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Abstract. Generic SAT solvers have been very successful
in solving hard combinatorial problems in various appli-
cation areas, including AI planning. There is potential for
improved performance by making the SAT solving pro-
cess more application-specific. In this paper we propose
a variable selection strategy for AI planning. The strategy
is based on generic principles about properties of plans,
and its performance with standard planning benchmarks
often substantially improves on generic variable selection
heuristics used in SAT solving, such as the VSIDS strat-
egy. These improvements lift the efficiency of SAT based
planning to the same level as best planners that use other
search methods.

1 Introduction

Planning is one of several problems that have been successfully
solved with SAT algorithms [1]. Most works have used a generic
SAT solver, which recently use the conflict-directed clause learning
(CDCL) algorithm and the VSIDS heuristic [2].

In this work we investigate SAT solving for planning with CDCL
but with a heuristic that radically differs from VSIDS and is based
on a simple property all solutions to a planning problem have to
satisfy. The work is motivated by the need to better understand
why SAT solvers are successful in solving AI planning and related
problems, and by the need and opportunity to develop more pow-
erful, problem-specific heuristics for SAT.

Our heuristic chooses action variables that contribute to the
goals or (current) subgoals. The principle is extremely simple: for
a given (sub)goal, choose an action that achieves the (sub)goal
and that can be taken at the earliest time in which the (sub)goal
can become (and remain) true. After choosing an action, its pre-
conditions become new subgoals, for which supporting actions are
found in the same way. This principle is easy to implement: start
from a goal (or a subgoal), go backwards step by step until a time
point in which the goal is false, and choose any of the actions that
achieve the goal and are possible at that time point. If such an ac-
tion existed in the plan already, perform the procedure recursively
with the preconditions of the action as the subgoals.

The above principle is so simple that it is surprising that it
alone, without any further heuristics, is, for satisfiable problems
representing standard planning benchmark problems, very often far
more effective than the VSIDS heuristic found in the best current
SAT solvers. Furthermore, the new heuristic lifts the efficiency of
SAT-based planning to the same level with the best existing plan-
ning algorithms that are based on other search methods, includ-
ing heuristic state space search. This result is extremely surpris-
ing because the currently best state-space search planners, which
have their origins in the work of Bonet and Geffner [3] more than
ten years ago, use far more complex heuristics, and were in most

cases developed with the very benchmark problems in mind which
they are usually evaluated on. In contrast, our heuristic relies on
a very natural and simple principle that represents common intu-
itions about planning.

We view the new heuristic as a step toward developing bet-
ter SAT-based techniques for planning and other related problems
such as model-checking and discrete-event systems diagnosis. More
advanced heuristics for these applications are likely to also incor-
porate features from VSIDS, including the computation of weights
of variables based on their occurrence in recently learned clauses.

As already mentioned, the new heuristic is better than VSIDS
with satisfiable formulas representing standard planning bench-
marks, and worse with unsatisfiable ones. Heuristics in SAT solv-
ing have two complementary roles. For satisfiable formulas, heuris-
tics help in finding a satisfying assignment quickly, hopefully avoid-
ing much of the brute-force search resulting from wrong choices
of variables and truth-values. This is similar to heuristics in state-
space search for planning which help in finding a path (a state
sequence) to a goal state. For an unsatisfiable formula, heuristics
help the solver to efficiently find a refutation proof. Our heuris-
tic only indirectly addresses unsatisfiability proofs by avoiding ac-
tions that cannot possibly contribute to the refutation proof. Heuris-
tics should more explicitly try to make finding the unsatisfiability
proofs easier, but we did not have this as an objective for our new
heuristics.

The two roles of heuristics in SAT solving are both important,
but their importance depends on the type of planning being done.
If the objective is to find an optimal plan, one has to prove that
no better plans exist. For this one needs efficient detection of un-
satisfiability. If the objective is to just find a plan, with no qual-
ity guarantees, the importance of efficient unsatisfiability proofs is
much smaller. The experiments we will be presenting later address
this duality. We leave the problem of improving the efficiency of
unsatisfiability for future work.

