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Abstract. The computational properties of many classes of condi-
tional and contingent planning are well known. The main division
in the field is between probabilistic planning (typically infinite or
unbounded executions, reward rather than goal-based, and focus on
expected costs or rewards) and non-probabilistic planning (ignoring
probabilities, focus on plans that reach goal states.) In this work, we
address the middle ground between these problems: planning with
infinite executions and designated goal states. We address worst case
rather than expected costs measures for the problem we consider. We
analyze the structure of the plans for two possible goal-based speci-
fications such plans may have to satisfy, maintaining a goal property
indefinitely as well as visiting a goal state infinitely often, and estab-
lish their complexity under different observability assumptions.

1 INTRODUCTION

Much work on planning focuses on a bounded horizon problem in
which a sequence of actions is taken in order to reach a specific goal
state. However, this kind of bounded horizon problem is often an un-
faithful abstraction of what is going on in most applications to which
such planning could be applied. For example, in intelligent robotics,
the robot reaching a desired goal state is typically only an interme-
diate stage in the execution, which will continue further, to reach
other goals. In general, infinite (or unbounded) executions would of-
ten seem to be the practically most relevant problem. Think of a robot
that is repeatedly given the goal of collecting a valuable object, with-
out having knowledge of its future goals. This robot would happily
descend into a hole it cannot escape if there was an object there, as it
would not care about its future goals. The constraint “don’t descend
into a hole you cannot escape” could be manually added as a fur-
ther requirement, but, in general, stating all such constraints would
be difficult. A more robust solution is to let the planner to deal with
the whole complexity of the problem.

In this paper, we consider two models of infinite and unbounded
horizon problems. The first model is a form of a dual to the traditional
goal-reaching plans, maintaining a given property by taking an infi-
nite sequence of actions that never take the system out of the desired
states. The second model involves repeatedly reaching a goal state,
which disallows solutions in which reaching the goals once makes it
impossible to reach them again.

The results complement those on planning in the Markov Decision
Process model [11] and with goal-oriented planning without proba-
bilities [14, 2]. The works on MDPs focus on expected rewards or
costs as the plan quality measure. With infinite horizons and partial
observability this measure leads to undecidability [10], which mo-

tivates the restriction to bounded horizon lengths [11]. The earlier
work on conditional planning with partial observability has consid-
ered only the bounded horizon problem in which plan executions end
after a goal state has been reached.

The model we consider covers worst-case plan cost/reward mea-
sures, such as “cost not exceedingN over anyM step segment of the
execution”. Our results show these worst-case measures to be com-
putationally easier, avoiding the undecidability in the corresponding
POMDP models. Intuitively, the reason for this is that worst-case
measures can be handled for every execution separately: if each ex-
ecution satisfies a cost bound, then the plan as a whole satisfies it.
These cost bounds can be encoded in the states as additional state
variables. Expected costs involve looking at the set of all executions
and requires calculating the probability weight of each, which is an
infinitary problem unlike the one arising with worst-case costs.

Our results show that two natural infinite-horizon contingent plan-
ning problems, one with maintenance and the other with repeated
reaching of goals, are both decidable and no more difficult than the
basic goal reachability objective [9, 14]. This is a positive result, pos-
sibly even surprising in the light of the undecidability results for
the infinite-horizon POMDP models [10], as it means that there is
– asymptotically and in the general case – no penalty in solving the
infinite horizon problem in comparison to using its (unsound) de-
composition into a sequence of separate bounded horizon tasks.

The structure of the paper is as follows. We first briefly recall the
basic definitions related to planning and computational complexity in
Section 2. In Section 3 we define the new infinite horizon problems.
In Section 4 we outline the proof ideas for showing that the problems
are hard for EXP and 2-EXP. In Section 5 we give algorithms for
solving the problems, establishing membership in EXP and 2-EXP.1

2 PRELIMINARIES

We use a compact (succinct) representation of planning problems,
which does not a priori require the enumeration of all states. Each
state s is a valuation s : X → {0, 1} of the finite set X of state vari-
ables. Actions can be viewed as binary relations on the set of states,
associating with each state zero or more possible successor states.
Such binary relations can be given a compact representation by us-
ing Binary Decision Diagrams or other logic-based representations
[5, 8]. We identify an action with the corresponding binary relation
compactly represented as a propositional formula.

