
Constraint-Based Algorithm for
Computing Temporal Invariants

Jussi Rintanen

Department of Information and Computer Science
Aalto University, Helsinki, Finland??

Abstract. Automatically identified invariants are an important part of reductions
of state-space reachability problems to SAT and related formalisms as a method
of pruning the search space. No general algorithms for computing temporal in-
variants have been proposed before. Earlier algorithms restrict to unconditional
actions and at-most-one invariants. We propose a powerful inductive algorithm
for computing invariants for timed systems, showing that a wide range of timed
modeling languages can be handled uniformly. The algorithm reduces the com-
putation of timed invariants to a sequence of temporal logic consistency tests.

1 Introduction

Invariants are facts that hold in all reachable states of a transition system. In search
methods other than explicit state space search, including symbolic search with SAT [9]
and backward chaining search, the search space includes (partial) states that are not
reachable from the initial states. For these search methods invariants help pruning the
search space. Additionally, as an approximate upper-bound for the set of all reachable
states, invariants can help in analyzing properties of the state space, with applications in
planning, verification, diagnosis, and other forms of reasoning about transition systems.

The leading methods for computing invariants for untimed/asynchronous systems
can be viewed as approximations of exact symbolic methods for computing the set of
all reachable states, such as those based on binary decision diagrams [2]. These meth-
ods inductively compute a sequence of sets of states reachable with a given number of
actions. Upon reaching a fixpoint, the computation terminates. Most works on invari-
ants have adopted the inductive construction [10, 6, 7, 11, 12] which is well understood
in the context of untimed/asynchronous systems.

The conceptual difficulties about reasoning with partial temporal states, as well as
the concurrency of actions, have hampered attempts to apply the inductive construc-
tion in the timed setting. The main challenges in the timed setting are, first, identifying
the form of induction suitable for timed systems with several concurrent and tempo-
rally overlapping actions, and, second, developing sufficiently powerful and efficient
temporal reasoning methods for handling complex timed transition system models. We
present solutions to both of these problems.
?? Also affiliated with Griffith University, Brisbane, Australia, and the Helsinki Institute of In-

formation Technology, Finland. This work was funded by the Academy of Finland (Finnish
Centre of Excellence in Computational Inference Research COIN, 251170).

The structure of the paper is as follows. After formal preliminaries in Section 2,
the new algorithm is presented in Section 3. A core component of the algorithm, tem-
poral consistency tests, is presented in Section 4. Experiments with the algorithm are
summarized in Section 5 before concluding the paper in Section 6.

2 Problem Definition

Formulas x and ¬x for x ∈ X are literals. The complement l of a literal l is defined by
x = ¬x and ¬x = x. We define actions as pairs consisting of a precondition (a propo-
sitional formula) and an effect which indicates how and when state variables change.
Effects are conditional on values of state variables at the time instant the action is taken.

Definition 1 (Actions). Let X be a finite set of (Boolean) state variables. An action
over X is a pair (p, e) where p is a propositional formula over X and e is a set of rules
φ B l@t, where φ is a propositional formula over X , l is a literal over X , and t > 0 is
a rational number. Effect l takes place after time t has passed provided that φ was true.

Definition 2 (Transition systems). A transition system is a 3-tuple 〈X, I,A〉 where X
is a finite set of (Boolean) state variables, I : X → {0, 1} is the initial state (a total
function from state variables to 0 and 1), and A is a set of actions.

Above we have left out one important component of timed systems, dependencies
between actions that prevent some combinations of actions being taken. Actions may
use the same (implicitly represented) resources, and hence cannot temporally overlap.
Several alternative definitions of this kind of exclusions between actions are possible
[13, 8, 4], and here we only assume that exclusions can be factored to binary relations
between actions: if a given action a1 is taken at time t, then another action a2 cannot be
taken during the interval [t+ t1, t+ t2] for some t1 and t2 such that 0 ≤ t1 ≤ t2.

Plans are finite sets P ⊆ A × Q+ that schedule actions so that action exclusions
are respected: if a1 ∈ A is exclusive of a2 ∈ A being taken at [t1, t2], and (a1, t) ∈ P ,
then (a2, t

′) ∈ P for no t′ such that t+ t1 ≤ t′ ≤ t+ t2.