In addition to improved efficiency of finding satisfying val-
uations, another benefit our variable selection heuristic has over
VSIDS, from the point of view of planning research, is that it is
easy to understand, and there are obvious avenues to improving
the scheme, and obvious avenues for expressing follow-up ques-
tions about it, for example concerning the difficulty of finding un-
satisfiability proofs. Addressing these things in the context of the
VSIDS heuristics seems quite a bit trickier because of a lack of
intuitive explanations of what VSIDS does in terms of search for
plans.

The structure of the paper is as follows. Sect. 2 describes the
background of the work in planning with SAT. In Sect. 3 we explain
the CDCL algorithm. In Sect. 4 we present the variable selection
scheme for planning, experimentally evaluate it in Sect. 5, and dis-
cuss related work in Sect. 6 before concluding the paper in Sect.
7.

2 Planning as Satisfiability

The classical planning problem involves finding a sequence of ac-
tions from a given initial state to a goal state. The actions are de-
terministic, which means that an action and the current state de-
termine the successor state uniquely. In the simplest formalization
of planning actions are pairs (p, e) where p and e are consistent



sets of propositional literals on the finite set A of state variables,
respectively called the precondition and the effects. Actions de-
scribed this way are often known as STRIPS actions for histori-
cal reasons. An action (p, e) is executable in a state s if s |= p.
A state s : A → {0, 1} is a valuation of all state variables. For
a given state s and an action (p, e) which is executable in s, the
unique successor state s′ = exec(p,e)(s) is determined by s′ |= e
and s′(a) = s(a) for all a ∈ A such that a does not occur in
e. This means that the effects are true in the successor state and
all state variables not affected by the action retain their values.
Given an initial state I , a solution to the planning problem with
goal G (a set of literals) is a sequence of actions o1, . . . , on such
that execon(execon−1

(· · · execo2(execo1(I)) · · ·)) |= G.
Kautz and Selman [1] proposed finding plans by reduction to

SAT. The reduction is similar to the reduction of NP Turing ma-
chines to SAT used in Cook’s proof of NP-hardness of SAT [4].
The reduction is parameterized by a horizon length T ≥ 0. The
value of each state variable a ∈ A in each time point t ∈ {0, . . . , T}
is represented by a propositional variable a@t. Additionally, it is
often useful to have the actions represented as propositional vari-
ables, so for each action o and t ∈ {0, . . . , T − 1} we similarly
have a propositional variable o@t indicating whether action o is
taken at t.

In this paper, we use an encoding of planning which allows
several actions to be taken at the same time point in parallel. The
“parallelism” (partial ordering) is allowed when it is possible to to-
tally order the actions to a sequential plan as defined above. There
are different possibilities in defining this kind of parallel plans [5,
6].

To represent planning as a SAT problem, each action o = (p, e)
and time point t ∈ {0, . . . , T − 1} is mapped to formulas o@t→∧

l∈p l@t and o@t→
∧

l∈e l@(t+1).1 These two formulas respec-
tively correspond to the executability condition and the first part
of the definition of successor states. The second part, about state
variables that do not change, is encoded as follows, for the case
in which in several actions can be taken in parallel. For each state
variable a ∈ A we have the formula

(¬a@t ∧ a@(t+ 1))→(oa1@t ∨ · · · ∨ oan@t)

where oa1 , . . . , o
a
n are all the actions which have a as an effect. Sim-

ilarly we have for each a ∈ A the formula

(a@t ∧ ¬a@(t+ 1))→(o¬a
1 @t ∨ · · · ∨ o¬a

m @t)

for explaining possible changes from true to false, where o¬a
1 , . . .,

o¬a
m are all the actions with ¬a as an effect. These formulas (often

called the frame axioms) allow to infer that a state variable does
not change if none of the actions changing it is taken.

Finally, to rule out solutions that don’t correspond to any plan
because parallel actions cannot be serialized2, further formulas are
needed. In this work we have used the linear-size ∃-step semantics
encoding of Rintanen et al. [5].

1 For negative literals l = ¬a, l@t means ¬(a@t), and for positive liter-
als l = a it means a@t.

2 For example, actions ({a}, {¬b}) and ({b}, {¬a}) cannot be made to
a valid sequential plan, because taking either action first would falsify
the precondition of the other.

