6∈ Λ};
IF B 6= ∅ THEN RETURN any member of B;
φ := any member of A;
P ′ := 〈Φ\{φ},P ∩ (Φ\{φ} × Φ\{φ})〉;
IF Lφ ∈ Λ THEN RETURN next(P ′, Σ, Λ,Q)
ELSE RETURN next(P ′, Σ, Λ, {Λ′ ∈ Q|¬Lφ ∈ Λ′})

END

PROCEDURE decide(P,Σ,Λ, φ,Q)
BEGIN

IF extendible(P,Λ,Q) = false THEN RETURN (∅,false);
IF for some ¬Lχ ∈ Λ,Σ ∪ Λ |= χ THEN RETURN (∅,false);
IF Sf L(Σ) ⊆ Sf qL(Λ) THEN

IF for all Lχ ∈ Λ, Σ ∪ Λ |= χ THEN RETURN ({Λ},test(Σ,Λ, φ))
ELSE RETURN (∅,false);

χ := next(P,Σ,Λ,Q);
(S, b) := decide(P,Σ,Λ ∪ {¬Lχ}, φ,Q);
(S′, b′) := decide(P,Σ,Λ ∪ {Lχ}, φ, S ∪Q);
RETURN (S ∪ S′, b or b′)

END

Fig. 1. The procedure for prioritized autoepistemic logic



and the order in which the formulae are chosen in full sets is determined by the
procedure next. In the main procedure, the variable Q contains the full sets of
all preferred stable expansions found so far. The procedure next selects elements
φ of Φ ⊆ {φ|Lφ ∈ Sf L(Σ)} in some total order that extends the relation P in
the prioritization P . This total order fulfills a further condition that is taken
advantage of in the procedure extendible. At each node of the search tree the
procedure extendible is invoked to detect whether the full sets to be found in the
respective subtree can correspond to preferred stable expansions. The procedure
attempts to construct a strict total order T ⊇ P so that the preferredness
condition of Definition 2 would be fulfilled for the stable expansions of the current
subtree. It turns out, that for the fulfillment of the condition it suffices to look at
the preferred stable expansions found so far (the full sets in Q). The possibility
that a preferred stable expansion found later would be “better” than the stable
expansions corresponding to the current subtree is ruled out by the way the
procedure next selects elements: the order in which elements φ,Lφ ∈ Sf L(Σ)
are chosen is acceptable as the strict total order T . Hence, all full sets Λ found
later contain Lφ for the most important formula φ (according to T ) in which Λ
differs from the full sets of the current subtree, and all full sets of the current
subtree contain ¬Lφ. Therefore the stable expansions of the current subtree are
no “worse” than those found later.

We briefly discuss properties of our algorithm. First, priorities are usefully
taken advantage of when they are on formulae φ such that Lφ ∈ Sf L(Σ)} 3: the
number of candidate subsets considered is smaller than in decision procedures
of Moore’s autoepistemic logic 4. In cases where prioritizations are strict total
orders on {φ|Lφ ∈ Sf L(Σ)}, our algorithm finds the unique stable expansion
and all subsequent computation is avoided. Second, more trivial ways of using
priorities in the computation may require considering n! strict total orders for
a prioritization with n elements. The definition of Brewka’s preferred subtheo-
ries [Brewka, 1989] and priorities in default logic [Brewka, 1992] suggest such
algorithms. In our algorithms the consideration of O(2n) different cases suffices.
This seems to be the case also with the algorithm for default logic by Baader
and Hollunder [Baader and Hollunder, 1993].

The running time of our algorithm is exponential on the size of Σ for two
reasons: the classical reasoning component (e.g. for propositional logic) takes ex-
ponential time, and there may be an exponential number of candidate full sets
despite the reduction due to priorities. In the special case of a tractable subset of
a classical logic (e.g. propositional Horn clauses), autoepistemic formulae of the
form ¬L¬φ→ φ (prerequisite-free normal defaults), and strict total prioritiza-
tions on {φ|Lφ ∈ Sf L(Σ)}, both these causes for exponentiality disappear. The
unique preferred stable expansion can be immediately found without search, and

3 Extending Σ with tautologies Lφ→Lφ for formulae φ such that Lφ 6∈ Sf L(Σ) makes
our algorithm applicable for all prioritizations.

4 Improvements to the trivial algorithms that use full sets, as proposed by Niemelä
[Niemelä, 1994], can be easily incorporated in our algorithm.



the classical theorem-prover – that runs in polynomial time – is called only a
polynomial number of times, hence resulting in a tractable decision procedure.

The correctness proof of the algorithm uses the following definitions and
lemmata that are proved in [Rintanen, 1993] (In the definitions and lemmata Σ
is a finite set of formulae, and P is a finite prioritization).

Definition 7 (Preferred in). A stable expansion E of Σ is P -preferred in a
set of stable expansions X = {E1, . . . , En} of Σ if and only if there is a strict
total order T ⊇ P on Φ such that for all E′ ∈ X,

for all φ ∈ Φ(φ ∈ E\E′ implies there is ψ ∈ E′\E such that ψT φ).

