
Heuristic Planning with SAT: Beyond
Uninformed Depth-First Search

Jussi Rintanen

NICTA and the Australian National University
Canberra, Australia

Abstract. Planning-specific heuristics for SAT have re-
cently been shown to produce planners that match best
earlier ones that use other search methods, including the
until now dominant heuristic state-space search. The heuris-
tics are simple and natural, and enforce pure depth-first
search with backward chaining in the standard conflict-
directed clause learning (CDCL) framework.
In this work we consider alternatives to pure depth-first
search, and show that carefully chosen randomized search
order, which is not strictly depth-first, allows to leverage
the intrinsic strengths of CDCL better, and will lead to a
planner that clearly outperforms existing planners.

1 Introduction

Translation into SAT, the satisfiability problem of the classical
propositional logic, has been one of the main approaches to solv-
ing AI planning problems. The basic idea, first presented by Kautz
and Selman [1], is to consider a bounded-horizon planning prob-
lem, to represent the values of state variables at every time point as
propositional variables, and to represent the relation between two
consecutive states as a propositional formula. This idea is essen-
tially the same as in the simulation of nondeterministic polynomial-
time Turing machines in Cook’s proof of NP-hardness of SAT [2].
Kautz and Selman’s idea, and Cook’s even more so, was consid-
ered to be only of theoretical interest until 1996 when algorithms
for SAT had developed far enough to make planning with SAT
practical and even competitive with other search methods [3].

Recently, planning-specific improvements to generic SAT al-
gorithms have been proposed. Specifically, the conflict-directed
clause learning (CDCL) algorithm for SAT can be forced to do
depth-first backward chaining search by a suitable variable selec-
tion scheme [4]. Although the idea is very simple and elegant, sur-
prisingly it also results in dramatic improvements to SAT-based
planning, and lifts its efficiency to the same level with the cur-
rently best algorithms for classical planning [4].

In this paper we propose an alternative search scheme which
does not enforce a strict depth-first search. Algorithms for SAT
have a great flexibility in choosing the decision variables, and
the kind of fixed schemes as in the predecessor work, do not, for
most applications, lead to the best possible performance (and for
many applications would lead to a poor performance.) The tech-
nical challenge is increasing the flexibility in the decision variable
selection in a way that actually improves performance.

Additionally, we propose heuristics to order goals and sub-
goals. The predecessor work [4] ordered them arbitrarily, deter-
mined by their order in the input file.

Our experiments show that with the new improvements our
planner substantially outperforms all well-known classical plan-
ning systems, including LAMA, the winner of the last (2008) plan-
ning competition.

The structure of the paper is as follows. Section 2 explains
the background of the work. In Section 3 we present the earlier
variable selection scheme. Section 4 extends it by goal-ordering
heuristics and by relaxing the search order. In Section 5 we exper-
imentally evaluate the impact of the techniques. We conclude the
paper in Section 6.

2 Preliminaries

The classical planning problem involves finding an action sequence
from a given initial state to a goal state. The actions are determin-
istic, which means that an action and the current state determine
the successor state uniquely. A state s : A→ {0, 1} is a valuation
of A, a finite set of state variables. In the simplest formalization
of planning, actions are pairs (p, e) where p and e are consistent
sets of propositional literals over A, respectively called the pre-
condition and the effects. We define prec((p, e)) = p. Actions of
this form are known as STRIPS actions for historical reasons. An
action (p, e) is executable in a state s if s |= p. For a given state
s and an action (p, e) executable in s, the unique successor state
s′ = exec(p,e)(s) is determined by s′ |= e and s′(a) = s(a) for all
a ∈ A such that a does not occur in e. This means that the effects
are true in the successor state and all state variables not affected
by the action retain their values. Given an initial state I , a plan to
reach a goalG (a set of literals) is a sequence of actions o1, . . . , on
such that execon(execon−1(· · · execo2(execo1(I)) · · ·)) |= G.