There is one more component in efficient SAT encodings of
planning, which is logically redundant but usually critical for ef-
ficiency: invariants (mutexes). Invariants l ∨ l′ express dependen-
cies between state variables. Many of the standard planning bench-
marks represent multi-valued state variables in terms of several
Boolean ones, and a typical invariant ¬xa ∨ ¬xb says that a multi-
valued variable x can only have one of the values a and b. To com-
pute these invariants, we used the algorithm of Rintanen [7] which
is defined for the general (ground) PDDL language which includes
STRIPS.

For a given set A of state variables, initial state I , set O of
actions, goals G and horizon length T , we can compute (in linear
time in the product of T and the sum of sizes of A, I , O and G)
a formula ΦT such that ΦT ∈ SAT if and only if there is a plan
with horizon 0, . . . , T . ΦT includes the formulas described above,
and for all a ∈ A the unit clause a@0 if I(a) = 1 and ¬a@0 if
I(a) = 0, and l@T for all l ∈ G. These formulas are in CNF after
trivial rewriting.

A planner can do the tests Φ0 ∈ SAT, Φ1 ∈ SAT, Φ2 ∈ SAT,
and so on, sequentially one by one, or it can make several of these
tests in parallel (interleave them). For this we will later be using
Algorithm B of Rintanen et al. [5] which allocates CPU time to
different horizon lengths according to a decreasing geometric se-
ries, so that horizon length t+ 1 gets γ times the CPU the horizon
length t gets, for some fixed γ ∈]0, 1]. In general, the parallelized
strategies can be orders of magnitudes faster than the sequential
strategy because they do not need to complete the test Φt ∈ SAT
(finding Φt unsatisfiable) before proceeding with the test Φt+1 ∈
SAT. This explains why, in this setting, it is far more important to
efficiently determine satisfiability than unsatisfiability.

3 The CDCL Algorithm for SAT

In this section we briefly describe the standard conflict-directed
clause learning (CDCL) algorithm for the SAT problem. This al-
gorithm is the basis of most of the currently leading SAT solvers in
the zChaff family [2].

For a general overview of the CDCL algorithm see standard
references [8, 9]. The main loop of the CDCL algorithm (see Fig.
1) chooses an unassigned variable, assigns a truth-value to it, and
then performs unit propagation to extend the current valuation v
with forced variable assignments that directly follow from the ex-
isting valuation by the unit resolution rule. If one of the clauses is
falsified, a new clause which would have prevented the current val-
uation is learned. This new clause is a logical consequence of the
original clause set. Then, some of the last assignments are undone,
and the assign-infer-learn cycle is repeated. The procedure ends
when the empty clause has been learned (no valuation can satisfy
the clauses) or a satisfying valuation has been found.

The selection of the decision variable (line 5) and its value (line
6) can be arbitrary (without compromising the correctness of the
algorithm), and can therefore be based on a heuristic. The heuris-
tic is critical for the efficiency of the CDCL algorithm. On line 7
the standard unit propagation algorithm is run. It infers a forced
assignment for a variable x if there is a clause x ∨ l1 ∨ · · · ∨ ln or
¬x ∨ l1 ∨ · · · ∨ ln and v |= ¬l1 ∨ · · · ¬ ∨ ln.

The inference of a new clause on line 10 is the key component
of CDCL. The clause will prevent generating the same unsatisfy-



1: procedure CDCL(C)
2: Initialize v to satisfy all unit clauses in C;
3: extend v by unit propagation with v and C;
4: while C does not contain the empty clause do
5: choose a variable a with v(a) unassigned;
6: assign v(a) := 1 or v(a) := 0;
7: extend v by unit propagation with v and C;
8: if v falsifies a clause in C
9: then

10: infer a new clause c and add it to C;
11: undo assignments until a so that c is not falsified;
12: end if
13: end while

Fig. 1. Outline of the CDCL algorithm

ing assignment again, leading to traversing a different part of the
search space.

4 A New Heuristic for Planning

The goal of the current work is to present a new way of choosing
the decision variables (lines 5 and 6 in the CDCL procedure in Fig.
1) specific to planning. Generic CDCL solvers choose the deci-
sion variables based on the variables’ weights calculated from their
occurrence in recently learned conflict clauses. Our proposal only
affects the variable selection part, and hence it doesn’t affect the
correctness or completeness of the underlying CDCL algorithm.