Definition 3 (Plans and executions). Given a transition system 〈X, I,A〉, an execu-
tion for a plan P is a mapping v : Q×X → {0, 1} from time points and state variables
to 0 and 1 such that

1. v(0, x) = I(x) for all x ∈ X ,
2. v(t, p) = 1 if (a, t) ∈ P and a = (p, e), where v(t, p) denotes the obvious gener-

alization of the values v(t, x), x ∈ X to arbitrary Boolean formulas p,
3. if (a, t) ∈ P and φ B l@t′ ∈ a, then v(t+ t′, l) = 1,
4. state variables not changed by actions retain their values: for any tl and tu such

that tl < tu, if
– v(tl, x) = 1, and
– there is no (a, t′) ∈ P such that φ B ¬x@t′′ ∈ e (where a = (p, e)) and
tl ≤ t′ + t′′ ≤ tu

then v(ti, x) = 1 for all ti such that tl < ti ≤ tu. (Analogously for v(tl, x) = 0.)

For a given transition system T = 〈X, I,A〉, propositional formulas φ such that
v(t, φ) = 1 for every execution v of T and every t ∈ Q are invariants. Later we use a
generalization of this notion to temporal logic formulas.

2.1 Temporal Logic Representations

We use a linear temporal logic for reasoning about actions and invariants, with both
actions and invariants represented as formulas in the logic.

Definition 4. Let Σ = {x1, . . . , xn} be a set of atomic propositions. Then our tem-
poral language consists of exactly those formulas that are obtained with the following
inductive definition.

1. x is a formula for every x ∈ Σ.
2. Formulas with ¬, ∨ and ∧ are defined in the usual way.
3. [t0, t1]φ is a formula if φ is a formula and t0 and t1 are rational numbers such that
t0 ≤ t1. This is a metric temporal modal operator saying that φ holds at all time
points t such that tnow + t0 ≤ t ≤ tnow + t1 where tnow is the time point in which
the formula is evaluated. The formula [t]φ is defined as an abbreviation for [t, t]φ.

4. φ1Uφ2 is a formula if φ1 and φ2 are formulas. This is the temporal operator until,
which says that if φ1 is true in all time points until φ2 is true.

Boolean connectives→and↔ are defined by φ→ψ ≡def ¬φ ∨ ψ and φ ↔ ψ ≡def

(φ→ψ) ∧ (ψ→φ).

2.2 Semantics for Temporal Formulas

Temporal formulas are evaluated with respect to linear temporal models v : Q ×Σ →
{0, 1} that assign a truth value to every rational time point and atomic proposition.
Consequently, we can identify executions with linear temporal models. Formulas have
a standard semantics, with the truth of formulas at time point t denoted by v |=t φ.

Definition 5. The truth of a temporal formula φ at time point t in a given model v is
recursively defined as follows.

1. v |=t b iff v(t, b) = 1, for atomic propositions b ∈ Σ.
2. Truth with truth-functional ¬, ∨ and ∧ is as usual.
3. v |=t φUψ iff v |=t′ φ for all t′ ≥ t such that v 6|=t′′ ψ for all t′′ such that
t ≤ t′′ ≤ t′.

4. v |=t [t1, t2]φ iff v |=t′ φ for all t′ such that t1 ≤ t′ ≤ t2.

We also use half-open and open intervals with the operators]t1, t2], [t1, t2[, and
]t1, t2[, which are defined analogously. The operator � is identified with]−∞,∞[.

2.3 Representation of Actions

We translate action descriptions into this temporal language. The atomic propositions
are a1, . . . , an where 1, . . . , n is some indexing of the n = |A| actions in a transition
system 〈X, I,A〉, and x1, . . . , xm for the m = |X| state variables in X . Actions (p, e)
with index i are formalized as follows.

ai→p (1)
(φ ∧ ai)→ [t]l for all (φ B l@t) ∈ e (2)

Depending on the planning language used, there are action exclusion constraints
preventing an action from being taken if some other action has been taken recently.
Main forms of such constraints can be translated into formulas

ai→ [t0, t1]¬aj (3)

where t0 and t1 are rational numbers such that t0 ≤ t1. The working of our invariant al-
gorithm is independent of how these constraints are derived. Representative definitions
of action exclusion can be found in literature [13, 8, 4].

