
Planning with Specialized SAT Solvers
(NECTAR)

Jussi Rintanen

August 11, 2011

Contribution of the Work

• Heuristics for SAT-based planning (classical, non-optimizing),
replacing VSIDS et al. in CDCL (Rintanen CP’10, AI’10)

• A form of backward chaining with CDCL
• Substantial speed-up for finding plans for most problem types
• Applicable to almost all notions of plans used with SAT

• Experimental results: outperforms other planners

Background: Planning

• Since (Bonet & Geffner 1998), classical planning has become
a monoculture of heuristic / explicit state-space search.

• Impact to the research topic:
• Progress slow after what was initially perceived as successes.
• Vast majority of published research incremental,

implementation-oriented.
• Other, promising approaches are being ignored.

Background: Planning with SAT

• Kautz & Selman (1996, 1999) still the starting point of recent
works (-2010).

• Main research topics:
• Encodings
• Constraints to prune SAT solver search space.

• Progress small:
• Early encodings (Kautz & Selman 1996) no less efficient than

recent ones (see Sideris & Dimopoulos (2009).)
• Runtime improvements small multiplicative factor from Kautz

& Selman 1996 encodings, at most.

• Explanation for small progress: efficiency actually little
affected by encoding!

Development of Planning as SAT
(As relevant to the planning techniques in this work)

1992-99 the approach is first developed Kautz & Selman etc.

2004-06 practical (linear-size) encodings Rintanen et al.
no more memory overflows

2004-06 interleaved search strategies Rintanen
efficiency close to best planners

2010 planning-specific heuristics for SAT Rintanen
efficiency ≥ best planners

Development of Planning as SAT
(As relevant to the planning techniques in this work)

1992-99 the approach is first developed Kautz & Selman etc.

2004-06 practical (linear-size) encodings Rintanen et al.
no more memory overflows

2004-06 interleaved search strategies Rintanen
efficiency close to best planners

2010 planning-specific heuristics for SAT Rintanen
efficiency ≥ best planners

Development of Planning as SAT
(As relevant to the planning techniques in this work)

1992-99 the approach is first developed Kautz & Selman etc.

2004-06 practical (linear-size) encodings Rintanen et al.
no more memory overflows

2004-06 interleaved search strategies Rintanen
efficiency close to best planners

2010 planning-specific heuristics for SAT Rintanen
efficiency ≥ best planners

Development of Planning as SAT
(As relevant to the planning techniques in this work)

1992-99 the approach is first developed Kautz & Selman etc.

2004-06 practical (linear-size) encodings Rintanen et al.
no more memory overflows