4.1 Variable Selection to Satisfy Goals and Subgoals

Our heuristic is based on the following observation: each of the
goal literals has to be made true by an action, and the precondition
literals of each such action have to be made true by another action
(or they have to be true in the initial state.)

The main challenge in defining a variable selection scheme is
its integration in the overall SAT solving algorithm in a produc-
tive way. To achieve this, the variable selection depends not only
on the initial state, the goals and the actions represented by the in-
put clauses, but also the current state of the SAT solver. The state
of the solver is primarily characterized by A) the current set of
learned clauses and B) the current (partial) valuation reflecting the
decisions (variable assignments) and inferences (with unit propa-
gation) made so far. We have restricted the variable selection to use
only part B of the SAT solver state, the current partial valuation.

Our algorithm identifies one (sub)goal that is not at the current
state of search supported (made true) by an action or the initial
state. The search for such support proceeds from the goal literals
G at the last time point T in the horizon.

The first step is to find the earliest time point at which a goal
literal can become and remain true. This happens by going back-
wards from the end of the horizon to a time point t in which A) an
action making the literal true is taken or B) the literal is false (and
it is true or unassigned thereafter.) The third possibility is that the
initial state at time point 0 is reached and the literal is true there,
and hence nothing needs to be done.

In case A we have an action, and in case B we choose any
action that could change the literal from false to true between t

and t + 1.3 In case A we find support for the preconditions of the
action in the same way. The first action found will be used as the
next decision variable in the CDCL algorithm.

The computation is started from scratch at every step of the
CDCL procedure because a particular support for a (sub)goal, for
example the initial state, may become irrelevant because of a later
decision, and a different support needs to be found.

When no (sub)goal without support is found, the current partial
assignment represents a plan. The assignment can be made total by
assigning the unassigned action variables to false and the unas-
signed fact variables the value they have in the closest preceding
time point with a value (inertia).

The algorithm is given in Fig. 2. It takes a stack containing
the top-level goals as input, and it returns the empty set or a sin-
gleton set {o@t} for some action o and time t. Our operation for
pushing elements in the stack marks them, and already marked el-
ements are later ignored. This is to prevent subgoal literals occur-
ring in the computation repeatedly. We define prec((p, e)) = p and
eff((p, e)) = e.

1: procedure support(Stack, v)
2: while Stack is non-empty do
3: pop l@t from the Stack;
4: t′ := t− 1;
5: found := 0;
6: repeat
7: if v(o@t′) = 1 for some o ∈ O with l ∈ eff(o)
8: then
9: for all l′ ∈ prec(o) do push l′@t′ into the Stack;

10: found := 1;
11: else if v(l@t′) = 0 then
12: o := any o ∈ O such that l ∈ eff(o) and v(o@t′) 6= 0;
13: return {o@t′};
14: t′ := t′ − 1;
15: until found = 1 or t′ < 0;
16: end while
17: return ∅;

Fig. 2. Finding support for one unsupported subgoal

Example 1. We illustrate the search for an unsupported (sub)goal
and the selection of an action with a problem instance with goals
a and b and actions X = ({d}, {a}), Y = ({e}, {d}), and Z =
({¬c}, {b}).

variable 0 1 2 3 4 5 6
a 0 0 0 1
b 0 0 0 1 1
c 0 0
d 0 0 0
e 1

The timed literals that are considered to be changing from false
to true are shown in boldface. For goal a, the latest time at which
a is false is 4.

Let’s assume that X@4 is unassigned, and hence could make
a true at 5, and we choose X@4 as a support. If this action was

3 Such an action must exist because otherwise the literal’s frame axiom
would force the literal false also at t+ 1.



already in the partial plan, the precondition d of X would be the
next unsupported (sub)goal, and it could be made true by Y at time
2. Hence Y would be the support of d in that case. The precondition
e of Y is supported by the initial state and wouldn’t need further
support.

For the top-level goal b, assume that Z@2 is assigned true and
hence explains the change of b from false to true between time
points 2 and 3. Since Z’s precondition ¬c is satisfied by the initial
state, again no further action is required.