1 Full proofs will be available in a technical report.



Definition 1 A succinct transition system is a 5-tuple Π =
〈X, I,A,G, V 〉 where X is a finite set of state variables, I is a
formula over X describing the initial states, A is a finite set of ac-
tions over X , G is a formula over X describing the goal states, and
V ⊆ X is the set of observable state variables.

When V = X the system is fully observable and without restric-
tions on V it is partially observable. A succinct transition system
can be expanded to an enumerative representation in which states are
atomic objects and state sets and actions are represented as binary
relations. The size of this representation may be exponential in the
size of the succinct representation. Many of our later results assume
the reduction from the succinct to the enumerative representation has
been performed.

Definition 2 A transition system is a 5-tuple Π =
〈S, I, A,G, (C1, . . . , Cw)〉 where S is a finite set of states,
I ⊆ S is the initial states, A is a set of actions a ∈ 2S×S over S,
G ⊆ S is the goal states, and (C1, . . . Cw) is a partition of S to sets
of states that are observationally indistinguishable.

In the reduction from succinct to enumerative transition systems,
the partition (C1, . . . , Cw) of S is obtained from V : eachCi consists
of states that assign the same value to all variables in V . A transition
system with w = |S| is fully observable.

The complexity classes we need in this work are EXP and 2-
EXP, which represent all decision problems solvable by a determin-
istic Turing machine in O(2n) time and in O(22n

) time, respec-
tively. EXP contains the complexity classes PSPACE and NP, and
is known to properly contain P, therefore representing provably in-
tractable computation unlike for example PSPACE and NP [12].

3 PROBLEM DEFINITION
In probabilistic planning [7], the focus is on maximizing discounted
or average rewards over an infinite horizon. Works that ignore proba-
bilities usually focus on plans that are guaranteed to reach given goal
states [3, 1]. Also, the satisfaction of temporal logic specifications
over an infinite horizon have been considered [13]. In this work, we
focus on plan objectives defined in terms of goal states. Two objec-
tives are obvious and are motivated by several practical applications.
First, maintenance, requires that a plan keeps the system in the goal
states indefinitely. The goal states specify the acceptable states of the
system. For example, a robot may be required to keep an area clean
or a system functioning. Second, repeated reachability requires not
only that the goals are reached once, but that they will be reached
over and over indefinitely. For example, a robot’s task may be to
fetch some objects (e.g. mail) from area A and bring them to area B,
and repeat this task.

These objectives can be combined with measures for the quality
of plans. Instead of considering expected costs as in most of proba-
bilistic planning with MDPs and POMDPs, we focus on worst-case
cost measures. Our decision is motivated, as already mentioned in the
introduction, by the high worst-case complexity of expected costs.

The results of this paper also cover a range of worst-case cost mea-
sures which can be easily reduced to the basic framework. The reduc-
tion of e.g. cost bound on fixed length segments of the sequences of
executed actions can be easily encoded in the state variables. Con-
sider segments of length 10. We need 10 multi-valued variables to
store the costs of the past ten actions; action preconditions require
that the sum of these costs does not exceed a bound; every action
shifts the cost vector to the left by one and adds the cost of the current

action as the new 10th component. Executability of plans requires
obeying the cost bound.

The key property of worst-case cost criteria of this nature is that
they only involve looking at the action sequence leading to the cur-
rent state, unlike expected cost criteria, which require looking at all
possible executions starting from any state that could be reached.

We give three formalization of the work the plans do in terms of
visiting goal states next.

