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Abstract
Models of temporal planning are complex, due to
the possibility of multiple concurrent and mutu-
ally interacting actions. This work compares two
modeling languages, one with a PDDL-style ac-
tion exclusion mechanism, and another with an ex-
plicit notion of resources, and investigates their
implications on constraint-based search. The first
mechanism forces temporal gaps in action sched-
ules and have a high performance penalty. The sec-
ond mechanism avoids the gaps, with dramatically
improved performance.

1 Introduction
Temporal planning has traditionally been viewed as action se-
quencing + scheduling. This close connection between plan-
ning and scheduling has been visible in the use of constraint-
based methods in solving hard large-scale scheduling and re-
source allocation problems, and during the last decade also
in solving temporal planning problems, for example with
the satisfiability problem of the propositional logic (SAT)
[Rankooh and Ghassem-Sani, 2013] and its extensions such
as Satisfiability modulo Theories (SMT) [Shin and Davis,
2005; Maris and Régnier, 2008], or MILP [Dimopoulos and
Gerevini, 2002]. Interestingly, in recent years researchers
in temporal planning have been abandoning approaches that
use one-off reductions to constraint or logic languages. A
very recent exception to this is based on the NDL model-
ing language for which a discretization method for tempo-
ral planning was developed [Rintanen, 2015]. Most other
recent works, using the standard PDDL modeling language
[Fox and Long, 2003], split the temporal planning problem to
first solving what is essentially a classical planning problem
with all quantitative temporal information removed [Rankooh
and Ghassem-Sani, 2013], followed by or interleaved with a
separate scheduling phase to determine if all actions can be
correctly scheduled. If the scheduling fails, the first phase is
run again with additional constraints to rule out the same in-
correct solution. No explanation has emerged why the more
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monolithic search methods that tightly integrate the action se-
lection phase and the linear numeric constraint solving phase,
such as MILP or SMT, have been mostly abandoned.

In this work, we investigate mechanisms for constraining
actions’ concurrency and co-occurrence employed in tem-
poral modeling languages used by the AI planning commu-
nity, and argue that they explain why MILP or SMT have
seemed unattractive. Specifically, we observe that PDDL 2.1
[Fox and Long, 2003] induces temporal gaps between con-
secutive interdependent actions, and these gaps often induce
twice the number of steps in the plans than what is necessary,
with strong negative performance implications. The gaps are
caused by the management of implicit resources as manip-
ulation of state variables, for which the PDDL 2.1 definition
introduces what is essentially a 0-duration critical section that
can be utilized by at most one of conflicting actions at a time.

Our results provide new support to the idea that model-
ing languages and problem modelings have far more impact
on the practical usability of planning technologies than what
is widely recognized, and that some of the current model-
ing languages for temporal planning are not well suited for
many of the leading methods for solving realistic planning
and scheduling problems, including constraint programming,
mixed integer linear programming (MILP), and SAT-based
methods including SAT modulo Theories (SMT).

The structure of the work is as follows. Section 2 discusses
representations of action exclusion in PDDL and an alterna-
tive language. Section 3 discusses the computational implica-
tions of the two models. Section 4 outlines encodings in SMT.
Section 5 analyzes mappings between the two modeling lan-
guages. Section 6 experiments with them. We conclude by
listing topics for future research.

2 Models
We use two temporal modeling languages that respectively
use the action exclusion mechanism from PDDL 2.1 [Fox and
Long, 2003] and explicit resources as formalized in the NDL
language [Rintanen, 2015], with extensions to support our re-
sults in Section 5.

We assume a familiarity of the propositional logic. If x is
a state variable, then x and ¬x are literals. The complement
l of literal l is defined by x = ¬x and ¬x = x. We define
states as valuations v : X → {0, 1} of the state variables. Ex-
ecutions of temporal plans are infinite state sequences on the



rational time line, represented by valuations v(t, x) of state
variables for rational numbers t ≥ 0. As the definition of
states coincides with the definition of models in the proposi-
tional logic, we denote by v(t, φ) the obvious generalization
of the valuation to propositional formulas φ.