4.2 Complexity of the Variable Selection Algorithm

If there are n state variables and the horizon length is T , there are
nT variables that represent state variables at different time points.
Because each literal is pushed into the stack at most once, the al-
gorithm does the outermost iteration on line 2 for each goal or sub-
goal at most once, and hence at most nT times in total. The num-
ber of iterations of the inner loop starting on line 6 is consequently
bounded by nT 2.

The actual runtime of the algorithm is usually much lower than
the above upper bound. A better approximation for the number of
iterations of the outer loop is the number of goals and the number
of preconditions in the actions in the plan that is eventually found.
In practice, the runtime of the CDCL algorithm with our heuristic
is still strongly dominated by unit propagation, similarly to CDCL
with VSIDS, and the heuristic takes somewhere between 5 and 30
percents of the total SAT solving time.

4.3 Integration in the CDCL Algorithm

Our variable selection scheme is embedded in the CDCL algorithm
of Fig. 1 by replacing lines 5 and 6 by the code in Fig. 3. Note

1: empty Stack;
2: for all l ∈ G do push l@T into the Stack;
3: S := support(Stack, v);
4: if S = {o@t} for some o and t then v(o@t) := 1
5: else
6: if there are unassigned a@t for a ∈ A and t ≥ 1
7: then v(a@t) := v(a@(t− 1)) for one with minimal t
8: else v(o@t) := 0 for any o ∈ O and t ≥ 0 with o@t unassigned;

Fig. 3. Variable selection replacing lines 5 and 6 in Fig. 1

that some actions are inferred by unit propagation on line 7 in the
CDCL algorithm, and these actions are later handled indistinguish-
ably from actions chosen by the heuristic.

The choice of o on line 12 of Fig. 2 and the ordering of the
goal literals in the stack on line 2 of Fig. 3 are arbitrary, but for
efficiency reasons they must be fixed. In particular, it is important
that on line 12 of Fig. 2 the same action is chosen as long as the
condition v(o@t′) 6= 0 condition is satisfied. Intuitively, this is
important to avoid losing focus in the CDCL search.

When support(Stack, v) = ∅, all goals and all action precon-
ditions in the current plan are supported by another action or the
initial state, and no further actions are needed. The valuation of

the SAT solver is usually still partial, because many of the vari-
ables corresponding to actions that are not needed are still unas-
signed, and variables that do not change between two distant time
points may be unassigned in some of the intermediate time points.
To complete the assignment, we choose, starting from time point
1, unassigned fact variables and assign them the same value they
have in the preceding time point (line 7 in Fig. 3). This also sets
most of the unassigned action variables false. The remaining action
variables (usually there are none left) are assigned false one by one
(line 8 in Fig. 3.)

5 Evaluation

We will show that our variable selection heuristic beats VSIDS
with satisfiable formulas, but not with unsatisfiable ones. Further,
we will show that our heuristics lead to a planner that is competitive
with one of the best planners that don’t use SAT.

We used our own SAT solver which is based on CDCL, VSIDS
[2], and the phase selection heuristic from RSAT [10]. We tried
different clause learning schemes, and it seemed to us that for our
problems the Last UIP scheme has a small edge over First UIP [9].
We use the former. We will comment on the relative efficiency of
our SAT solver with respect to other solvers later.

As test material we chose 968 problem instances from the bien-
nial international planning competitions from 1998 to 2008. Since
our new heuristic is defined for the restricted STRIPS language
only, we use all of the STRIPS problems from the planning com-
petitions, except some from the first competition, nor an earlier
variant of any benchmark domain that was used in two competi-
tions.

As discussed in Sect. 2, our planner is based on the linear-size
∃-step semantics encoding of Rintanen et al. [5]4, and the algo-
rithm B with parameter γ = 0.9. We considered the horizon length
parameter T ∈ {0, 5, 10, 15, 20, . . .}, and let the planner solve at
most 18 SAT instances simultaneously. Most of the problem in-
stances are solved with less than 500 MB of memory, but a couple
of dozen required 2 GB or more, up to the 3.5 GB boundary where
we could not allocate more memory. The memory restriction was
dictated by the 32-bit Ubuntu Linux for which we compiled our
programs. All the experiments were run in an Intel Xeon CPU
E5405 at 2.00 GHz with a minimum of 4 GB of main memory
and using only one CPU core.