1. RG reachability goals (finite executions) (Cimatti et al. [5]): It is
required that a goal state is reachable from every non-goal state
that is reachable from an initial state. This allows iterative trial-
and-error strategies which do not have a finite upper bound on the
length of executions.

2. MG maintenance goals (infinite executions): All states reached
from the initial states must be goal states.

3. RRG Repeated reachability goals (infinite executions): It is re-
quired that under a plan, a goal state is reachable by one or more
steps from every state that is reachable from an initial state. The
difference to RG is that execution continues and goal states must
be reachable also after reaching a goal state.

4 HARDNESS FOR EXP AND 2-EXP
The fully observable problems with maintenance and repeated reach-
ability goals are EXP-hard, and the partially observable problems are
2-EXP-hard. We only sketch the proofs, which are relatively straight-
forward. For RRG, these hardness results can easily be established by
reductions from RG, with a known complexity [9, 14]. The reduc-
tions add a new action that allows staying in a goal state indefinitely
once it has been reached. The RRG problem is solvable with this new
action if and only if a goal state can be reached with the RG problem.

Hardness proofs for maintenance are obtained by modification
from the hardness proofs for the standard reachability goal prob-
lem, yielding simulations of EXP and 2-EXP Turing machines [14]
as planning with maintenance goals. The key modification is to add
a counter for the number of transitions so far, and to consider as goal
states all accepting states as well as states with counter< 2n for fully
observable problems or < 22n

for partially observable problems,
where n is the number of state variables. In the partially observable
case the counter has an exponential number of bits, which can be en-
coded in the belief states [14]. Additionally, we add a dummy action
that allows staying in the goal state indefinitely.2 Hence the goal can
be maintained indefinitely if and only if the Turing machine accepts.

5 MEMBERSHIP IN EXP AND 2-EXP
Our membership proofs for EXP and 2-EXP are constructive: we
give algorithms for solving the problems, respectively with exponen-
tial and doubly exponential worst-case runtimes.

For MG, planning with partial observability easily reduces to the
fully observable case, by the obvious exponential time reduction in
which each belief state (set of possible current states) is viewed as a
state. This is similar to RG, for which the membership in EXP in the
fully observable case trivially yields membership in 2-EXP for the
partially observable case [14].

So in the next section we show that MG with full observability is
in EXP, and this trivially shows that MG with partial observability is
in 2-EXP.
2 Notice that a reduction from RG to MG does not work because the the RG

objective allows unbounded trial-and-error, invalidating the use of bounded
precision counters.



We will use the image, weak preimage and strong preimage oper-
ations of relations R (actions), respectively defined as follows [5].

imgR(S) = {s′|s ∈ S, 〈s, s′〉 ∈ R}
preimgR(S) = {s|s′ ∈ S, 〈s, s′〉 ∈ R}

spreimgR(S) = {s|s′ ∈ S, 〈s, s′〉 ∈ R, imgR(s) ⊆ S}

The weak preimage includes all of the possible predecessor states of
S, whereas the strong preimage limits to those from which reaching
S by R is guaranteed.

We introduce some terminology. Let S be a set of states,A a set of
actions, and π : S → A a mapping from states to actions. A sequence
s0, . . . , sn of states is an execution if for every i ∈ {1, . . . , n} there
is a ∈ A such that si ∈ imga(si−1). It is an execution of π if
si ∈ imgπ(si−1)(si−1) for every i ∈ {1, . . . , n}.

5.1 Maintenance
Figure 1 gives an algorithm for finding plans for maintenance goals.
The algorithm starts with the set G of all states that satisfy the prop-
erty to be maintained. Then iteratively such states are removed from
G for which the satisfaction of the property cannot be guaranteed
in longer executions, first with one step, then with two and more.
The iteration ends when maintaining the property is guaranteed in-
definitely, corresponding to the limit/fixpoint of the sequence of state
sets in the loop. Similarly to RG [5], plans π with MG can always be
represented as mappings π : S → A from states to actions.