2004-06 interleaved search strategies Rintanen
efficiency close to best planners

2010 planning-specific heuristics for SAT Rintanen
efficiency ≥ best planners

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

n
u

m
b

e
r

o
f

s
o

lv
e

d
 i
n

s
ta

n
c
e

s

time in seconds

STRIPS instances

ss

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

n
u

m
b

e
r

o
f

s
o

lv
e

d
 i
n

s
ta

n
c
e

s

time in seconds

STRIPS instances

ss

HSP

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

n
u

m
b

e
r

o
f

s
o

lv
e

d
 i
n

s
ta

n
c
e

s

time in seconds

STRIPS instances

ss

HSP

FF

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

n
u

m
b

e
r

o
f

s
o

lv
e

d
 i
n

s
ta

n
c
e

s

time in seconds

STRIPS instances

ss

HSP

FF

LPG-td

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

n
u

m
b

e
r

o
f

s
o

lv
e

d
 i
n

s
ta

n
c
e

s

time in seconds

STRIPS instances

ss

HSP

FF

LPG-td

LAMA08

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

n
u

m
b

e
r

o
f

s
o

lv
e

d
 i
n

s
ta

n
c
e

s

time in seconds

STRIPS instances

ss

HSP

FF

LPG-td

LAMA08

YAHSP

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

n
u

m
b

e
r

o
f

s
o

lv
e

d
 i
n

s
ta

n
c
e

s

time in seconds

STRIPS instances

ss

HSP

FF

LPG-td

LAMA08

YAHSP

SATPLAN

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

n
u

m
b

e
r

o
f

s
o

lv
e

d
 i
n

s
ta

n
c
e

s

time in seconds

STRIPS instances

ss

HSP

FF

LPG-td

LAMA08

YAHSP

SATPLAN

M

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

n
u

m
b

e
r

o
f

s
o

lv
e

d
 i
n

s
ta

n
c
e

s

time in seconds

STRIPS instances

ss
HSP

FF
LPG-td

LAMA08
YAHSP

SATPLAN
M

Mp

Our Heuristics

• Replace VSIDS style heuristic by a planning-specific one in the
Conflict-Driven Clause Learning (CDCL) algorithm for SAT.

• Force SAT solver to do backward chaining:

1 Start from a top-level goal literal.
2 Go backward to the time where the literal can turn from false

to true.
3 Choose an action to justify that change.
4 Use the action variable as the CDCL decision variable.
5 If such action there already, do the same with its preconditions.

The new planning heuristic for CDCL
Case 1: goal/subgoal x has no support yet

Value of a state variable x at different time points:

t− 8 t− 7 t− 6 t− 5 t− 4 t− 3 t− 2 t− 1 t

x 0 0 0 1 1 1 1

action 1 0 0 0 0 0 0
action 2 0 0 0 0
action 3 0 0 0 0 0 0
action 4 0 0 0 0

The new planning heuristic for CDCL
Case 1: goal/subgoal x has no support yet

Actions that make x true:

t− 8 t− 7 t− 6 t− 5 t− 4 t− 3 t− 2 t− 1 t

x 0 0 0 1 1 1 1

action 1 0 0 0 0 0 0
action 2 0 0 0 0
action 3 0 0 0 0 0 0
action 4 0 0 0 0

The new planning heuristic for CDCL
Case 1: goal/subgoal x has no support yet

Actions that make x true as early as possible (at t− 5):

t− 8 t− 7 t− 6 t− 5 t− 4 t− 3 t− 2 t− 1 t

x 0 0 0 1 1 1 1

action 1 0 0 0 0 0 0
action 2 0 0 0 0
action 3 0 0 0 0 0 0
action 4 0 0 0 0

The new planning heuristic for CDCL
Case 1: goal/subgoal x has no support yet

Choose action 2 or 4 at t− 6 as the next CDCL decision variable.

t− 8 t− 7 t− 6 t− 5 t− 4 t− 3 t− 2 t− 1 t

x 0 0 0 1 1 1 1

action 1 0 0 0 0 0 0
action 2 0 0 0 0
action 3 0 0 0 0 0 0
action 4 0 0 0 0

The new planning heuristic for CDCL
Case 2: goal/subgoal x already has support

Goal/subgoal is already made true at t− 4 by action 4.

t− 8 t− 7 t− 6 t− 5 t− 4 t− 3 t− 2 t− 1 t

x 0 0 0 1 1 1 1

action 1 0 0 0 0 0 0
action 2 0 0 0 0
action 3 0 0 0 0 0 0
action 4 0 0 1 0 0

Use precondition literals of action 4 as new subgoals at t− 5.

The new planning heuristic for CDCL
Case 2: goal/subgoal x already has support

Goal/subgoal is already made true at t− 4 by action 4.

t− 8 t− 7 t− 6 t− 5 t− 4 t− 3 t− 2 t− 1 t

x 0 0 0 1 1 1 1

action 1 0 0 0 0 0 0
action 2 0 0 0 0
action 3 0 0 0 0 0 0
action 4 0 0 1 0 0

Use precondition literals of action 4 as new subgoals at t− 5.