To test the performance of the heuristic for both satisfiable and
unsatisfiable formulas, with emphasis on the unsatisfiable ones that
are important for proofs of optimality of plans, we set up our plan-
ner to use the traditional sequential strategy which goes through
horizon lengths 0, 1, 2, 3 and so on, until it finds a satisfiable for-
mula. The results of this experiment are summarized in Fig. 4. The
plot shows the number of problem instances that are solved (find-
ing a plan) in n seconds or less when using VSIDS and when using
the new heuristic (indicated by P). The solver with VSIDS solves
about 15 per cent more instances when 300 seconds is spent solv-
ing each problem instance. When the optimality proof is required
(to show that a plan has the optimal parallel length), usually almost

4 Results for the standard parallel plans (∀-step semantics) and for se-
quential plans are similar in terms of the improvement our new heuristic
yields over VSIDS.
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Fig. 4. Number of instances that can be solved in a given time with the
sequential strategy

all of the effort is spent on the unsatisfiability tests for formulas
right below the parallel length of the shortest parallel plan.

When optimality is not required, we use the planner with its
default settings, as described earlier, interleaving the solving of
several SAT instances for different plan lengths, thus avoiding the
completion of the difficult unsatisfiability proofs. In this scenario
any improvements in determining satisfiability, i.e. quickly finding
a satisfying assignment corresponding to a plan, becomes much
more important. The results of this experiment are given in Fig. 5.
In this case the new heuristic has a clear advantage over VSIDS.
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Fig. 5. Number of instances solved by different planners in a given time

The diagram also plots the runtimes of the 2008 International Plan-
ning Competition winner LAMA [11]5. The performance is almost
at the same level, in terms of the number of solved problems in a
given time, although the sets of solved instances differ quite a bit.

5 Following instructions from the authors of LAMA, we decreased the
maximum invariant generation time to 60 seconds, to match our time
out limit 300 seconds.

VSIDS P LAMA PRECO RSAT

1998-GRIPPER 20 20 20 20 18 20
1998-MPRIME 20 16 18 20 13 13
1998-MYSTERY 19 16 17 19 16 17
2000-BLOCKS 102 71 85 51 52 64
2000-LOGISTICS 76 76 76 76 74 74
2002-DEPOTS 22 21 21 16 21 21
2002-DRIVERLOG 20 15 20 20 18 18
2002-FREECELL 20 4 5 18 5 4
2002-ZENO 20 18 20 20 17 19
2004-AIRPORT 50 40 42 37 22 26
2004-OPTICAL-TELEG 14 14 14 2 14 14
2004-PHILOSOPHERS 29 29 29 BUG 29 29
2004-PIPESWORLD-NOTANK 50 15 20 44 0 0
2004-PSR-SMALL 50 50 49 50 49 50
2004-SATELLITE 36 29 32 30 23 27
2006-PIPESWORLD 50 9 10 38 8 10
2006-ROVERS 40 40 40 40 25 33
2006-STORAGE 30 29 30 18 23 25
2006-TPP 30 26 26 30 30 29
2006-TRUCKS 30 19 29 8 18 19
2008-ELEVATORS 30 13 30 30 16 17
2008-OPENSTACKS 30 15 11 30 12 12
2008-PARCPRINTER 30 30 30 28 30 30
2008-PEGSOLITAIRE 30 25 21 29 30 28
2008-SCANALYZER 30 19 16 27 14 19
2008-SOKOBAN 30 2 4 18 2 2
2008-TRANSPORT 30 10 12 28 1 3
2008-WOODWORKING 30 30 30 28 30 30
total 968 701 757 775 610 653
average number of actions 82.51 61.22 67.13

Table 1. Number of instances solved in 300 seconds by benchmark domain



Due to a bug in one of its components LAMA is not able to solve
the first instance of OPTICAL-TELEGRAPH and the first 13 in-
stances of PHILOSOPHERS (the rest take longer than 300 sec-
onds.) Some earlier planners have roughly the same performance
as LAMA but do much worse with hard problems from the phase
transition region or even with easy ones [12].