The basic idea in applying SAT to planning is, for a given setA
of state variables, an initial state I , a set O of actions, goals G and
a horizon length T , to construct a formula ΦT such that ΦT ∈ SAT
if and only if there is a plan with horizon 0, . . . , T . This formula
is expressed in terms of propositional variables a@0, . . . , a@T for
all a ∈ A and o@0, . . . , o@T − 1 for all o ∈ O. For a given t ≥ 0,
the valuation of a1@t, . . . , an@t, where A = {a1, . . . , an}, rep-
resents the state at time t. The valuation of all variables repre-
sents a state sequence so that the difference between two con-
secutive states corresponds to taking zero or more actions. This
can be defined in several different ways [5]. For our purposes it
is sufficient that the step-to-step change from state s to s′ by a
set X of actions satisfies the following three properties: 1) s |=
p for all (p, e) ∈ X , 2) s′ |= e for all (p, e) ∈ X , and 3)
s′ = execon(execon−1(· · · execo2(execo1(s)) · · ·)) for some order-
ing o1, . . . , on of X . These conditions are satisfied by all main
encodings of planning as SAT [4]. The only encoding not satis-
fying these conditions (part 1, specifically) is the relaxed ∃-step
semantics encoding of Wehrle and Rintanen [6].

Given a translation into propositional logic, planning reduces
to finding a horizon length T such that ΦT ∈ SAT, and reading a
plan from a satisfying assignment for ΦT . To find such a T , early
works sequentially tested Φ1, Φ2, and so on, until a satisfiable for-
mula was found. More efficient algorithms exist [7, 8].

3 The Variable Selection Scheme

The conflict-directed clause learning (CDCL) algorithm is the ba-
sis of most of the currently best SAT solvers in the zChaff family
[9]. Introductory presentations of CDCL algorithms exist [10, 11].
The algorithm repeatedly chooses a decision variable, assigns a
truth-value to it, and performs inferences with the unit resolution
rule, until a contradiction is obtained (the empty clause is derived,
or, equivalently, the current valuation falsifies one of the input
clauses or derived clauses.) The sequence of variable assignments
that led to the contradiction is analyzed, and a clause preventing
the repeated consideration of the same assignment sequence is de-
rived and added to the clause set.

The earlier variable selection scheme for planning [4] per-
formed a depth-first search by a stack-based algorithm, finding
one action (decision variable) to be used in the CDCL algorithm
as the next variable to which a value is assigned. In this section we
present two technically simple extensions that allow more flexible
traversal orders and the consideration of more than one candidate
decision variable. In Section 4 we will utilize these extensions by
proposing subgoal ordering heuristics and a more flexible deci-
sion variable selection scheme than the strict depth-first one used
earlier.

The main challenge in defining a variable selection scheme is
its integration in the overall SAT solving algorithm in a productive
way. To achieve this, the variable selection depends not only on
the initial state, the goals and the actions, represented by the input
clauses, but also the current search state of the CDCL algorithm.
The algorithm’s execution state is characterized by 1) the current
set of learned clauses and 2) the current (partial) valuation reflect-
ing the decisions (variable assignments) and inferences (with unit
propagation) made so far. Our variable selection scheme only uses
part 2 of the execution state, the current partial valuation v.

The earlier variable selection scheme [4] is based on the fol-
lowing observation: each of the goal literals has to be made true
by an action, and the precondition literals of each such action have
to be made true by earlier actions (or, alternatively, these literals
have to be true in the initial state.)

The first step in selecting a decision variable is finding the
earliest time point at which a goal literal can become and remain
true. This is by going backwards from the end of the horizon to
a time point t′ in which A) an action making the literal true is
taken or B) the literal is false (and the literal is true or unassigned
thereafter.) The third possibility is that the initial state at time point
0 is reached and the literal is true there, and hence nothing needs
to be done. In case A we have an action already in the plan, and in
case B we choose any action that can change the literal from false
to true between t′ and t′ + 1 and use it as a decision variable.1 In
case A we push the literals in the precondition into the stack and
find supporting actions for them.

In the earlier work it was shown that finding just one action
in a depth-first manner is sufficient for an impressive performance
[4]. The new algorithm differs from the earlier algorithm in two
respects. First, the depth-first search is not terminated after one

1 Such an action must exist because otherwise the literal would have to
be false also at t′ + 1.

action is found, but proceeds further (in Fig. 1 all possible candi-
date actions will be found.) Second, we replace the stack with a
priority queue, which enables the use of a heuristic to impose dif-
ferent traversal orders. These two changes are technically trivial,
and the challenge is to utilize them in a way that will actually lead
to an improved performance.