Frame axioms indicate when a fact remains unchanged. For every x ∈ X we have

x→(xUc) (4)

where c is the disjunction of all formulas [−t](ai ∧ φ) such that (φ B ¬x@t) ∈ e for
the action (p, e) with index i. There is an analogous axiom ¬x→ (¬xUc¬) indicating
the conditions c¬ for change from true to false.

We denote the set of all formulas above by αX,A.

3 The Algorithm

Standard invariant algorithms [10, 5, 3, 6, 7, 11, 12] are not applicable in the timed set-
ting where multiple actions can be taken concurrently. For classical planning, the basic
induction step in invariant computation is determining, for a given action, which true
facts remain true after the action has been taken. With timed models, this basic step
must cover the possibility of other actions being taken concurrently. For example, two
actions both with precondition a and respectively effects ¬a, b and ¬a, c individually
cannot falsify candidate invariant ¬(b ∧ c), but taken simultaneously they will.

The inductive algorithm for deriving invariants for timed systems is given in Figure
1, with the subprocedure weaken explained later.

1: PROCEDURE temporalinvariants(X, I,A);
2: C := {x ∈ X|I |= x} ∪ {¬x|x ∈ X, I 6|= x};
3: REPEAT

4: Cold := C;
5: FOR EACH a ∈ A and c ∈ C such that φ B l@t is an effect of a and l occurs in c DO

6: Sa,c := the formula given in Lemma 1;
7: IF Sa,c is consistent THEN

8: C := C\{c};
9: C := C ∪ weakenSa,c(c);

10: UNTIL C = Cold;
11: RETURN C;

Fig. 1. Algorithm for computing timed invariants

The induction follows the idea of constructing a schedule of temporal actions step
by step. We consider the construction of such schedules in a specific form. Instead of

an inductive step that allows adding an arbitrary action in an arbitrary location of a
schedule, we only add actions in the end of the schedule so that no other action is taken
later, and no actions with a smaller index (according to an arbitrary ordering <) can be
taken at the same last time point.

Assuming that all schedules of i − 1 actions satisfy a certain set C of candidate
invariants, we consider schedules of i actions to test which of the candidate invariants
are still satisfied. The passage from i − 1 to i actions corresponds to adding an action
a ∈ A to a schedule with i− 1 actions.

The base case of the induction is the execution with 0 actions with I as the initial
state at some unspecified time point and at all preceding and succeeding time points.

For the inductive cases, we can over-approximate executions with i− 1 actions that
satisfy candidate invariants Cold with the following formula.

S = {�φ | φ ∈ αX,A}∪
{[−∞, 0[φ | φ ∈ Cold}

This formula says that all changes during the execution correspond to some actions (as
formalized by αX,A) and that all candidate invariants hold until 0.

For a given action a and candidate invariant c that could be falsified by an effect
φ B l@t we extend this set further. Now a will be taken at time point 0 as the last action
at (the arbitrarily chosen) time point 0, no actions are taken after 0, and no action with
index smaller than a’s is taken at 0. Hence we have

Sa,c = S ∪ {[0]a, [0]φ, [t]¬c}
∪{]0,∞[¬a′ | a′ ∈ A}
∪{[0]¬a′ | a′ ∈ A, d(a′) < d(a)}

for executions with some i− 1 actions extended with the ith action a.
The important properties of Sa,c are stated in the next lemma. Section 4 provides

an efficient incomplete procedure for the consistency tests. Although we have fixed 0 to
be the time point where a is taken in Sa,c, this choice does not lose generality and the
result holds for an arbitrary time points.

Lemma 1. Let αX,A be the translation of actions A into temporal logic as given ear-
lier, a ∈ A an action with effect φ B l@t, Cold a set of candidate invariants, and c a
candidate invariant with occurrence of the literal l. Let

Sa,c = {�φ | φ ∈ αX,A}
∪{[−∞, 0[φ | φ ∈ Cold}
∪{[0]a, [0]φ, [t]¬c}
∪{]0,∞[¬a′ | a′ ∈ A}
∪{[0]¬a′ | a′ ∈ A, d(a′) < d(a)}.