The variable selection scheme
Version 1: strict depth-first search

goal1 goal2

action1

action4

action8

action5 action6

action9 action10

action2

action3

action7

The variable selection scheme
Version 1: strict depth-first search

goal1 goal2

action1

action4

action8

action5 action6

action9 action10

action2

action3

action7

The variable selection scheme
Version 1: strict depth-first search

goal1 goal2

action1

action4

action8

action5 action6

action9 action10

action2

action3

action7

The variable selection scheme
Version 1: strict depth-first search

goal1 goal2

action1

action4

action8

action5 action6

action9 action10

action2

action3

action7

The variable selection scheme
Version 1: strict depth-first search

goal1 goal2

action1

action4

action8

action5 action6

action9 action10

action2

action3

action7

The variable selection scheme
Version 1: strict depth-first search

goal1 goal2

action1

action4

action8

action5 action6

action9 action10

action2

action3

action7

The variable selection scheme
Version 1: strict depth-first search

goal1 goal2

action1

action4

action8

action5 action6

action9 action10

action2

action3

action7

The variable selection scheme
Version 1: strict depth-first search

goal1 goal2

action1

action4

action8

action5 action6

action9 action10

action2

action3

action7

The variable selection scheme
Version 1: strict depth-first search

goal1 goal2

action1

action4

action8

action5 action6

action9 action10

action2

action3

action7

The variable selection scheme
Version 1: strict depth-first search

goal1 goal2

action1

action4

action8

action5 action6

action9 action10

action2

action3

action7

The variable selection scheme
Version 1: strict depth-first search

goal1 goal2

action1

action4

action8

action5 action6

action9 action10

action2

action3

action7

The variable selection scheme
Version 1: strict depth-first search

goal1 goal2

action1

action4

action8

action5 action6

action9 action10

action2

action3

action7

The variable selection scheme: two refinements

1 Compute several actions (directly or indirectly) supporting the
goal, and randomly choose one of them.

2 Replace the stack for depth-first search by a priority queue.
Use heuristics for ordering the subgoals.

The variable selection scheme
Version 2: randomized action selection

goal1 goal2

action1

action4 action5 action6

action8 action9 action10

action2

action3

action7

The variable selection scheme
Version 2: randomized action selection

goal1 goal2

action1

action4 action5 action6

action8 action9 action10

action2

action3

action7

The variable selection scheme
Version 2: randomized action selection

goal1 goal2

action1

action4 action5 action6

action8 action9 action10

action2

action3

action7

The variable selection scheme
Version 2: randomized action selection

goal1 goal2

action1

action4 action5 action6

action8 action9 action10

action2

action3

action7

The variable selection scheme
Version 2: randomized action selection

goal1 goal2

action1

action4 action5 action6

action8 action9 action10

action2

action3

action7

The variable selection scheme
Version 2: randomized action selection

goal1 goal2

action1

action4 action5 action6

action8 action9 action10

action2

action3

action7

The variable selection scheme
Version 2: randomized action selection

goal1 goal2

action1

action4 action5 action6

action8 action9 action10

action2

action3

action7

The variable selection scheme
Version 2: randomized action selection

goal1 goal2

action1

action4 action5 action6

action8 action9 action10

action2

action3

action7

The variable selection scheme
Version 2: randomized action selection

goal1 goal2

action1

action4 action5 action6

action8 action9 action10

action2

action3

action7

The variable selection scheme
Version 2: randomized action selection

goal1 goal2

action1

action4 action5 action6

action8 action9 action10

action2

action3

action7

The variable selection scheme
Version 2: randomized action selection

goal1 goal2

action1

action4 action5 action6

action8 action9 action10

action2

action3

action7

The variable selection scheme
Version 2: randomized action selection

goal1 goal2

action1

action4 action5 action6

action8 action9 action10

action2

action3

action7

The variable selection scheme
Version 2: randomized action selection

goal1 goal2

action1

action4 action5 action6

action8 action9 action10

action2

action3

action7

Significance

• The heuristic is more understandable than VSIDS etc.

• It is simpler than ones used with explicit state-space search.

• Lots of potential: simplicity, has not been researched much.

• Potentially wide applicability, as SAT very strong in other
areas such as model-checking (CAV), DES diagnosis.

Conclusions

• We presented variable selection heuristics for planning within
the CDCL framework.

• On average comparable with best planners that use
state-space search; for many benchmark domains outperforms
them.

Future work:

• Extend this with features from VSIDS to do still better.

• Try with Bounded LTL Model-Checking, Discrete Event
Systems diagnosis,