The extension of the earlier algorithm [4] for computing a set
of actions that support currently unsupported top-level goals or
preconditions of actions in the current partial plan is given in Fig.
1. For negative literals l = ¬a, l@t means ¬(a@t), and for posi-
tive literals l = a it means a@t. Similarly, we define the valuation
v(l@t) for negative literals l = ¬a by v(l@t) = 1 − v(a@t)
whenever v(a@t) is defined. For positive literals l = a of course
v(l@t) = v(a@t).

1: procedure support(G,O, T, v)
2: empty the priority queue;
3: for all l ∈ G do push l@T into the priority queue;
4: X := ∅;
5: while the priority queue is non-empty do
6: pop l@t from the priority queue; (* Take one (sub)goal. *)
7: t′ := t− 1;
8: found := 0;
9: repeat

10: if v(o@t′) = 1 for some o ∈ O with l ∈ eff(o)
11: then (* The subgoal is already supported. *)
12: for all l′ ∈ prec(o) do push l′@t′ into the priority queue;
13: found := 1;
14: else if v(l@t′) = 0 then (* Earliest time it can be true *)
15: o := any o ∈ O such that l ∈ eff(o) and v(o@t′) 6= 0;
16: X := X ∪ {o@t′};
17: for all l′ ∈ prec(o) do push l′@t′ into the priority queue;
18: found := 1;
19: t′ := t′ − 1;
20: until found = 1 or t′ < 0;
21: end while
22: return X;

Fig. 1. Computation of supports for (sub)goals

The procedure in Fig. 1 is the main component of the variable
selection scheme for CDCL given in Fig. 2, in which an action

1: S := support(G,O, T, v);
2: if S 6= ∅ then v(o@t) := 1 for any o@t ∈ S; (* Found an action. *)
3: else
4: if there are unassigned a@t for a ∈ A and t ∈ {1, . . . , T}
5: then v(a@t) := v(a@(t− 1)) for any a@t with minimal t
6: else v(o@t) := 0 for any o ∈ O and t ≥ 0 with o@t unassigned;

Fig. 2. Variable selection for planning with the CDCL algorithm

is chosen as the next decision variable for the CDCL algorithm
if one is available. If none is available, all goals and subgoals are
already supported. The current valuation typically is still not com-
plete, and it is completed by assigning unassigned fact variables

the value they have in the predecessor state (line 5) and assign-
ing unassigned action variables the value false (line 6). The code
in Fig. 2 replaces VSIDS as the variable selection heuristic in the
CDCL algorithm.

4 Heuristics for Variable Selection

The variable selection scheme, as described in Section 3, has al-
ready led to a planner that is very competitive with the best ex-
isting planners for the classical planning problem [4]. However,
experience from SAT solvers and from the application of SAT
solving to planning specifically [12] suggests that the fixed goal-
orderings and the strict backward chaining depth-first search do
not – although better than generic SAT-solvers [4] – ultimately
represent the most efficient form of search in the CDCL context.

First, we will present a goal-ordering heuristic for controlling
the priority queue. If only the first action found is returned, the
traversal order in the algorithm in Fig. 1 directly determines the
ordering in which variables are assigned in the CDCL algorithm.

Second, the search with strict backward chaining will be re-
laxed. Backward chaining means selecting an action with an ef-
fect x given a goal x, and taking the preconditions of the action
as new goals, for which further actions are chosen. The search
with backward chaining proceeds step by step toward earlier time
points (until some form of backtracking will take place.) In the
context of CDCL and other SAT algorithms, the search does not
have to be directional in this way, and actions less directly sup-
porting the current (sub)goals could be chosen, arbitrarily many
time points earlier. The algorithm in Fig. 1 computes a complete
set of candidate actions for supporting all goals and subgoals (as
opposed to finding only one as in the predecessor work [4]), but
randomly choosing one action from this set is not useful, and we
need a more selective way of choosing a decision variable.

Next we will consider these two possible areas of improve-
ment, and in each case propose a modification to the basic vari-
able selection scheme which will be shown to lead to substantial
performance improvements in Section 5.

4.1 Goal Ordering

We considered two measures according to which (sub)goals l@t
are ordered.

1. the maximal t′ < t such that v(l@t′) 6= 1
2. the maximal t′ < t such that v(l@t′) = 0

Above, v(l@t′) 6= 1 includes the case that v(l@t′) is unassigned.
In the first case, l gets a higher priority if it must have been made
true earlier than other subgoals. The most likely plan involves
making l first true, followed by making the other subgoals true.
The second case looks at the time when the subgoals must have
been false the last time. Empirically the best results were obtained
with the first. Intuitively, this measure is a better indicator of the
relative ordering of the actions establishing different preconditions
of a given action.