If Sa,c is inconsistent, then there is no execution with actions fromA such that 1. action
a is taken at some time point t′, 2. formulas in Cold are true until t′ (excluding t′), 3.
no action is taken after t′, 4. no lower index action is taken at t′, and 5. action a makes
one of the literals in c is false at t′ + t.

After an attempt to prove that a candidate invariant remains true has failed, it will be
replaced by logically weaker candidate invariants. The new candidate invariants either
add a new disjunct, or replace a disjunct [t0, t1]l by a weaker one [t′0, t

′
1]l such that

t0 ≤ t′0 ≤ t′1 ≤ t1 and either t0 < t′0 or t′1 < t1.
Our algorithm is general and is not limited to any particular form of (candidate) in-

variants. For performance reasons, our implementation (Section 5) limits to (candidate)
invariants of forms l and l1 ∨ [−t, 0]l2, t ≥ 0.

We define weakenSa,c(φ) as the set of all maximal weakenings of φ as read from the
partial assignment that satisfied Sa,c (see Section 4), with maximality defined in terms
of inclusion of intervals [t, t′]l.

Lemma 2. weakenSa,c(φ) 6|= φ, and φ |= φ′ for all φ′ ∈ weakenSa,c(φ).

In the main loop of the algorithm, line 5 tests whether the effects of action amention
a state variable occurring in a candidate invariant c. If not, c cannot be possibly falsified
by a. Otherwise, a more thorough test is performed in the form of the consistency test on
line 7. If Sa,c is inconsistent then a cannot possibly falsify c. If Sa,c is consistent, then
it may be possible that c is falsified by a, and c has to be weakened or eliminated. This
consistency test for the linear temporal logic is approximated as described in Section 4.

Only candidate invariants that pass all tests and cannot therefore be falsified by
any action in any reachable state will remain in the set C until the algorithm reaches a
fixpoint. Therefore all such formulas are invariants. However, due to the approximate
consistency test and syntactic restrictions on the form of the invariants, not all invariants
are always found.

Theorem 1. If the algorithm temporalinvariants(X, I,A) returns C, then all formulas
in C are true everywhere in every execution of 〈X, I,A〉.

Proof. The proof is by induction on i, the number of iterations of the outermost repeat-
until loop on lines 3-10. The proof is based on identifying the number of iterations with
the number of action occurrences in an execution. Let Ci be the value of the variable C
in the beginning of each iteration of the loop (with iterations numbered as 0,1,...).

Induction hypothesis: v |=t c for every t and every c ∈ Ci and every execution v of
〈X, I,A〉 with i actions.

Base case i = 0: By construction, C0 consists of formulas true in the initial state,
and hence in all states that precede or follow, as no actions are taken anywhere.

Inductive case i ≥ 1: For any c ∈ Ci it must be that Sa,c is inconsistent for every
a ∈ A (otherwise c would have been eliminated between lines 7 and 9.)

Hence by Lemma 1 there is no execution with i actions in which that “last” action
would make c false (with Cold representing all executions with i− 1 actions.) Assume
there is an execution v with i actions in which some other than the “last” action would
make c false. We could remove a from this execution to obtain an execution with i− 1
actions that still falsifies c, and hence by induction hypothesis we would have c 6∈ Ci−1.
Since Ci is logically weaker than Ci−1 (due to formulas being replaced by strictly
weaker ones (Lemma 2)), we could not have c ∈ Ci. Hence there is no execution with
i actions with c false at some time point.

4 Approximate Consistency Tests

We now present an efficient and sound but incomplete approximation of temporal logic
consistency based on constraint networks, as required in the consistency tests of Sa,c

in the preceding section. A constraint network is constructed for a set of temporal logic
formulas. Every subformula is represented as a node in the constraint network and as-
sociated with two sets of intervals, one for true and another for false. Each rule infers
intervals for a node given its neighbors. The neighbors are the immediate subformulas,
the parent formula, and sibling formulas. The rules are of the form

(g1 : i1)φ1, . . . , (gn : in)φn
(g : i)φ

where φ1, . . . , φn and φ are formulas respectively with tags (gj : ij), j ∈ {1, . . . , n}
and (g : i), where each gj is either > or ⊥ to express truth or falsity, and ij is a set
(union) of intervals where φj has the specified truth value. A rule is applied by first
selecting a node for a formula of the form of the consequent φ. Then the tags (gj : ij)
for φ1, . . . , φn (in some rules only a single interval) are retrieved. Finally the tag (g : i)
for the consequent is computed and the new intervals i added to the old intervals of φ.

