
Compact Representation of Sets of Binary Constraints
Jussi Rintanen1

Abstract. We address the problem of representing big sets of bi-
nary constraints compactly. Binary constraints in the form of 2-
literal clauses are ubiquitous in propositional formulae that repre-
sent real-world problems ranging from model-checking problems in
computer-aided verification to AI planning problems. Current satisfi-
ability and constraint solvers are applicable to very big problems, and
in some cases the physical size of the problem representations pre-
vents solving the problems, not their computational difficulty. Our
work is motivated by this observation.

We propose graph-theoretic techniques based on cliques and bi-
cliques for compactly representing big sets of binary constraints that
have the form of 2-literal clauses. Ann, m biclique in a graph asso-
ciated with the constraints can be very compactly represented with
only n + m binary constraints and one auxiliary variable. Cliques in
the graph are associated withat-most-oneconstraints, and can be rep-
resented with a logarithmic number of binary constraints. The clique
representation turns out to be a special case of the biclique represen-
tation. We demonstrate the effectiveness of the biclique representa-
tion in making the representation of big planning problems practical.

1 Introduction

Binary constraints in the form of binary clausesl1∨ l2 are very com-
mon in many applications of CSPs and propositional satisfiability.
For example, most of the clauses in the representation of AI plan-
ning problems as CNF formulae in the propositional logic are bi-
nary clauses [11]. In structured formulae stemming from real-world
applications, sets of binary clauses have regularities that make effi-
cient reasoning and more compact representation possible. The goal
of this work is to develop techniques for representing big sets of bi-
nary clauses more compactly.

The applications that motivate our work are planning and model-
checking. Theplanning as satisfiabilityapproach was introduced by
Kautz and Selman [10, 11] and later generalized to a wide class
of model-checking problems [2]. Current generation of satisfiabil-
ity algorithms can solve planning and model-checking problems with
thousands of variables and tens of thousands of actions. Interestingly,
an obstacle to the scalability of the approach to still bigger problems
is in some cases the enormous size of the propositional formulae.

For AI planning, for instance, there exist asymptotically optimal
linear size translations into the propositional logic [14]. However, a
part of the problem-specific information which is necessary for effi-
cient reasoning, in the form of 2-literalinvariants[3, 13], has a size
that is in the worst-case quadratic in the size of the problem instance.
Typically these 2-literal clauses constitute between 50 and 95 per
cent of the formulae, or even more. An example of a typical invariant
in a planning problem is for example¬in(A,London)∨¬in(A,Paris)

1 National ICT Australia, Canberra Research Laboratory, Canberra, Australia

which indicates that an object cannot be in two locations simulta-
neously. Forn state variables there areO(n2) invariants that are 2-
literal clauses. For a planning problem withn = 5000 state variables
and a formula that encodes the search for plans of 100 time points,
if only one of the state variables is true at any given time, the cor-
responding set of binary clauses has cardinality100 × n(n−1)

2
=

1249750000 ∼ 1.2 × 109. If each clause takes 10 bytes then the
total size of the representation is about 12 gigabytes. The problem of
representing the constraint graphs compactly arises.

In this paper we propose techniques for representing the constraint
graphs more compactly with cliques and bicliques. We show how
constraint graphs that contain big cliques or bicliques can be repre-
sented more compactly than the explicit representation, and we also
show that constraint graphs arising from practically interesting ap-
plications indeed do contain big cliques and bicliques. The presence
of cliques is more obvious and they have been addressed in earlier
research. The main contribution of our work is the introduction of
techniques based on bicliques. The underlying ideas in the use of
bicliques are simple and powerful, yet their importance has not been
recognized before. We show that the clique based techniques are sub-
sumed by the biclique based techniques.

The outline of this paper is as follows. Section 2 introduces the
graph-theoretic concepts of cliques and bicliques and discusses their
computational properties. In Section 3 we discuss the compact repre-
sentation of cliques of constraint graphs. In Section 4 we address the
compact representation of constraint graphs more generally in terms
of bicliques. In Section 5 we show the effectiveness of the biclique
representation in reducing the sizes of formulae that represent an in-
dustrial size planning problem.