1: procedure MAINTENANCE(I ,A,G)
2: repeat
3: G0 := G;
4: G :=

⋃
a∈A ( spreimga(G0) ∩G0);

5: until G = G0;
6: if I ⊆ G then return true else return false;

Figure 1. Testing existence of plans for maintenance goals

Theorem 3 Let I be a set of initial states,A a set of actions andG a
set of goal states. Then MAINTENANCE(I ,A,G) returns true if and
only if there is a plan for (S,I ,A,G,P ) under MG.

Proof: We sketch the main idea of the proof.
Let G′ be final value of the variable G in the procedure MAIN-

TENANCE in Figure 1. The induction proof shows that G′ ⊆ G and
there is a plan π such that imgπ(s)(s) ⊆ G′ for every s ∈ G′, and for
every s ∈ G\G′ and every plan π′ there is n ≥ 1 and an execution
s0, . . . , sn of π′ with s0 = s such that sn 6∈ G.

Now, the procedure returns true iff all initial states are inG′ if and
only if all states reachable from the initial states under some plan π
are in G′. �

This algorithm can be trivially lifted to the partially observable
case with belief states replacing the role of states. A goal belief state
is a belief state that consists of goal states only. Membership in 2-
EXP trivially follows.

5.2 Repeated reachability
We give a new algorithm for solving the planning problem with full
observability and repeated reachability goals. This problem gener-
alizes the problem solved by an algorithm given by Cimatti et al.

[5] (the global strong cyclic algorithm) for our simplest objective of
reachability goals. Our algorithm runs in polynomial time in the size
of the state space and hence yields an exponential time upper bound
for the plan existence problem of succinct transition systems. Our al-
gorithm uses the subprocedure PRUNE given in Figure 2, which is
arguably simpler than a similar algorithm by Cimatti et al. because it
does not explicitly construct a state-action table.

The algorithm first identifies all statesW0 from which a state inG
is reachable (loop at line 5). Then, the loop with i on line 11 elimi-
nates those states in Wi for which, under any plan, there is an execu-
tion that leads outside Wi−1 and hence makes the goal unreachable.
The inner loop on line 15 identifies those states in Sk that can reach
G in k steps without risking getting outside of Wi−1. The termina-
tion conditions of the first and the inner loop correspond to the limit
in which the number of steps for reaching the goals can be arbitrarily
high. The termination condition of the outer loop 11 corresponds to
the requirement that for any execution starting in Wi we are guaran-
teed to stay inside Wi until a goal state is reached.

1: procedure PRUNE(A,G);
2: W−1 := all states;
3: k := 0;
4: W0,0 := ∅;
5: repeat
6: k := k + 1;
7: W0,k := (W0,k−1 ∪

⋃
a∈A( preimga(W0,k−1 ∪G)));

8: until W0,k = W0,k−1;
9: W0 := W0,k; (* G is reachable from every s ∈W0. *)

10: i := 0;
11: repeat
12: i := i+ 1;
13: k := 0;
14: S0 := ∅;
15: repeat
16: k := k + 1;

17: Sk := Sk−1 ∪
⋃
a∈A

(
preimga(Sk−1 ∪G)
∩ spreimga(Wi−1 ∪G)

)
;

18: until Sk = Sk−1;
19: Wi := Sk; (* Reach G from s ∈Wi while staying in Wi−1. *)
20: until Wi = Wi−1;
21: return Wi;

Figure 2. Identifying all states from which goals are eventually reached

Lemma 4 (Procedure PRUNE) Let S be the set of all states, G ⊆
S a set of states and A a set of actions. Then the procedure call
PRUNE(A,G) will terminate after a finite number of steps returning
W ⊆ S so that there is function π : W → A such that

1. for every s ∈ W there is an execution s0, s1, . . . , sn of π with
n ≥ 1 such that s = s0 and sn ∈ G,

2. imgπ(s)(s) ⊆W ∪G for every s ∈W , and
3. for every s ∈ S\W and function π′ : S → A there is an execution
s0, . . . , sn of π′ such that s = s0 and there is no m ≥ n and
execution sn, sn+1, . . . , sm such that sm ∈ G.