A key property of these measures is that for every goal or sub-
goal l@t, the new subgoals l1@t − 1, . . . , ln@t − 1 all have a

higher priority than their parent l@t. This will still lead to depth-
first search, but the ordering of the child nodes will be informed.

4.2 Computation of Several Actions

To achieve a less directional form of plan search with CDCL, we
decided to compute some fixed number N = |S| of actions (not
only N = 1 as in [4]) and randomly choose one o@t ∈ S. In the
algorithm in Fig. 1 this means adding a statement that returns S as
soon as |S| = N . The initial experiments seemed very promising
in solving some of the difficult problems much faster. However,
the overall improvement was relatively small, and it very surpris-
ingly peaked at N = 2.

What happened is the following. For a given top-level goal
l ∈ G, several of the first actions that were chosen supported the
goals. However, after everything needed to support l was included,
the computation continued from the next unsupported top-level
goal. So at the final stages of finding support for a top-level goal
we would be, in many cases, instead selecting supporting actions
for other top-level goals, distracting from finding support for l.
With N = 2 the distraction is small enough to not outweigh the
benefits of considering more than one action.

This analysis led us to a second variant, which proved to be
very powerful. In this variant we record the time-stamp t of the
first action found. Then we continue finding up to N actions, but
stop and exit if the time-stamp of a would-be candidate action is≥
t. With this variant we obtained a substantial overall improvement
with higher N . Later in the experiments we use N = 10 because
the improvement leveled off at N = 10.

4.3 Discussion

The good performance of the fixed and uninformed variable se-
lection [4] is due to its focus on a particular action sequence. Any
diversion from a previously tried sequence is a consequence of the
clauses learned with CDCL. This maximizes the utility of learned
clauses, but also leads to the possibility of getting stuck in a part
of the search space void of solutions. A remedy to this problem
in current SAT solvers is restarts [9]. However, with determinis-
tic search and without VSIDS-style variable (or action) weighting
mechanism restarts make no difference. In SAT algorithms that
preceded VSIDS, a small amount of randomization was used to
avoid getting stuck [13]. However, too large diversion from the
previous action sequences makes it impossible to benefit from the
clauses learned with CDCL. Hence the key problem is finding a
balance between focus to recently traversed parts of the search
space and pursuing other possibilities.

The flexible depth-first style search from Section 4.2 provides
an interesting balance between focus and variation. The candidate
actions all contribute to one specific way of supporting the top-
level goals, but because they often don’t exactly correspond to an
actual plan (except for at the very last stages of the search), vary-
ing the order in which they are considered seems to be an effective
way of probing the “mistakes” they contain. An additional benefit
seems to be that the non-linear ordering in which the candidate
actions are used often leaves holes (missing actions) in the incom-
plete plan, which are immediately filled by unit propagation. For

this reason the number of decisions needed in the CDCL algorithm
is sometimes much smaller.

5 Evaluation

Our base line in the evaluation is the backward chaining fixed
variable-selection scheme introduced in the predecessor work [4].
This scheme was already shown to outperform the standard VSIDS
heuristic, both our own implementation and current best imple-
mentations in generic SAT solvers, including Precosat and RSAT.

The test material was 968 problem instances from the inter-
national planning competitions from 1998 until 2008. Since our
variable selection scheme is defined for the restricted STRIPS lan-
guage only, we chose all the STRIPS problems except for some
from the first competitions, nor did we choose benchmarks from
an earlier competition if the same domain had been used in a later
competition as well.

We used the most efficient known translation from planning
into SAT, for the ∃-step semantics by Rintanen et al. [5], and
solved the problems with the algorithm B of Rintanen et al. [5]
with B = 0.9, testing horizon lengths 0, 5, 10, 15, . . . and solving
a maximum of 18 SAT problems simultaneously.