2.1 PDDL-Style Action Exclusions
An action consists of a precondition which determines
whether an action can be taken at a given point of time, as
far as the values of the state variables are concerned but ig-
noring other actions, and effects which determine how and
when state variables change after the action has been taken.

Definition 1 (Actions) Let X be a finite set of state vari-
ables. An action is a pair 〈p, e〉 where

• the precondition p is a propositional formula over X ,

• the effect e is a set of pairs (t, l) where t ≥ 0 is a rational
number and l is a literal over X .

The precondition has to be true when the action is taken,
and effects (t, l) cause literals l to be true a duration t after the
action was taken. Define prec(〈p, e〉) = p and eff(〈p, e〉) = e.

We next give a formal definition of a simple modeling lan-
guage that incorporates PDDL’s action exclusion mechanism.

Definition 2 (Problem instance) A problem instance in tem-
poral planning is a quadruple 〈X, I,A,G〉 where

• X is a set of state variables,

• I : X → {0, 1} is the initial state, describing the initial
values of state variables,

• A is a set of actions over X , and

• G is the goal, a propositional formula over X .

Definition 3 (Plans and Executions) Given a problem in-
stance 〈X, I,A,G〉, a plan π is a finite set of pairs (a, t),
where t ≥ 0 is a rational number and a ∈ A is an action
such that the following holds.

1. There is no {(a1, t1), (a2, t2)} ⊆ π such that

(a) x occurs in prec(a1),
(b) (t, l) ∈ eff(a2) for l ∈ {x,¬x}, and
(c) t1 = t2 + t.

2. There is an execution v : Q × X → {0, 1} which is
a mapping from non-negative rational time points and
state variables to 0 and 1 such that

(a) v(0, x) = I(x) for all x ∈ X ,
(b) if (a, t) ∈ π, then for some ε > 0 and for all t′ such

that t− ε < t′ < t we have v(t′, prec(a)) = 1,
(c) if (a, t) ∈ π and (t′, l) ∈ eff(a), then v(t+ t′, l) =

1,
(d) state variables not changed by actions retain their

values: for any tl and tu such that tl < tu, if
• v(tl, x) = 1, and
• there is no (a, t′) ∈ π such that (t′′,¬x) ∈ eff(a)

and tl ≤ t′ + t′′ ≤ tu

then v(ti, x) = 1 for all ti such that tl < ti ≤ tu.
(Analogously for v(tl, x) = 0.)

3. There is t such that v(t′, G) = 1 for all t′ > t.

Condition 1 is the essence of action exclusions in PDDL:
two actions cannot be taken simultaneously if the precondi-
tion of one is falsified by the start effect of the other.

Prevention of Actions’ Overlap
In this modeling, the only mechanism for explicitly express-
ing constraints on the co-occurrence of actions is the ban on
two actions starting at exactly the same time point according
to Condition 1. Not being exactly simultaneous may seem
insufficient for modeling non-overlapping, but this condition
should only be viewed as a mechanism for creating a critical
section in which state variables can be manipulated in ways
that allow expressing more complex conditions on the over-
lap of actions. In particular, the critical sections allow the
exclusive allocation of an implicit resource so that the over-
lap of actions is prevented: to make two actions exclusive,
both actions have the same precondition x and the same ef-
fect (0,¬x). Now the actions cannot be taken simultaneously,
and since each action falsifies the precondition of the other,
the second action cannot be taken before x is later made true.

Limits
The technically tricky part of the definition is the seeming si-
multaneity of the precondition x and the effect (0,¬x). When
an action is taken at some time point t0, the precondition x
should be true at t0 and the effect (0,¬x) should make x false
at t0. Since a state variable cannot really be true and false si-
multaneously, we must interpret the truth of x in the precon-
dition at t0 as the limit of truth of x as time approaches t0: x
is “true” at t, as far as the precondition at t is concerned, if x
is true at every time point t′ over some (possibly very short)
interval ]t− ε, t[, where ε > 0. This is what our formalization
of the truth of the precondition in (2b) of Definition 3 says.
In terms of finite sets of actions taking place at different time
points, this means that x becomes true at or before t− ε, and
remains true until t.