Proof: By straightforward, but quite involved, nested inductions ex-
actly matching the repeat-until loops in the algorithm. �

The main procedure of the decision procedure for repeated reacha-
bility under full observability is given in Figure 3. The procedure first



assigns Gne := G, and then repeatedly eliminates – with PRUNE –
those states fromGne for which there is no plan that is guaranteed to
eventually reach a state in Gne.

After the last iteration of the loop,Gne will be the maximal subset
of G from which reaching a state in Gne, again, is guaranteed with
an implicitly represented plan π. The number of iterations is bounded
by the number of states, and each iteration has a runtime that is poly-
nomial in the number of states. Hence the total runtime of this stage
is exponential in the size of the succinct transition system.

The last line of the procedure tests whether the initial states are
included in W . If they are, then any execution with π from an initial
state eventually reaches a state in Gne, and hence the RRG objective
is satisfied.

Theorem 5 Testing plan existence for succinct transition systems
with full observability under the repeated reachability objective is
in EXP.

Proof: Given a succinct transition system Π, we can produce the cor-
responding transition system F (Π) = (S, I, A,G, P ) in exponential
time. Then we call the procedure DECIDE-FO-RRG(I ,A,G) which
is given in Figure 3. The first call to PRUNE yields states from which

1: procedure DECIDE-FO-RRG(I ,A,G)
2: Gne := G;
3: repeat
4: W := PRUNE(A,Gne);
5: G′ne := Gne;
6: Gne := Gne ∩W ;
7: until Gne = G′ne;
8: if I ⊆W then return true else return false;

Figure 3. Testing existence of RRG plans with full observability

a goal state can be reached once, but there is no guarantee that the
goals can be reached again from all of those goal states. Reaching the
fixpoint on line 7 guarantees that goal states in Gne can be reached
from states in W an infinite number of times. �

The generalization of the EXP membership for RRG to 2-EXP
membership for RRG and partial observability is more complicated
than with MG. Simple reductions to the fully observable case as for
MG don’t exist. The issue is that with full observability, it is always
known what the current state is, whereas with partial observability it
might never be known whether the current state is a goal state, and the
problem can still be solvable under RRG. This is radical difference
to RG and MG. We illustrate this by an example.

Example 6 Consider the following transition system, in which state
b is the only goal state.

Ga b c

Initially all three states are possible, and no further information
about the current state is obtained later. Alternating the two actions,
one depicted with a dotted line and the other with a solid line, satis-
fies the Repeated Reachability objective. Applying either of these two
actions exclusively does not. �

The underlying issue is that the conventional notion of belief states
as a set of possible current states (or a probability distribution over

them) does not carry enough information to decide what to do next.
Therefore, the action to be taken is not a function of the set of possi-
ble current states.

The important insight is that, under a given plan, we need to con-
sider the set of possible current states, as well as the (optimistic)
distance (number of actions) to a goal state for all of the possible
current states. We will explain this insight in more detail next.

Consider a plan for the problem in Example 6. This plan alter-
nates between the two actions. The set of possible current states
at each stage of execution is the same, B = {a, b, c}. At ev-
ery stage of execution, the distance from b to the goal state is 0,
but the distances from a and c depend on which actions will fol-
low. If our plan alternates between the two actions, and the dot-
ted action is taken first, then the distances in the current stage are
d0(a) = 2, d0(b) = 0, d0(c) = 1, and at the stage following it they
are d1(a) = 1, d1(b) = 0, d1(c) = 2.

The extended belief states in this example are 〈B0, d0〉 and
〈B1, d1〉, where B0 = B1 = {a, b, c}. The plan that only takes the
dotted action always stays in the extended belief state 〈{a, b, c}, d〉
with d(a) =∞, d(b) = 0, d(c) = 1, never visiting a goal state when
the execution starts from a.