We also break down the results to different benchmark do-
mains, showing the numbers of problem instances solved in 300
seconds by each planner in Table 1, and show the average num-
ber of actions for instances solved by both variants of our planner
and LAMA. The numbers of actions in the plans LAMA produces
are in general about the same, but for the blocks world problems
LAMA’s plans are substantially worse.

We also compared our results to the winners of the applica-
tion/industrial category of the SAT competition in 2009 and 2007,
Precosat and RSAT [10]. We translated all the test problems into
DIMACS CNF for horizon lengths 0, 10, 20, . . . , 100 6 and solved
them with a 100 second time limit per instance7, and then calcu-
lated the corresponding Algorithm B runtimes with γ = 0.9. The
Precosat and RSAT runtimes exclude the construction of the CNF
formulas and the writing and reading of DIMACS CNF files.

The main reason for the differences between our SAT solver
and Precosat and RSAT is preprocessing: for many large SAT in-
stances that we can solve almost immediately, RSAT and Precosat
spend considerable time with the preprocessing before starting the
search phase. We intend to later investigate better preprocessing
strategies for SAT solvers in the planning context. Since the SAT
instances for different horizon lengths of one planning instance are
closely related, parts of the CNF preprocessing can be shared. This
is one of the main avenues to improving preprocessing for planning
with SAT.

Precosat is very good with the Peg Solitaire benchmark, pre-
sumably because of the preprocessor, but in general it seems that
preprocessing in RSAT and Precosat starts to pay off only if there
are ten minutes or more available to complete the planning task.

Many of the standard planning benchmarks lead to large SAT
problems. The largest SAT problems Precosat solves (within the
time bounds explained earlier) are instance 41 of Airport (417476
variables, 92.9 million clauses) and instance 26 of Trucks (926857
variables, 11.3 million clauses). Our planner solves instance 45 of
Airport with a completed unsatisfiability test for horizon length
60 (582996 variables and 140.7 million clauses) and a plan for
horizon length 70 (679216 variables, 164.1 million clauses). Our
planner, with the new heuristic, also solves instance 34 of Satellite,
with a plan found for horizon length 40 (8.5 million variables, 29.9
million clauses) backtrack-free in 20.01 seconds excluding trans-
lation into SAT and including effort to find unsatisfiability proofs
for shorter horizon lengths. These are extreme cases. Most of the
instances have less than 1 million variables and at most a couple of
million clauses.

6 We use the step 10 to reduce the time to perform the experiment. This
affects the runtimes negligibly. For the blocks world problems we used
horizon lengths up to 200.

7 This is more than enough to determine the planners’ runtimes up to time
out limit 300 seconds.

6 Related Work

6.1 Earlier Planning Algorithms

Many earlier algorithms add actions to incomplete plans to support
an existing goal or subgoal, for example the partial-order planning
algorithms [13]. The LPG planner [14] does stochastic local search
in the space of incomplete plans with parallel actions similar to the
SAT-based approach. LPG’s choice of actions to be added in the
current incomplete plan is based on the impact of the action on
violations of constraints describing the solutions.

Heuristic search [15] has long been an essential for problem
solving in AI, but its use in planning was limited until the ground-
breaking work of Bonet et al. [16]. Research quickly focused on
state-space search guided by heuristics derived from declarative
problem descriptions in a generic, problem-independent manner.
A main emphasis in the research on classical planning has been in
finding better heuristics, with very limited efforts to try something
else than state-space search.

The Graphplan algorithm [17] uses backward search, constrained
by the planning graph structure which represents approximate (up-
per bound) reachability information. The action selection of Graph-
Plan’s search may resemble our action selection: given a subgoal
l at time t, the choice of an action to reach l is restricted to ac-
tions in the planning graph at level t − 1. This same constraint
on action selection shows up in any extraction of action sequences
from exact distance information, for example in BDD-based plan-
ning [18] and corresponding model-checking methods. However,
the data structures representing the distances (the planning graph
or the BDDs) are not used as a heuristic as in our work: when
the action choice for achieving l is not restricted by the contents
of the planning graph, Graphplan will choose an arbitrary action
with l as an effect. Another major difference is of course that our
heuristic leverages on the search state of the CDCL algorithm (the
learned clauses). This is the main reason why our heuristic, despite
its extreme simplicity, is more informative than the more complex
heuristics earlier used in AI planning.