2.2 Action Exclusions Based on Resources in NDL
Another model of exclusiveness of actions is resources
[Le Pape, 1994], as used in NDL [Rintanen, 2015].

We formalize the resource-based action exclusion mecha-
nism in NDL in order to compare it to the syntactic condition
1 in Definition 3. First we extend Definition 1 of actions by
including an additional component, resource requirements.

Definition 4 (Actions with Resources) Let X be a finite set
of state variables and R a finite set of resources. An action is
a triple 〈p, q, e〉 where

• the precondition p is a propositional formula over X ,

• the resource requirement q is a set of

– (ts, te, r) ⊆ Q×Q×R such that ts < te, and
– (ts, te, r, n) ⊆ Q × Q × R ×N such that ts < te,

and



• the effect e is a set of pairs (t, l) where t ≥ 0 is a rational
number and l is a literal over X .

We consider two types of resource requirements, unary re-
sources, expressed by the triples (ts, te, r), which model ab-
solute exclusion inside a group of actions: at most one ac-
tion at a time can allocate the resource r, as well as state
resources, expressed by 4-tuples (ts, te, r, n), where n is the
state. Multiple actions can use the same state resource as long
as the required state n is the same. Hence state resources in-
duce exclusions between sets of actions.

Definition of plans and executions (Definition 3) mostly re-
main unchanged for our second model. The action exclusion
condition is changed. Additionally, preconditions are evalu-
ated at the starting point of actions, not in the limit. Define
prec(〈p, q, e〉) = p, eff(〈p, q, e〉) = e and rreq(〈p, q, e〉) = q.

Definition 5 (Plans and Executions with Resources)
Given a problem instance 〈X,R, I,A,G〉, a plan π is a finite
set of pairs (a, t), where t ≥ 0 is a rational number and
a ∈ A is an action such that

1. for all {(t1, a1), (t2, a2)} ⊆ π such that for some r ∈ R
• (ts1, t

e
1, r) ∈ rreq(a1) and (ts2, t

e
2, r) ∈ rreq(a2), or

• (ts1, t
e
1, r, n1) ∈ rreq(a1) and (ts2, t

e
2, r, n2) ∈

rreq(a2) such that n1 6= n2

either

(a) t1 + te1 ≤ t2 + ts2, or
(b) t2 + te2 ≤ t1 + ts1.

2. Exactly as in Definition 3, except for

(2b) v(t, prec(a)) = 1 for all (a, t) ∈ π

We do not allow a precondition φ to be simultaneous with
effects that make φ true.

Resource requirements (t0, t1, v) and (t0, t1, v, n) with
t0 < t1 are interpreted as open intervals ]t0, t1[, and with
t0 = t1 they are interpreted as closed intervals [t0, t0]. If we
limited to durations> 0 only, it would suffice – from the point
of view of allowing consecutive actions with a zero-duration
gap between them – to have the intervals half-open. How-
ever, intervals [t0, t0] have important uses, and it sometimes
is desirable to allow them between two open intervals.

3 Implications to Scheduling of Actions
Now we discuss the pragmatics of the temporal models for-
malized in Definitions 1, 2 and 3, and in Definitions 4 and 5.
Our primary interest is in the implications of these models on
constraint-based methods for temporal planning.

3.1 Timed PDDL
The core issue with PDDL 2.1 is that the start effect ¬x can-
not possibly be simultaneous with the effect x of a preceding
action, and hence there must be a gap of some non-zero dura-
tion between the actions.

movea,b moveb,c movec,d

Figure 1: Gaps in Action Schedule

movea,b moveb,c movec,d

Figure 2: Action Schedule without Gaps

Example 1 Consider the actions

movea,b = 〈a, {(0,¬a), (2, b)}〉
moveb,c = 〈b, {(0,¬b), (2, c)}〉
movec,d = 〈c, {(0,¬c), (2, d)}〉
movea,e = 〈a, {(0,¬a), (2, e)}〉

which represent the movement of some (unnamed) object from
location to location. Actions movea,b and movea,e are exclu-
sive of each other because they both falsify the other’s pre-
condition as their first effect.