The algorithm we will give for planning with the RRG objective
iteratively generates extended belief states with a finite distance for
as many of the constituent states as possible.

The basic intuition is that we start from extended belief states that
assign distances to goal states only, and then repeatedly generate
the predecessors. With Example 6 we start from 〈{a, b, c}, {(b, 0)}〉
(and all subsets of {a, b, c}), and as the preimage of the dotted ac-
tion we obtain 〈{a, b, c}, {(b, 0), (c, 1)}〉, because the predecessor
state of b w.r.t. the dotted action is c. Now with the undotted action
we get the preimage 〈{a, b, c}, {(a, 1), (b, 0), (c, 2)}〉. This process,
with alternative actions for each extended belief state, is illustrated
in Figure 4. The leaves in the tree represent belief states from which
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Figure 4. Preimages of extended belief states

the root node can be reached by taking the actions on the path to the
root. The distances attached to the states indicate the number of steps
that are needed to visit the goal state b. If a distance is not defined,
then the distance to a goal state is unknown due to the unknown goal
distance for the states in the root node.

We can see that starting from the leaf with distances 201 and tak-
ing the dotted and then the undotted action we can get back to the
same extended belief state (partially specified in the root node by
explicitly stated distance only for state b.) Similarly for the leaf 102.

This example is very simple, as it does not include nondetermin-
istic actions nor branching of the plans due to observations. Next we
will define the weak and strong preimage operations for extended
belief states which cover these features.

The state space is partitioned to (C1, . . . , Cw) to sets of obser-



vationally indistinguishable states. We consider only belief states B
such that B ⊆ Ci for some i ∈ {1, . . . , w}, as any belief state
overlapping two classes could be split, corresponding to eliminating
those states from consideration that are not compatible with the cur-
rent observations.

Given plans for belief states in some set W , we can have a plan
for any of the belief states in {B ⊆ S|{B1, . . . , Bw} ⊆ W,Bi ⊆
Ci for all i ∈ {1, . . . , w}, a ∈ A, imga(B) =

⋃w
i=1 Bi}. These

are all the belief states from which a belief state in W is reached by
taking an action inA, partitioning the set of possible successor states
according to the possible observations, and then choosing the belief
state that corresponds to the actual observation.

To obtain a preimage operation for extended belief states we add
distances. The distance assigned to each state is optimistic in the
sense that a goal state can be reached in the specified number of
steps under a given plan, but there is no guarantee that it will. This
corresponds to the requirements of the RRG objective. We also de-
fine a weak preimage operation, which does not require that all
successor belief states are in W . This is analogous to the defini-
tion of weak preimages for states. The definitions use the predi-
cate BeliefΠ(B), which requires that B is a belief state, i.e. it con-
sists of mutually indistinguishable states in Π, and the predicate
DistinctΠ({B1, . . . , Bk}), which requires that B1, . . . , Bk are be-

lief states corresponding to different observations.

Definition 7 (Weak Preimages for Extended Belief States) Let
Π = 〈S, I, A,G, (C1, . . . , Cn)〉 be a transition system, and T a
set of pairs 〈B, d〉 such that d : B → N is a partial function and
BeliefΠ(B) holds. Define wpreimgEa (T ) =

{〈B, d〉| BeliefΠ(B),
{〈B1, d1〉, . . . , 〈Bk, dk〉} ⊆ T,
DistinctΠ({B1, . . . , Bk}),
imga(B) ∩ Ci = Bj for all j ∈ {1, . . . , k}

and some i ∈ {1, . . . , n},
d(s) = 0 for all s ∈ B ∩G,
d(s) = 1 + minki=1 mins′∈imga(s)∩Bi

di(s
′) for all s ∈ B\G

}.

The definition of strong preimages is almost exactly the same, with
the difference that all successors of (B, d) have to be in T .