6.2 Earlier Planners that Use SAT

The best known planner that uses SAT is BLACKBOX by Kautz
and Selman [19]. Rintanen et al. [5] demonstrate that their ∀-step
semantics encoding is often substantially faster than the BLACK-
BOX encoding, sometimes by a factor of 20 or more. Both en-
codings use the same definition of parallel plans. Runtime data in
Sideris and Dimopoulos [20] indicates that newer planners in the
BLACKBOX family implement slower encodings than BLACK-
BOX. For example, SATPLAN06 is often twice as slow as BLACK-
BOX. The only other encoding that is comparable to the ∀-step se-
mantics encoding of Rintanen et al. in terms of efficiency and size
is the recent factored encoding of Robinson et al. [21].

The more relaxed notion of parallel plans used in our planner,
the ∃-step semantics [5, 22], allows shorter horizons and smaller
formulas, and therefore leads to substantial efficiency improve-
ments. This and parallelized search strategies [6] often mean fur-
ther one, two or more orders of magnitudes of speed up over other
SAT-based planners.



6.3 Domain-Specific Heuristics for SAT Solving

Not much is known about using problem specific heuristics in SAT
solving or the workings of SAT solvers when solving planning
problems. Beame et al. [8] demonstrate the utility of a problem-
specific variable selection heuristic for a clause-learning algorithm
solving a combinatorial problem (pebbling formulas.) They demon-
strate an improvement in finding unsatisfiability proofs.

The decision variable heuristic proposed in this paper focuses
on action variables, and only assigns fact variables at the last stages
to complete the assignment. Theoretical results indicate that the
efficiency of CDCL is decreased if variable assignments are re-
stricted to a subset of the variables only, even if those variables
are sufficient for determining satisfiability and unsatisfiability [23].
It is not clear to us what the practical or theoretical implications
of these results are in our setting, more specifically because plan-
ning and state-space reachability problems are only a subset of all
satisfiability problems. The experiments of Järvisalo and Junttila
with instances from bounded-model checking style deadlock de-
tection and LTL model-checking suggest that a CDCL solver with
VSIDS restricted to a subset of decision variables fares worse than
VSIDS without the restriction. In contrast, we have a heuristic that
has such limitations, and the unlimited decision heuristic (VSIDS)
with our test material fares in general worse. Of course, the re-
sults of Järvisalo and Junttila could be seen as saying that there
are more effective variants of our heuristic which sometimes also
choose fact variables as decision variables. Further, all known re-
strictions on SAT solving efficiency (in a given proof system) apply
to unsatisfiability proofs only, which are not the focus of our work.

7 Conclusions and Future Work

The contribution of this paper is a simple yet powerful variable se-
lection strategy for clause-learning SAT solvers that solve AI plan-
ning problems, as well as an empirical demonstration that the strat-
egy outperforms VSIDS for standard planning benchmarks when
no proofs of the optimality of the horizon length is required. A
main additional benefit over VSIDS is that the variable selection
strategy is understandable in terms of the planning problem, and
that there are obvious and intuitive avenues for developing it fur-
ther. The basic variable selection strategy is particularly promising
because the features that makes it strong are largely complemen-
tary to the important features of VSIDS, making it possible to com-
bine them, for example by adopting the weights of literals from
VSIDS to the planning heuristic. This is a focus of future work, as
is finding ways of doing the unsatisfiability proofs more efficiently.

Immediate improvement opportunities arise for example from
the possibility of changing the order in which the top-level goals
and the preconditions of an action are considered. Our initial ex-
perimentation in this area has demonstrated that the approach can
be dramatically strengthened further, leading to planners that sub-
stantially outperform modern planners such as LAMA.

The main ideas in this work are quite general, and could be eas-
ily adapted to other applications of SAT and constraint-satisfaction,
for example model-checking [24] and diagnosis [25], and of more
expressive logics, such as QBF [26].
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