All the experiments were run in an Intel Xeon CPU E5405 at
2.00 GHz with a minimum of 4 GB of main memory and using
only one CPU core. We ran our planner for all of the problem
instances, giving a maximum of 300 seconds for each instance.
The runtime includes all standard phases of a planner, starting
from parsing the PDDL description of the benchmark and ending
in outputting a plan. The different variants of the planner are the
baseline fixed variant base from the earlier paper [4], o with the
subgoal ordering from Section 4.1 but with only one action found
and returned by the procedure call support(G,O, T, v), m with
random choice from multiple candidate actions from Section 4.2,
and o+m which combines the previous two. The randomization in
m and m+o affects the runtimes, but not much: different complete
runs of all 968 instances solved couple of instances more or less,
depending on whether for some instances the runtime was slightly
below or slightly above the 300 second time limit.

We also tested LAMA [14], the winner of the last (2008) plan-
ning competition, and ran it with its default settings, except for
limiting its invariant computation to a maximum of 60 seconds
according to Helmert’s instructions, to adjust for the 300 second
time limit we used. Due to a bug in one of its components, LAMA
is not able to solve the first instance of OPTICAL-TELEGRAPH
and the first 13 instances of PHILOSOPHERS (the rest take longer
than 300 seconds.)

The results of the experiment are summarized in Table 1. The
first column is the number of (solvable) problem instances in each
domain. To get an idea of the differences in the runtime behavior
of the different variants of the planner, we plotted a curve show-
ing the number of problem instances solved (y axis) with a given
timeout limit (x axis), shown in Fig. 3. Overall, the improvements
of the new techniques over the baseline planner and LAMA are
substantial, no matter which time out limit is considered.

Other well-performing planners in the planning competitions
starting from 2000, including FF and YAHSP from the HSP family

domain VSIDS base o m o+mLAMA
1998-GRIPPER 20 20 20 20 20 20 20
1998-MPRIME 20 16 18 18 20 20 20
1998-MYSTERY 19 16 17 17 17 17 19
2000-BLOCKS 102 71 85 86 90 90 51
2000-LOGISTICS 76 76 76 76 76 76 76
2002-DEPOTS 22 21 21 22 22 22 16
2002-DRIVERLOG 20 15 20 20 19 19 20
2002-FREECELL 20 4 5 5 12 12 18
2002-ZENO 20 18 20 20 20 20 20
2004-AIRPORT 50 40 42 41 43 42 37
2004-OPTICAL-TELEG 14 14 14 14 14 14 2
2004-PHILOSOPHERS 29 29 29 29 29 29 BUG
2004-PIPESWORLD-NO 50 15 20 20 33 34 44
2004-PSR-SMALL 50 50 49 49 50 50 50
2004-SATELLITE 36 29 32 32 32 32 30
2006-PIPESWORLD 50 9 10 12 21 24 38
2006-ROVERS 40 40 40 40 39 39 40
2006-STORAGE 30 29 30 30 30 30 18
2006-TPP 30 26 26 28 30 30 30
2006-TRUCKS 30 19 29 29 30 30 8
2008-ELEVATORS 30 13 30 30 30 30 30
2008-OPENSTACKS 30 15 11 11 15 15 30
2008-PARCPRINTER 30 30 30 30 30 30 28
2008-PEGSOLITAIRE 30 25 21 27 23 30 29
2008-SCANALYZER 30 19 16 26 21 27 27
2008-SOKOBAN 30 2 4 4 5 5 18
2008-TRANSPORT 30 10 12 12 20 21 28
2008-WOODWORKING 30 30 30 30 30 30 28
total 968 701 757 778 821 838 775
time average 9.68 6.24 5.99 3.60 3.53 12.23
size average 81.5360.6860.4064.6164.33 66.64

Table 1. Number of problems solved in 300 seconds for each benchmark
domain. Average solution times and numbers of actions for instances
solved by all.

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

 0 50 100 150 200 250 300

n
u
m

b
e
r

o
f
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

time in seconds

VSIDS

base

o

m

o+m

LAMA

Fig. 3. Number of instances that are solved in a given time

of planners which use delete relaxation heuristics [15] and LPG-td
[16], are overall very close to LAMA (within 1.5 per cent) in terms
of number of solved problem instances. These planners solve re-
spectively 786, 7752 and 779 problem instances in 300 seconds.
As an illustration of the overall performance difference, the num-
ber of problem instances FF solves in 30000 seconds equals the
number for our planner with a 90 second time limit. This means
that FF would have to become more than two orders of magnitude
faster on average to match the performance of our planner.

6 Conclusions and Future Work

We have considered a number of goal orderings for a CDCL vari-
able selection scheme for planning, and demonstrated substantial
improvements in the performance of SAT solvers in solving stan-
dard benchmark problems.