To move from a to d we need three actions. First movea,b
is taken, starting at step 0 with effects at step 1. Then moveb,c
follows, starting at step 2 with effects at step 3, and the fi-
nal action is movec,d, starting at step 4 with effects at step
5. This is a total of 6 steps or explicitly represented states
in the execution of the plan. These steps are for time points
t0, . . . , t5, satisfying t1 = t0 + 2, t2 > t1, t3 = t2 + 2,
t4 > t3, t5 = t4 + 2. The gaps (see Figure 1) between t1 and
t2, and t3 and t4 can be arbitrarily small.

3.2 Explicit Resources and NDL
When using the NDL modeling language (Definitions 4 and
5), the at start effects that lead to the gaps shown in Figure 1
can be postponed to the end of the actions, and the evaluation
of the preconditions at the start of the action – and not through
the limit construction – allows action schedules without gaps.

Example 2 Consider the actions

movea,b = 〈a, {(0, 2, x)}, {(2,¬a), (2, b)}〉
moveb,c = 〈b, {(0, 2, x)}, {(2,¬b), (2, c)}〉
movec,d = 〈c, {(0, 2, x)}, {(2,¬c), (2, d)}〉
movea,e = 〈a, {(0, 2, x)}, {(2,¬a), (2, e)}〉

Here x is a resource that could be intuitively associated with
the object to be moved, allowing at most one move at a time.

With the NDL semantics, the action can be taken at the
same time point where its precondition becomes true. Without
the gaps the sequence of actions movea,b, moveb,c, movec,d
only requires 4 steps (Figure 2): the starting points of each of
the three actions (with the end point of the action coinciding
with the starting point of the next) followed by the end point
of the last action.

In general, when n consecutive actions each have a precon-
dition that depends on the previous action, the PDDL model-
ing requires 2n steps, whereas with explicit resources n + 1
steps suffice. As is well known from Planning as SAT [Kautz
and Selman, 1996], the number of steps is one of the most
critical factors in the scalability of SAT solving. Halving the
number of steps can improve performance exponentially.



4 Encodings of Timed Actions in SMT
Temporal planning can be reduced [Shin and Davis, 2005]
to constraint-based formalisms such as SAT modulo Theories
(SMT) [Wolfman and Weld, 1999].

In both SAT and SMT encodings the propositional vari-
ables encode the values of the state variables in a finite num-
ber of steps, numbered 0, . . . , T . Here T is the maximum
number of consecutive actions (steps) in the plan. To rep-
resent temporal planning finitely, only those time points and
states are represented in which (non-continuous) change takes
place. This includes changes in discrete (Boolean) state vari-
ables [Shin and Davis, 2005]. Hence the explicit states are a
sequence s0, . . . , sT for time points τ0 < τ1 < · · · < τT .

The SMT representation for the sequence s0, . . . , sT con-
sists of state variables x encoded as propositional variables
x@k for every k ∈ {0, . . . , T}, together with numeric vari-
ables ∆i = τi − τi−1, i ∈ {1, . . . , T} representing the differ-
ences of the absolute time points of consecutive steps.

4.1 PDDL-Style Encodings with Limits
We will be using a simplified variant of Shin and Davis’
[2005] encoding of temporal PDDL planning in SMT.1

In the following, we write φ@i for formulas φ with each
state variable x replaced by x@i.

When an action is taken at step i, its precondition has to
hold in the limit when approaching i. For discrete variables
this limit equals the value of precondition in the preceding
step. Hence preconditions p are encoded by

a@i→ p@(i− 1). (1)

If action a has an effect l at time t (relative to the starting
time of the action), then there must be a time point with a
time difference t to the starting time.

a@i→
T∨
j=i

(τj − τi = t) (2)

If action a can make a literal l true at time t, then a contributes
to the possible causes of l at step i by including

i∨
j=1

(a@j ∧ (τi − τj = t)) (3)

as one disjunct in the formula causesi(l) (with other disjuncts
contributed by other actions.) Empty disjunctions are taken as
constants false. The formula causesi(l) is used for expressing
when a literal becomes true.

causesi(l)→ l@i (4)

The formulas causesi(l) are also used in frame axioms to in-
dicate the conditions under which the value of a state variable
is the same in two consecutive steps.