Lemma 1. Let X be a set of stable expansions of Σ such that each E ∈ X is
P -preferred in X, and all P -preferred stable expansions of Σ are in X. Then X
is exactly the set of P -preferred stable expansions of Σ.

Lemma 2 (Procedure extendible). Let P = 〈Φ,P〉 be a prioritization such
that Φ ⊆ {φ|Lφ ∈ Sf L(Σ)}, Λ a Σ-full set, and Q a finite set of Σ-full sets. Let
b be the value returned by the procedure call extendible(P,Λ,Q). Then b is true
if and only if SEΣ(Λ) is P -preferred in SEΣ(Q).

Let Λ′ be a subset of a Σ-full set Λ and let the procedure call extendible(P,Λ′, Q)
return false. Then SEΣ(Λ) is not P -preferred in SEΣ(Q).

Lemma 3 (Procedure next). Let P = 〈Φ,P〉 be a prioritization such that
Φ ⊆ {φ|Lφ ∈ Sf L(Σ)}, Λ a consistent subset of Sf L(Σ) ∪ {¬Lφ|Lφ ∈ Sf L(Σ)}
such that Sf L(Σ)\Sf qL(Λ) 6= ∅, and Q a finite set of Σ-full sets.

Then next(P,Σ,Λ,Q) returns a formula χ such that Lχ ∈ Sf L(Σ)\Sf qL(Λ)
and the following holds. If S is a set of Σ-full sets Λ′ ⊇ Λ ∪ {¬Lχ} such that
each SEΣ(Λ′) is P -preferred in SEΣ(S ∪Q), and S′ is a set of Σ-full sets Λ′ ⊇
Λ ∪ {Lχ} such that each SEΣ(Λ′) is P -preferred in SEΣ(S ∪ S′ ∪Q), then each
SEΣ(Λ′), Λ′ ∈ S is P -preferred in SEΣ(S ∪ S′ ∪Q).

Lemma 4 (Procedure decide). Let P = 〈Φ,P〉 be a prioritization such that
Φ ⊆ {φ|Lφ ∈ Sf L(Σ)}, Λ a consistent set such that Λ ⊆ (Sf L(Σ) ∪ {¬Lφ|Lφ ∈
Sf L(Σ)}), φ ∈ Lae a formula, and Q a finite set of Σ-full sets.

The procedure call decide(P,Σ,Λ, φ,Q) returns (S,b). The set S consists of
Σ-full sets Λ′ ⊇ Λ such that each SEΣ(Λ′) is P -preferred in SEΣ(S ∪ Q), and
each P -preferred stable expansion E of Σ such that E = SEΣ(Λ′) for some
Λ′ ⊇ Λ, is contained in S. The value b is true if and only if for some Λ′ ∈ S,
test(Σ,Λ′, φ) returns true.

Theorem 4 (Correctness). Let φ ∈ Lae be a formula. The procedure call de-
cide(P,Σ ∪ {Lφ→ Lφ|φ ∈ Φ,Lφ 6∈ Sf L(Σ)}, ∅, φ, ∅) returns (S, b), where b is
true if and only if there is a P -preferred stable expansion E of Σ such that
E = SEΣ(Λ) and the procedure call test(Σ,Λ, φ) returns true.

Proof. The idea in extending Σ to Σ′ = Σ ∪ {Lφ→Lφ|φ ∈ Φ,Lφ 6∈ Sf L(Σ)}
is to fulfill the requirement that for each formula φ ∈ Φ, Lφ ∈ Sf L(Σ). The



procedures next, extendible and decide depend on this requirement. By Lemma
4 SEΣ′(S) contains all P -preferred stable expansions. Because every member
of SEΣ′(S) is P -preferred in SEΣ′(S), every member of SEΣ′(S) is P -preferred
by Lemma 1. The value of b is true if and only if for some stable expansion
SEΣ′(Λ), Λ ∈ S test(Σ′, Λ, φ) returns true.

Procedures for different decision problems are obtained by supplying different
procedures test. For prioritized brave reasoning the procedure test simply tests
Σ ∪Λ |=L φ, and for prioritized cautious reasoning it tests Σ ∪Λ 6|=L φ and the
value returned by decide is negated. We have implemented all these procedures
in an automatic theorem-proving system for autoepistemic and default logics.

Decision procedures for several nonmonotonic modal logics (“nonmonotonic
versions” of N, K, T, S4, S4F, KD45, SW5, W5) are given in [Marek et al.,
1993]. These procedures use the finite characterization of expansions developed
by [Shvarts, 1990]. Similar procedures based on full sets – with some improve-
ments – for Moore’s autoepistemic logic and enumeration-based autoepistemic
logics are given in [Niemelä, 1994]. Our techniques can be applied in computing
expansions for the prioritized versions of these logics. Using prioritized versions
of any of the nonmonotonic logics N, K, T, S4, S4F or the L-hierarchic autoepis-
temic logic of Niemelä [Niemelä, 1994] we can avoid the groundedness problems
that distinguish default logic from Moore’s autoepistemic logic. Using the trans-
lation Lα ∧ L¬L¬β → γ for defaults α:β/γ [Truszczyński, 1991], a version of
prioritized default logic can be embedded in any of these logics.