2 Preliminaries: Cliques and Bicliques

The techniques presented in this paper are based on cliques and bi-
cliques of graphs.

Definition 1. Let 〈N, E〉 be an undirected graph. Thena cliqueis
C ⊆ N such that{n, n′} ∈ E for everyn, n′ ∈ C such thatn 6= n′.

Hence cliques are complete subgraphs. Identification of cliques is
expensive. Testing whether a graph contains a clique of sizen is NP-
complete [9, 6]. Hence we cannot expect to have a polynomial-time
algorithm that is guaranteed to find the biggest cliques of a graph.
Approximation algorithms for identifying cliques and related sub-
graphs exist [8]. Hochbaum’s algorithms are based on reducing the
problem to integer programming and showing that the corresponding
linear programs have integers solutions. Linear programming prob-
lems can be solved in polynomial time.

Instead of using Hochbaum’s algorithm, we have used the simpler
polynomial-time algorithm without approximation guarantees that is
given in Figure 1. In many of our example applications (see Section

5) this algorithm identifies all the maximal cliques because no two
maximal cliques share a node. Of course, maximal cliques of many
graphs do not have this property.

1: procedurepartition-to-cliques(N,E)
2: n := 1;
3: S[1] := N ;
4: change := true;
5: while changedo
6: change := false;
7: if there arel1, l2 ∈ S[i] for somei ∈ {1, . . . , n}
8: such that{l1, l2} 6∈ E andl1 6= l2 then
9: change := true;

10: n := n + 1;
11: S[n] := {l2} ∪ {l|{l, l2} ∈ E};
12: S[i] := S[i]\S[n];
13: end if
14: end while

Figure 1. A polynomial-time algorithm for partitioning the nodes of a
graph to cliques. It identifies candidate cliquesS[i] that contain two nodes

without an edge between them, and splits them to two new candidate cliques.

Theorem 2. The algorithmpartition-to-cliqueswith input G =
〈N, E〉 terminates after a number of execution steps that is poly-
nomial in the size ofG, and after terminationS[i] is a clique ofG
for everyi ∈ {1, . . . , n}.

Proof. Sketch: The loop can only exit if for everyi ∈ {1, . . . , n}
there is an edge between every two nodes inS[i]. Hence on termina-
tion everyS[i] is a clique.

Since at every iterationn is incremented and the sets
S[1], . . . , S[n] form a partition of all literals to nonempty sets, the
algorithm terminates at the latest when allS[i] have size 1. Hence
the number of literals is an upper bound on the number of iterations.
On every iteration the amount of computation is polynomial.

A concept related to cliques is that of bicliques.

Definition 3. Let 〈N, E〉 be an undirected graph. Abiclique is a
pair C, C′ of setsC ⊆ N andC′ ⊆ N such thatC ∩ C′ = ∅ and
{{n1, n2}|n1 ∈ C, n2 ∈ C′} ⊆ E.

In other words, bicliques are complete bipartite subgraphs of a
graph. The problem of testing for existence of bicliques under several
size measures is NP-complete [16, 6, 12].

We have used a simple polynomial-time algorithm for identifying
bicliques in constraint graphs. The algorithm is given in Figure 2. It

1: procedure identify-biclique(N,E)
2: C1 := ∅;
3: C2 := N ; (* C1, C2 is now a trivial 0-edge biclique *)
4: repeat
5: n := a node inN\C1; (* Maximizing... *)
6: (* |C2| for the new value ofC2 if C1 = ∅ *)
7: (* (|C1| × |C2|)− (|C1|+ |C2|) if C1 6= ∅ *)
8: C1 := C1 ∪ {n}
9: C2 := C2 ∩ {m ∈ N\C1|{n, m} ∈ E};

10: until |C1| × |C2| − (|C1|+ |C2|) does not increase;

Figure 2. A polynomial-time algorithm for finding bicliques

starts with the dummy biclique∅, N , and repeatedly adds nodes to
the first part. Nodes from the second part are removed if there is no
edge between them and the new node in the first part. The nodes are
chosen to maximize the value of the biclique that is being constructed
(the size reduction obtained by the compact representation.) The al-
gorithm terminates when the value of the biclique does not increase
any more. The passage from∅, N to {n}, N ′ at the first step never
increases the value of the biclique and this case is handled specially.