(l@(i− 1) ∧ l@i)→ causesi(l) (5)

The time that passes at each step has to be positive,

∆i > 0 (6)
1Since we do not use continuous variables, we can identify Shin

and Davis’ Q[T+
i−1] with Q[T+

i ].

and the ∆ and τ variables are related in the obvious way.

τi − τi−1 = ∆i (7)

For every pair of actions a1 and a2 that should be exclusive
because one falsifies the precondition of the other as its time
0 effect, we have

¬a1@i ∨ ¬a2@i. (8)

4.2 Limit-Free NDL Encodings with Resources
With the resource-based NDL language we can avoid the ex-
pression of the critical sections and limits that are needed for
allocation of implicit resources in PDDL.

The encoding of the resource-based model is as above with
the following modifications [Rintanen, 2015]. First, formula
(8) is removed, as action exclusions are not based on the crit-
ical sections any more. Second, preconditions are evaluated
in the starting step of an action instead of in the limit (repre-
sented by the preceding step). Hence we have

a@i→ p@i (9)

replacing (1). Third, we have additional formulas for repre-
senting resources, as described next.

Let actions a1 and a2 have conflicting resource needs re-
spectively for intervals ]t0, t1[ and ]t2, t3[. If time t has passed
since taking the first action, then for the second action to be
possible at time 0, the following must hold.

t+ t1 ≤ t2 or t3 ≤ t+ t0 (10)

If intervals overlap, the actions cannot be started at the
same step, encoded as the obvious binary mutexes

¬a1@i ∨ ¬a2@i. (11)

When action a1 has been taken earlier, we use (10) to derive
a constraint to prevent a2. The constraint is obtained as a
disjunction that iterates over all past steps and tests whether
the time t in (10) has passed since taking a1.

a2@i→
∨i−1

j=1(a1@j → (t2 ≥ t1 + (τ@i− τ@j)
∨t0 + (τ@i− τ@j) ≥ t3))

(12)

This formula says that if an action is taken, then its need for
the resource starts after the need by another action ends, or its
need ends before the need by another action starts. 2

5 Translating PDDL into NDL
We have developed a semi-automated translation process
from PDDL into NDL. Theorem 1 illustrates many of the
core issues, and allows partial translations for many of the
standard benchmark problems, fully automated translation
for Sokoban, and translations of most actions for Crewplan-
ning and Elevators. Actions with PDDL’s over all conditions
require the use of state resources: the over all condition is
replaced by the allocation of a state resource in state 1 for
the action’s duration, and any effect in other actions violating

2Note that there may be O(n2) formulas (12) for n actions. In
many important cases O(n) size encodings of resource constraints
are possible, but these encodings are out of the scope of this work.



the condition is extended with the allocation of the same state
resource in state 0 for a single time point.

Theorem 1 has been expressed in terms of two NDL mod-
els that differ in some effects having been delayed from time
point 0 to the last time point of the action. This is how
PDDL’s at start effects can be turned into at end effects if re-
source constraints can be used to make sure the change does
not invalidate existing plans, provided that no new plans are
enabled that incorrectly exploit the changed action definition.

We outline the process next. Let the action have an effect
e at time 0. Let a1, . . . , an be all actions that depend on e,
that is, their preconditions share a state variable with e. If
all of a1, . . . , an are mutually exclusive (mutex) with a, then
the effect e can be moved from 0 to the action’s end time
taend. By two actions being mutex we mean that resources or
system properties [Rintanen, 2014] guarantee that the interval
between the starting and ending points of the actions cannot
overlap.

The exclusivity test is split into two parts. First, check that
no action violates the exclusivity condition. Second, when the
exclusivity condition otherwise holds, but would be violated
by moving the effect, then the exclusivity has to be restored.
We will discuss these next.

Consider an action a with effect ¬x at time 0. Hence x is
(possibly) true until 0 and false after 0. Moving ¬x from 0 to
taend could affect possible plans in three ways.

