Planning with Specialized SAT Solvers

(NECTAR)

Jussi Rintanen

August 11, 2011

Contribution of the Work

- Heuristics for SAT-based planning (classical, non-optimizing), replacing VSIDS et al. in CDCL (Rintanen CP'10, Al'10)
 - A form of backward chaining with CDCL
 - Substantial speed-up for finding plans for most problem types
 - Applicable to almost all notions of plans used with SAT
- Experimental results: outperforms other planners

Background: Planning

- Since (Bonet & Geffner 1998), classical planning has become a monoculture of heuristic / explicit state-space search.
- Impact to the research topic:
 - Progress slow after what was initially perceived as successes.
 - Vast majority of published research incremental, implementation-oriented.
 - Other, promising approaches are being ignored.

Background: Planning with SAT

- Kautz & Selman (1996, 1999) still the starting point of recent works (-2010).
- Main research topics:
 - Encodings
 - Constraints to prune SAT solver search space.
- Progress small:
 - Early encodings (Kautz & Selman 1996) no less efficient than recent ones (see Sideris & Dimopoulos (2009).)
 - Runtime improvements small multiplicative factor from Kautz
 & Selman 1996 encodings, at most.
- Explanation for small progress: efficiency actually little affected by encoding!

1992-99	the approach is first developed	Kautz & Selman etc.
2004-06	practical (linear-size) encodings	Rintanen et al.
	no more memory overflows	
2004-06	interleaved search strategies	Rintanen
	efficiency close to best planners	
2010	planning-specific heuristics for SAT	Rintanen
	efficiency ≥ best planners	

1992-99	the approach is first developed	Kautz & Selman etc.
2004-06	practical (linear-size) encodings	Rintanen et al.
	no more memory overflows	
2004-06	interleaved search strategies	Rintanen
	efficiency close to best planners	
2010	planning-specific heuristics for SAT	Rintanen
	efficiency > best planners	

1992-99	the approach is first developed	Kautz & Selman etc.
2004-06	practical (linear-size) encodings	Rintanen et al.
	no more memory overflows	
2004-06	interleaved search strategies	Rintanen
	efficiency close to best planners	
2010	planning-specific heuristics for SAT	Rintanen
	efficiency > hest planners	

1992-99	the approach is first developed	Kautz & Selman etc.
2004-06	practical (linear-size) encodings	Rintanen et al.
	no more memory overflows	
2004-06	interleaved search strategies	Rintanen
	efficiency close to best planners	
2010	planning-specific heuristics for SAT	Rintanen
	efficiency \geq best planners	

Our Heuristics

- Replace VSIDS style heuristic by a planning-specific one in the Conflict-Driven Clause Learning (CDCL) algorithm for SAT.
- Force SAT solver to do backward chaining:
 - 1 Start from a top-level goal literal.
 - ② Go backward to the time where the literal can turn from false to true.
 - **3** Choose an action to justify that change.
 - 4 Use the action variable as the CDCL decision variable.
 - **6** If such action there already, do the same with its preconditions.

Case 1: goal/subgoal x has no support yet

Value of a state variable x at different time points:

	t-8	t-7							$\mid t \mid$
\overline{x}	0	0	0		1		1	1	1
						•			
action 1	0	0				0	0	0	
action 2	0	0		0			0		
action 3	0	0		0		0	0		
action 4	0	0		0	0	0			
		ı	•	•	!	ı	ı	1	'

Case 1: goal/subgoal x has no support yet

Actions that make x true:

			t-6	t-5	t-4	t-3	t-2	t-1	$\mid t$
\overline{x}	0	0	0		1		1	1	1
		•							
action 1	0	0	0			0	0	0	
action 2	0	0		0			0		
action 3	0	0	0	0		0	0		
action 4	0	0			0	0			
		ļ	'	'	!	ļ	ļ.	'	'

Case 1: goal/subgoal x has no support yet

Actions that make x true as early as possible (at t-5):

	t-8	t-7	t-6	t-5	t-4	t-3	t-2	t-1	t
									1
action 1	0	0	0			0	0		
action 2	0	0		0			0		
action 3	0	0	0	0		0	0		
action 4	0	0			0				
		•			'		•		

Case 1: $goal/subgoal \ x$ has no support yet

Choose action 2 or 4 at t-6 as the next CDCL decision variable.

		t-7							$\mid t \mid$
\overline{x}	0	0	0		1		1	1	1
				_				_	
action 1	0	0	0			0	0	0	
action 1 action 2	0	0		0			0		
action 3	0	0	0	0		0	0		
action 4	0	0			0	0			
		ı	•		ı	1	ı		

Case 2: goal/subgoal x already has support

Goal/subgoal is already made true at t-4 by action 4.

	t-8	t-7	t-6	t-5	t-4	t-3	t-2	t-1	$\mid t$
\overline{x}	0	0	0		1		1	1	1
action 1	0	0	0			0	0	0	
action 2	0	0		0			0		
action 3	0	0	0	0		0	0		
action 4	0	0		1	0	0			

Use precondition literals of action 4 as new subgoals at t-5 .

Case 2: goal/subgoal x already has support

Goal/subgoal is already made true at t-4 by action 4.

	t-8	t-7	t-6	t-5	t-4	t-3	t-2	t-1	$\mid t$
\overline{x}	0	0	0		1		1	1	1
action 1	0	0	0			0	0	0	
action 2	0	0		0			0		
action 3	0	0	0	0		0	0		
action 4	0	0		1	0	0			

Use precondition literals of action 4 as new subgoals at t-5.

The variable selection scheme: two refinements

- Compute several actions (directly or indirectly) supporting the goal, and randomly choose one of them.
- **2** Replace the stack for depth-first search by a priority queue. Use heuristics for ordering the subgoals.

Significance

- The heuristic is more understandable than VSIDS etc.
- It is simpler than ones used with explicit state-space search.
- Lots of potential: simplicity, has not been researched much.
- Potentially wide applicability, as SAT very strong in other areas such as model-checking (CAV), DES diagnosis.

Conclusions

- We presented variable selection heuristics for planning within the CDCL framework.
- On average comparable with best planners that use state-space search; for many benchmark domains outperforms them.

Future work:

- Extend this with features from VSIDS to do still better.
- Try with Bounded LTL Model-Checking, Discrete Event Systems diagnosis,