Given sets T of extended belief states that occur during the exe-
cution of a plan, we can use the preimage operations to find further
extended belief states spreimgEa (T ) for which visits to goal states
can be guaranteed. This is analogous to the use of the preimage oper-
ations for states in the algorithm PRUNE and the decision procedure
DECIDE-FO-RRG before.

We can show that mappings from extended belief states to actions
can express any plan that is expressible by any finite conditional plan.
Plans in general can be defined as program-like structures that map
a sequence of observations to the action to be taken next [14], with
relevant observation sequences abstractly represented by nodes (pro-
gram counters) of the plan.

Lemma 8 Let there be a plan that satisfies the RRG objective. Then
there is a plan that is a mapping from extended belief states to ac-
tions.

Proof: We only give a brief sketch. The proof progresses in stages.
First, the given plan is expanded so that there are different copies
of each original plan node for every possible extended belief state
that could be the current one in that node. Then it is shown that all

nodes with the same extended belief states can be combined without
affecting the satisfaction of the RRG criterion: for any execution of
the plan for which reaching a goal state is always possible, any arc to
node n1 (with a given extended belief state) can be re-directed to any
other node n2 with the same extended belief state, without violating
the RRG objective, and the node n1 can be deleted. �

Now we are ready to give the algorithm for the RRG objective un-
der partial observability. The structure of the algorithm is the same
as in the fully observable case, but the sets of states will be replaced
by sets of extended belief states. The subprocedure PRUNEE is ob-
tained from PRUNE by replacing the image operations for states by
image operations for extended belief states.

The decision procedure is given in Figure 5. The computation
works in the (infinite) space of all extended belief states. Define
the predicate covered(B,W ) iff 〈B, d〉 ∈ W for some d such that
(s, n) ∈ d for all s ∈ B and some n ∈ N. This means that all states
in B have a finite distance to a goal state in an extended belief state
in W . Initially the set Gne consists of all extended belief states that

1: procedure DECIDE-PO-RRG(S,I ,A,G,(C1, . . . , Cn))
2: Gne := {〈B, (B ∩G)× {0}〉|1 ≤ i ≤ n,B ⊆ Ci};
3: repeat
4: W := PRUNEE(A,Gne);
5: G′ne := Gne;
6: Gne := {〈B, (B ∩G)× {0}〉 ∈ Gne| covered(B,W )};
7: until Gne = G′ne;
8: if for all i ∈ {1, . . . , n}, 〈I ∩ Ci, d〉 ∈W for some d
9: then return true else return false;

Figure 5. Testing existence of RRG plans under partial observability

assign 0 distance to goal states in the belief state, and don’t assign
any distance to non-goal states. Subsequent iterations of the main
loop on line 3 eliminate (line 6) those members (B, d) of Gne with
no finite distance found for all s ∈ B in the sense that there is no
(B, d′) ∈W such that d′(s) is defined for all s ∈ B.

A key observation is that DECIDE-PO-RRG will generate all ex-
tended belief states that occur in any plan that solves the problem
instance in question, entailing completeness. The algorithm is also
sound, as the preimage operations for extended belief states faith-
fully represent the relation between extended belief states and their
predecessors and successors.

The algorithm, as we have described it so far, has infinite loops
because of the arbitrarily high distances that can be found for states.
To make the algorithm finitary, we ignore any extended belief state
〈B, d〉 in PRUNEE and in DECIDE-PO-RRG as soon as we have
some 〈B, d′〉 such that {s|(s, n) ∈ d} = {s|(s, n) ∈ d′}, that is,
it has finite distances for the same constituent states. This makes all
sets of relevant extended belief states finite, guarantees the finite ter-
mination of all loops, and does not affect completeness or soundness.

Theorem 9 Testing plan existence for succinct transition systems
with partial observability under the RRG objective is in 2-EXP.

Proof: We sketch the proof, which is analogous to the EXP-
membership proof for the fully observable case.

The call to PRUNEE on line 4 identifies those extended belief
states from which Gne can be reached.