1. Actions depending on x could possibly be taken between
0 and taend where they otherwise could not be taken.

2. Actions depending on ¬x cannot be taken between 0 and
taend where they otherwise could be taken.

3. Actions with effect x scheduled between the start and
end of a could have their effect overridden if ¬x is
moved from 0 to taend.

For the move to not produce new plans that are not valid
according to the original problem description, taking actions
of type 1 must be prevented. For the move to not invalidate
existing plans, actions of types 2 and 3 must not exist.

The theorem presents a test for detecting actions of type 2
and 3 (preventing the move), and derives new constraints for
forbidding actions of type 1 in the modified problem instance.

The theorem is given with ¬x as the effect to be moved, but
it obviously holds when the roles of x and ¬x are reversed.

Theorem 1 Let P be a NDL problem instance with actions
A. Let P ′ be an NDL problem instance obtained from P by
delaying effects (0, l) to the end of the action by the following
procedure. Let a be any action such that

1. ¬x is an effect of a at 0,

2. x is not an effect of a at any t′ > 0,

3. the last effects of a are at taend,

4. a is mutex with every action that makes x true (and con-
sequently, no other action can make x true between 0
and taend),

5. a is mutex with every action with precondition ¬x (and
consequently, no action depends on ¬x between 0 and
taend).3

Action a is replaced by a modified action obtained by

1. moving effect ¬x from 0 to taend,

2. adding resource requirement (0, taend, R
x, 0),

3. adding resource requirement (0, 0, Rx, 1) to any action
in A− {a} with x in the precondition, and

4. adding resource requirement (t, t, Rx, 1) to any action
in A− {a} with effect (t, x).

Then any plan for P is also a plan for P ′, and any plan for
P ′ is also a plan for P .

Proof: Let π be any plan for P . Define P0 = P , and let
P, . . . , Pn be NDL instances such that each Pi, i > 0 is ob-
tained from Pi−1 by modifying one of the actions. Our proof
shows that each Pi preserved the plans of Pi−1. We obtain
P ′ as the last instance Pn in the sequence generated by mod-
ifying n actions.

Let π be any plan for Pi−1 with an occurrence of the action
a that is modified. We show that π is also a plan for Pi.

• We show that same states will be generated. The dif-
ference between the two cases is that the effect ¬x of
a is moved from 0 to taend. Until the starting point of
a and starting from the end point of a the execution is
the same in both cases. The changes possibly caused
simultaneously by other actions are not affected by the
postponement of ¬x. In particular, since no other action
that could overlap with a can make x true (assumption
4), no effect of an overlapping action is overridden by
the postponed ¬x.

• We show that all preconditions are satisfied. Again, the
only change is postponing ¬x from 0 to taend in action a.
Hence by assumption 5 there are no actions in π with a
precondition that turns false when ¬x is delayed to taend.

• We show that the additional resource requirements in Pi

are not violated. Since in π no action with x in the
precondition starts (relative to the starting point of a)
between 0 and taend (because x is false there), the addi-
tional resource requirements in Pi (which only concern
this case) is satisfied.

For the proof in the other direction, assume that π is a plan
for Pi. We show that π is also a plan for Pi−1.

• We show that same states will be generated. The differ-
ence between the two cases is that the effect ¬x of a is
moved from taend to 0. Until 0 and starting from taend the
execution is the same in both cases.
Resource requirement 4 guarantees that no action makes
x true between 0 and taend. Hence the state at the end of
action a with Pi−1 and Pi is the same.

• We show that all preconditions are satisfied. Again, the
only change is move of¬x from taend to 0 in action a. The

3For many of the standard benchmarks a weaker condition suf-
fices: ¬x is not in the precondition of any action in A− {a}.
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Figure 3: Runtime comparison by instance

resource requirements 2 and 3 guarantee that no action
with precondition x is taken between 0 and taend. Hence
every precondition is satisfied for Pi−1 if every precon-
dition is satisfied for Pi.
• Resource requirements for Pi−1 are not violated because

the requirements for Pi−1 is a subset of those of Pi, and
the latter are satisfied by assumption. �

Conditions of Theorem Theorem 1 explicitly rule out
problems with required concurrency [Cushing et al., 2007].
Coles et al. [2009] show that compression-safe temporal ac-
tions can be replaced by classical ones. The conditions for
compression-safety are distantly related to the conditions of
Theorem 1, but our modeling language is different, our con-
ditions more general, and our theorem is about mapping tem-
poral actions to equivalent temporal actions, not to classical
ones.