The rules for truth-functional connectives are obvious. Next we list some of the
more interesting propagation rules. The rules for the interval operator are the following.

(> : [t0, t
′
0])φ

(> : [t0 − t, t′0 − t′])[t, t′]φ
(5)

(⊥ : [t0, t
′
0])φ

(⊥ : [t0 − t′, t′0 − t])[t, t′]φ
(6)

(> : [t0, t
′
0])[t, t

′]φ
(> : [t0 + t, t′0 + t′])φ

(7)

In the first rule, the interval [t0 − t, t′0 − t′] is empty if t′0 − t′ < t0 − t. In the first
two rules, intervals with infinite end-points are handled specially, as subtraction of∞
or−∞ from itself is not well-defined. We define finite additions and subtractions to the
infinities by∞ + r = ∞ and −∞ + r = −∞. In rule (5), if both the interval starting
point t0 of φ and the operator starting point t are −∞, then the starting point for [t, t′]φ
is −∞ as well. Similarly for end points∞.

The rules for the until operator are the following.

(⊥ : i0)φ0, (⊥ : i1)φ1
(⊥ : i0 ∩ i1)φ0Uφ1

(8)

(> : [t, t′])φ0Uφ1, (⊥ : [t1, t
′
1])φ1

(> : [max(t, t1), t
′
1])φ0

if
[t, t′9]∩
[t1, t

′
1] 6= ∅

(9)

In all of the rules above we have used closed intervals only. The rules can be adapted
to open and half-open intervals as well as to interval operators with such intervals.

Initially, all nodes are labelled with (> : ∅) and (⊥ : ∅) with> denoting true and⊥
false, and with the empty set of intervals ∅ indicating that no truth or falsity is known
for any time interval. We detect a contradiction when i1 ∩ i2 6= ∅ for (> : i1)φ and
(⊥ : i2)φ and some φ, that is, φ has to be both true and false in at least one time point.

The constraint propagation procedure does not terminate for all formula sets. How-
ever, for all sets Sa,c we have tried the procedure quickly terminates.

5 Experiments

We have experimented with the algorithm and problem instances featured in the tem-
poral planning tracks of the 2008 and 2011 planning competitions (IPC), modeled in
timed PDDL. Table 1 summarizes runtimes and other statistics.

runtime invariants actions
problem min. max. < 600 s min. max. min. max.
crewplanning 1.33 83.34 30/30 225 2925 27 1393
elevators 7.85 > 14400 25/30 740 ≥ 23934 1672 141384
elevators/numeric 2.79 7311.33 22/30 704 ≥ 31620 448 10734
openstacks/adl 1.45 283.16 30/30 86 1508 45 2074
openstacks/numeric 0.64 5.13 30/30 104 960 15 102
openstacks/numeric/adl 0.68 7.16 30/30 66 638 15 102
openstacks/strips 1.52 384.80 30/30 124 1830 45 2074
parcprinter 2.57 > 14400 24/30 656 ≥ 17530 61 3979
pegsol 0.62 3.61 30/30 40 986 76 76
sokoban 5.40 > 14400 19/30 1682 ≥ 40274 280 28240
transport/numeric 1.08 > 14400 16/30 124 ≥ 57240 66 22869
floortile 2.10 19.33 20/20 264 2610 148 606
matchcellar 0.43 1.03 10/10 2 10 3 210
parking 3.94 392.60 20/20 653 6991 726 7406
storage 27.96 > 14400 10/20 2430 ≥ 18684 3400 130480
tms 1.79 > 14400 5/20 774 ≥ 5664 133 12141
turnandopen 4.36 805.85 18/20 704 10354 464 12216

Table 1. Statistics for a number of IPC domains. We give the runtimes (in seconds) for the eas-
iest and hardest instance in each domain, the number of instances for which the computation
terminated in under 10 minutes, the numbers of invariants found, and the numbers of actions.

6 Conclusion

We have, for a first time, presented a general algorithm for computing a large class of
invariants for timed systems, with the analysis of such systems and speeding up reason-
ing with them as the main applications. Earlier works on timed invariants in planning
have limited to narrow classes of invariants or narrow classes of timed models [13, 1].
Our framework is applicable to a wide range of timed models and forms of invariants.