A notable difference between our work and VSIDS [9] is that
we are not using weights of decision variables obtained from con-
flicts as a part of variable selection. Such weights would be able
to order the top-level goals and subgoals in the computation of ac-
tions, based on their role in conflicts. This, we believe, is the most
promising area for future improvement in the implementations of
our variable selection scheme.

Acknowledgements

NICTA is funded by the Australian Government as represented by
the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council through the ICT
Centre of Excellence program.

References

1. Kautz, H., Selman, B.: Planning as satisfiability. In Neumann, B.,
ed.: Proceedings of the 10th European Conference on Artificial In-
telligence, John Wiley & Sons (1992) 359–363

2. Cook, S.A.: The complexity of theorem proving procedures. In:
Proceedings of the Third Annual ACM Symposium on Theory of
Computing. (1971) 151–158

3. Kautz, H., Selman, B.: Pushing the envelope: planning, propositional
logic, and stochastic search. In: Proceedings of the 13th National
Conference on Artificial Intelligence and the 8th Innovative Appli-
cations of Artificial Intelligence Conference, AAAI Press (August
1996) 1194–1201

4. Rintanen, J.: Heuristics for planning with SAT. In Cohen, D., ed.:
Principles and Practice of Constraint Programming - CP 2010, 16th
International Conference, CP 2010, St. Andrews, Scotland, Septem-
ber 2010, Proceedings. Number 6308 in Lecture Notes in Computer
Science, Springer-Verlag (2010) 414–428

5. Rintanen, J., Heljanko, K., Niemelä, I.: Planning as satisfiability:
parallel plans and algorithms for plan search. Artificial Intelligence
170(12-13) (2006) 1031–1080

2 YAHSP does not solve the 30 TPP problems because of a parser bug.
Fixing this bug would probably lift YAHSP’s number close to 805,
making it the second fastest planner after ours.

6. Wehrle, M., Rintanen, J.: Planning as satisfiability with relaxed ∃-
step plans. In Orgun, M., Thornton, J., eds.: AI 2007 : Advances in
Artificial Intelligence: 20th Australian Joint Conference on Artificial
Intelligence, Surfers Paradise, Gold Coast, Australia, December 2-
6, 2007, Proceedings. Number 4830 in Lecture Notes in Computer
Science, Springer-Verlag (2007) 244–253

7. Rintanen, J.: Evaluation strategies for planning as satisfiability. In
López de Mántaras, R., Saitta, L., eds.: ECAI 2004. Proceedings of
the 16th European Conference on Artificial Intelligence, IOS Press
(2004) 682–687

8. Rintanen, J.: Planning and SAT. In Biere, A., Heule, M.J.H., van
Maaren, H., Walsh, T., eds.: Handbook of Satisfiability. Number 185
in Frontiers in Artificial Intelligence and Applications. IOS Press
(2009) 483–504

9. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.:
Chaff: Engineering an Efficient SAT Solver. In: Proceedings of the
38th ACM/IEEE Design Automation Conference (DAC’01), ACM
Press (2001) 530–535

10. Mitchell, D.G.: A SAT solver primer. EATCS Bulletin 85 (February
2005) 112–133

11. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and
harnessing the potential of clause learning. Journal of Artificial In-
telligence Research 22 (2004) 319–351

12. Rintanen, J.: A planning algorithm not based on directional search. In
Cohn, A.G., Schubert, L.K., Shapiro, S.C., eds.: Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Sixth Inter-
national Conference (KR ’98), Morgan Kaufmann Publishers (1998)
617–624

13. Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search
through randomization. In: Proceedings of the 14th National Confer-
ence on Artificial Intelligence (AAAI-97) and 9th Innovative Appli-
cations of Artificial Intelligence Conference (IAAI-97), AAAI Press
(1998) 431–437

14. Richter, S., Helmert, M., Westphal, M.: Landmarks revisited. In:
Proceedings of the 23rd AAAI Conference on Artificial Intelligence
(AAAI-08), AAAI Press (2008) 975–982

15. Bonet, B., Geffner, H.: Planning as heuristic search. Artificial Intel-
ligence 129(1-2) (2001) 5–33

16. Gerevini, A., Serina, I.: Planning as propositional CSP: from Walksat
to local search techniques for action graphs. Constraints Journal 8
(2003) 389–413