6 Experiments
We compare PDDL models to their NDL translations with
problems from the 2008 and 2011 planning competitions.4
We translated all PDDL models into NDL manually, although
some of these translations, or parts of them, would have been
possible to automate with Theorem 1.

We implemented fully automatic translations from PDDL
2.1 and NDL into SMT, and solved the benchmark problems
with the Z3 SMT solver on a workstation cluster mostly con-
sisting of mid-range Intel Xeon CPUs from about 2010 to
2012. The runtime per instance was limited to 30 minutes.
For each instance, we generated SMT encodings for 3n steps,
for all n > 0, and solved them one by one until a satisfiable
SMT instance (corresponding to a plan) was encountered.

Figure 3 illustrates the performance improvements of NDL
over PDDL, with a plot of runtimes with both models for in-
stances solved in under 30 minutes. The typical performance

4Except for the rather complicated PARC Printer problem which
we did not understand deeply enough to model it in NDL.

NDL PDDL
2008-crewplanning 30 10 4
2008-elevators 30 4 0
2008-openstacks-adl 31 2 0
2008-pegsol 30 30 28
2008-sokoban 12 5 1
2008-transport 7 0 0
2011-floortile 20 5 0
2011-matchcellar 10 5 3
2011-parking 17 7 3
2011-storage 11 0 0
2011-tms 20 8 7
2011-turnandopen 20 10 4
total 238 86 50
weighted score 13 4.01 2.17

Table 1: Number of solved instances

gain is between one and three orders of magnitude. The num-
bers of instances solved in 30 minutes are given in Table 1.
The weighted score is the sum of the fractions of instances
solved for each domain.

Rintanen [2015] reports further performance gains for
NDL models obtained by discretizing the rational time line
to integers. Interestingly, reformulating PDDL models into
NDL improves performance roughly equally as the dis-
cretization of NDL models.

7 Related Work

Earlier research on temporal planning has not identified
PDDL modeling to be a performance issue. This has prob-
ably been because of the general focus of the research
area on explicit state-space search (forward-chaining) rather
than constraint-based methods [Kautz and Selman, 1996] or
other search methods including backward-chaining [Rinta-
nen, 2008], and due to the research area taking existing prob-
lem modelings and modeling languages as given.

Approaches based on specialized algorithms for search
with temporal states [Do and Kambhampati, 2003] and action
schedules [Gerevini et al., 2010] do not suffer from the gaps
the way all-encompassing reductions to SAT, SMT, MILP or
CP with the leading encodings (as in Section 4) do. In these
approaches, the requirement of having at least an ε gap pre-
ceding a precondition falsified by the same action’s at start
effects is merely an additional temporal constraint for ac-
tion scheduling, with little or no performance implications.
In contrast, in the state-of-the-art constraint based models
of temporal planning, the gaps often double the number of
steps in the planner, resulting in an exponential performance
penalty, as demonstrated in Section 6.

Some recent constraint-based planners have avoided the is-
sue with gaps by abstracting the temporal planning problem
to a classical one, and performing action scheduling sepa-
rately. The work on ITSAT is a prominent example of this
category [Rankooh and Ghassem-Sani, 2013]. ITSAT, how-
ever, is incapable of effectively minimizing plan duration, as
temporal information is ignored during search.



8 Conclusion
We have investigated the impact of problem modelings on the
scalability of constraint-based planning methods. Our main
finding is that problem modelings based on explicit manipula-
tion of state variables for resource management lead to SMT
encodings that are harder to solve than those based on an ex-
plicit notion of resources.

Promising directions for future research include partial-
order methods which have earlier been very successful for
classical planning [Rintanen et al., 2004; Wehrle and Rinta-
nen, 2007; Robinson et al., 2009]. Planning-specific imple-
mentation technologies for SAT-solving [Rintanen, 2012] are
obviously applicable also to SMT-based temporal planning.
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