Similarly to the strongest earlier algorithms for untimed or asynchronous systems,
our algorithm is based on a fixpoint iteration which starts from a set of candidate invari-
ants characterizing the initial state, and weakens this set to cover all reachable states of
the system. Iteration N of the algorithm corresponds to reachability by schedules of N
timed actions, with the fixpoint corresponding to schedules with any number of actions.

Due to the generality of our algorithm, its scalability for large action sets and high
number of state variables is not as good as with simpler algorithms. Future work will
focus on finding interesting performance vs. generality trade-offs.

References

1. Bernardini, S., Smith, D.E.: Automatic synthesis of temporal invariants. In: Proceedings
of the Ninth Symposium on Abstraction, Reformulation, and Approximation, SARA 2011,
Parador de Cardona, Cardona, Catalonia, Spain, July 17-18, 2011, AAAI Press (2011)

2. Burch, J.R., Clarke, E.M., Long, D.E., MacMillan, K.L., Dill, D.L.: Symbolic model check-
ing for sequential circuit verification. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 13(4) (1994) 401–424

3. Edelkamp, S., Helmert, M.: Exhibiting knowledge in planning problems to minimize state
encoding length. In Biundo, S., Fox, M., eds.: Recent Advances in AI Planning. 5th Euro-
pean Conference on Planning, ECP’99, Durham, UK, September 8-10, 1999. Proceedings.
Number 1809 in Lecture Notes in Artificial Intelligence, Springer-Verlag (2000) 135–147

4. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal planning
domains. Journal of Artificial Intelligence Research 20 (2003) 61–124

5. Gerevini, A., Schubert, L.: Inferring state constraints for domain-independent planning. In:
Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-98) and the
10th Conference on Innovative Applications of Artificial Intelligence (IAAI-98), AAAI Press
(1998) 905–912

6. Gerevini, A., Schubert, L.K.: Discovering state constraints in DISCOPLAN: some new re-
sults. In: Proceedings of the 17th National Conference on Artificial Intelligence (AAAI-
2000) and the 12th Conference on Innovative Applications of Artificial Intelligence (IAAI-
2000), AAAI Press (2000) 761–767

7. Haslum, P., Geffner, H.: Admissible heuristics for optimal planning. In Chien, S., Kambham-
pati, S., Knoblock, C.A., eds.: Proceedings of the Fifth International Conference on Artificial
Intelligence Planning Systems, AAAI Press (2000) 140–149

8. Haslum, P., Geffner, H.: Heuristic planning with time and resources. In Cesta, A., ed.: Recent
Advances in AI Planning. Sixth European Conference on Planning (ECP’01), AAAI Press
(2014) 107–112

9. Kautz, H., Selman, B.: Pushing the envelope: planning, propositional logic, and stochastic
search. In: Proceedings of the 13th National Conference on Artificial Intelligence and the
8th Innovative Applications of Artificial Intelligence Conference, AAAI Press (1996) 1194–
1201

10. Rintanen, J.: A planning algorithm not based on directional search. In Cohn, A.G., Schubert,
L.K., Shapiro, S.C., eds.: Principles of Knowledge Representation and Reasoning: Proceed-
ings of the Sixth International Conference (KR ’98), Morgan Kaufmann Publishers (1998)
617–624

11. Rintanen, J.: An iterative algorithm for synthesizing invariants. In: Proceedings of the 17th
National Conference on Artificial Intelligence (AAAI-2000) and the 12th Conference on
Innovative Applications of Artificial Intelligence (IAAI-2000), AAAI Press (2000) 806–811

12. Rintanen, J.: Regression for classical and nondeterministic planning. In Ghallab, M., Spy-
ropoulos, C.D., Fakotakis, N., eds.: ECAI 2008. Proceedings of the 18th European Confer-
ence on Artificial Intelligence, IOS Press (2008) 568–571

13. Smith, D.E., Weld, D.S.: Temporal planning with mutual exclusion reasoning. In Dean, T.,
ed.: Proceedings of the 16th International Joint Conference on Artificial Intelligence, Morgan
Kaufmann Publishers (1999) 326–337