5 Conclusions

In this work we have presented a formalization of priorities within autoepis-
temic logic. The work generalizes earlier work on priorities and nonmonotonicity,
e.g. [Brewka, 1989; Ryan, 1992], by allowing unrestricted defaults. Comparable
generalizations have been proposed by Brewka [Brewka, 1992] and Baader and
Hollunder [Baader and Hollunder, 1993]. We believe that because of the declar-
ativity of our priority notion unintuitive conclusions that are likely to arise in
more procedural approaches to default priorities [Baader and Hollunder, 1993;
Brewka, 1992; MacNish, 1991; Tan and Treur, 1992] are avoided in our system.
For example, logics of Baader and Hollunder as well as Brewka prefer some de-
faults on the basis that their prerequisites are more directly derivable. In some
cases, this preference takes precedence over preference indicated by priorities, as
demonstrated by the example in the introduction.

Automated nonmonotonic reasoning with priorities has been investigated ear-
lier in [Baker and Ginsberg, 1989; Junker and Brewka, 1991]. Both approaches
essentially restrict to prerequisite-free normal defaults. Baker and Ginsberg work
only with layered partial orders. Our work does not make these restrictions. Rea-
soning with priorities can be more efficient than without. We have demonstrated
this for an important class of priorities that are on formulae that occur inside L
in the premises: priorities justify a principle for pruning search trees in decision
procedures.



Through translations of autoepistemic logic to other formalisms, our priori-
ties and the associated reasoning procedures can be brought to e.g. default logic,
justification-based TMSs, and the theory of diagnosis of Reiter [Reiter, 1987].

Future investigations on priorities concern the computation of priorities au-
tomatically. An important source of priorities is rule specificity. A method for
computing priorities for conditional entailment was presented by Geffner and
Pearl [Geffner and Pearl, 1992]. However, their method involves several priori-
tizations instead of only one, and hence these priorities are not convenient for
automated reasoning. Default rules expressible in autoepistemic logic are more
general than in conditional entailment, and Geffner and Pearl’s method does not
immediately generalize. The problem of rule specificity in the general context of
default rules is a challenging subject for further research.
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I would like to thank Dr I. Niemelä for advice, discussions, and for proposing
this research subject.

References

Baader, F. and B. Hollunder:. How to prefer more specific defaults in termino-
logical default logic. In R. Bajcsy, editor, Proceedings of the 13th International
Joint Conference on Artificial Intelligence, volume 1, pages 669–674, Cham-
bery, France, 1993.
Baker, A. B. and M. L. Ginsberg:. Temporal projection and explanation. In Pro-
ceedings of the 11th International Joint Conference on Artificial Intelligence,
pages 906–911, Detroit, Michigan, 1989.
Brewka, G.:. Preferred subtheories: an extended logical framework for default
reasoning. In Proceedings of the 11th International Joint Conference on Artifi-
cial Intelligence, pages 1043–1048, Detroit, 1989. Morgan Kaufmann Publish-
ers.
Brewka, G.:. Specificity in default logic and its application to formalizing obli-
gation. Unpublished, 1992.
Geffner, H. and J. Pearl:. Conditional entailment: bridging two approaches to
default reasoning. Artificial Intelligence, 53(2-3):209–244, 1992.
Gelfond, M.:. On stratified autoepistemic theories. In Proceedings of the 6th
National Conference on Artificial Intelligence, pages 207–211, Seattle, Wash-
ington, July 1987. American Association for Artificial Intelligence.
Gottlob, G.:. Complexity results for nonmonotonic logics. Journal of Logic and
Computation, 2(3):397–425, June 1992.
Junker, U. and G. Brewka:. Handling partially ordered defaults in TMS.
In Symbolic and quantitative approaches to uncertainty. European Conference,
number 548 in Lecture Notes in Computer Science, pages 211–218, Marseille,
1991. Springer-Verlag.



Konolige, K.:. Hierarchic autoepistemic theories for nonmonotonic reasoning:
Preliminary report. In M. Reinfrank, J. de Kleer, M. L. Ginsberg, and E. Sande-
wall, editors, Proceedings of the 2nd Workshop on Non-Monotonic Reasoning,
number 346 in Lecture Notes in Artificial Intelligence, pages 42–59, Grassau,
Germany, June 1988. Springer-Verlag.

Lifschitz, V.:. Computing circumscription. In A. Joshi, editor, Proceedings of
the 9th International Joint Conference on Artificial Intelligence, pages 121–127,
Los Angeles, August 1985. Morgan Kaufmann Publishers.

MacNish, C.:. Hierarchical default logic. In Symbolic and quantitative ap-
proaches to uncertainty. European Conference, number 548 in Lecture Notes in
Computer Science, pages 246–253, Marseille, 1991. Springer-Verlag.
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