Line 6 retains those (B, d) in Gne for which there is (B, d̂) ∈W
such that d̂(s) is defined for all s ∈ B, and eliminates the rest. Let



Ĝne be the set of such extended belief states (B, d̂) for all (B, d) ∈
Gne. Now there is a plan so that for every (B, d̂) ∈ Ĝne we are
guaranteed to reach Ĝne again by a non-empty execution, and for
every s ∈ B there is at least one such execution that visits a goal
state on the way. We call this one good cycle of the plan.

At the end of the ith iteration of the loop that starts on line 3,
Ĝne consists of extended belief states such that there is a plan with i
consecutive good cycles.

When the loop terminates, Gne represents extended belief states
for which there are infinitely many consecutive good cycles, satis-
fying the RRG objective. The set W at this point consists of those
extended belief states from which we are guaranteed to reach an ex-
tended belief state in Gne (but which itself is not necessarily a part
of a good cycle.) If the initial belief states are included in W , then a
plan for the problem instance with those initial belief states exists.

The runtime of DECIDE-PO-RRG is polynomial in the size of
the set of generated extended belief states. The number of generated
extended belief states is O(22n

): each extended belief state is a pair
〈B, d〉, there are 22n

different sets B for n state variables, and the
number of functions d generated by DECIDE-PO-RRG under our
pruning criterion is also O(22n

) because for every B we generate at
most 22n

of them, yielding anO(22n

) upper bound 22n

22n

= 22n+1

for their number. Their total size is also O(22n

) because the size of
each is O(2n) and O(2n22n

) equals O(22n

). �

6 RELATED WORK
In addition to works on MDPs and POMDPs, infinite executions have
earlier been considered with temporally extended goals, for exam-
ple expressed in logics such as Linear Temporal Logic LTL [6] and
the Computation Tree Logic [13]. The classical goal reachability,
the maintenance and the repeated goal reachability respectively have
a meaning intuitively corresponding to the LTL formulas Fφ, Gφ,
GFφ, where φ is a non-modal formula. For the first two formulas and
criteria the correspondence is exact, but for the third one not. Our re-
peated reachability objective rather corresponds to the Computation
Tree Logic formula AGEFφ, which says that for all executions, al-
ways in the future, there is at least one execution that reaches φ. This
formula is compatible with the existence of a degenerate execution
that never reaches φ, as long as reaching φ always remains possible.
The CTL goal AGEFφ agrees with the LTL goal GFφ if we as-
sume, for the CTL case, a fairness condition that guarantees that the
“wrong” choices, leading to avoiding φ, don’t continue forever.

The complexity of planning with temporal logic goals has been
investigated before. The most complex case for conventional action
representations, investigated by Giacomo and Vardi [6], is with par-
tial observability and deterministic actions, which is EXPSPACE-
complete. Calvanese et al. [4] investigate a very general language in
which both actions and the goal specifications are expressed as LTL
formulas. In their framework the plan existence problem in the most
general case is 2-EXPSPACE-complete, which is far more complex
than the 2-EXP-completeness with conventional (non-modal) action
representations used earlier [14].

7 CONCLUSIONS
We have shown that two natural partially observable infinite hori-
zon conditional planning problems, with maintenance and repeated
reachability, are 2-EXP-complete. The results complete the picture

of conditional planning, which has been well understood both in its
probabilistic infinite horizon (MDP, POMDP) and non-probabilistic
finite horizon variants. The infinite-horizon conditional planning
problems we addressed are best viewed as representing worst-case
performance criteria. Earlier works on probabilistic expected cost
criteria have shown the partially observable problems to be compu-
tationally very difficult and undecidable in the most general cases
[10]. In some applications, there are legal reasons or risk-averseness
that make worst-case criteria preferable, because expected cost cri-
teria allow solutions that fail as long as failure probabilities are low
enough. Expected cost criteria are preferable in applications that in-
volve a high number of plan executions and in which failures are only
assessed in terms of their expected cost.
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