Theorem 4. The algorithmidentify-bicliquewith inputG = 〈N, E〉
terminates after a number of execution steps that is polynomial in the
size ofG, and after terminationC1, C2 is a biclique ofG.

Proof. First verify that after every iterationC1, C2 is a biclique.
The number of iterations is bounded by|N | because after|N | − 1

iterationsC1 = N\{m} for somem andC2 ⊆ {m} and therefore
|C1|× |C2|− (|C1|+ |C2|) is (|N |− 1)× 1− (|N |− 1+1) = −1
or (|N |−1)×0− (|N |−1−0) = −|N |+1, and afterN iterations
it is |N | × 0 − (|N | + 0) = −|N |, and the iteration terminates.
Polynomial runtime follows because computation on every iteration
takes polynomial time.

3 Cliques in Constraint Graphs

We consider constraint graphs〈N, E〉 that represent setsS of 2-
literal clausesl ∨ l′. The setN of nodes of the graph consists of
all the literalsa and¬a for a ∈ A whereA is the set of propositional
variables, and there is an (undirected) edge{l, l′} ∈ E between the
nodesl andl′ if and only if l ∨ l′ ∈ S or l′ ∨ l ∈ S.

The clause set may have a very irregular structure and the best way
of representing it may be as is, but in many cases there are regulari-
ties that make a more compact representation possible. The simplest
regularity is perhaps the presence of anat-most-oneconstraint for a
subsetV of the variables, forbidding more than one of the variables
to be true at a time. Hence for all{v, v′} ⊆ V such thatv 6= v′,
the constraint graph has an edge{¬v,¬v′} ∈ E. The set of literals
{¬v|v ∈ V } forms a clique in the constraint graph.

In the following sections we discuss ways of representing cliques
and other regularities of constraint graphs more compactly. Irrespec-
tive of the details of the representation, the more compact represen-
tation of the cliques in a constraint graph proceeds in the same way.

1. Identify a big clique in the constraint graph.
2. If only small cliques were found, go to the last step.
3. Construct a propositional formula that represents the binary con-

straints corresponding to the clique more compactly (see Sections
3.2 and 3.3).

4. Remove the edges of the clique from the constraint graph.
5. Continue from step 1.
6. Represent the binary constraints corresponding to the remaining

edges in the constraint graph explicitly as 2-literal clauses.

In the next sections we discuss three alternative representations
of cliques of the constraint graph, starting from the trivial explicit
representation.

3.1 Explicit O(n2) Representation

For a setC of literals forming a clique in the constraint graph the
most obvious representation is as 2-literal clauses

{l ∨ l′|{l, l′} ⊆ C, l 6= l′}.

This quadratic representation of the clique is illustrated in Figure 3
by 5 mutually exclusive literals of the formv = i. The number of
non-equivalent clauses isn(n−1)

2
for n literals.

¬(v = 1)

¬(v = 2)

¬(v = 3)

¬(v = 4)

¬(v = 5)

Figure 3. Representation of a clique of the constraint graph withO(n2)
size andO(1) additional propositional variables. An edge between literals

¬(v = i) and¬(v = j) denotes their disjunction.

TheO(n2) explicit representation of the constraints becomes less
and less practical asn increases.

3.2 O(n) Representation withO(n) Auxiliary
Variables

We have devised a linear-size representation that uses a linear num-
ber of auxiliary variables. This representation is illustrated in Fig-
ure 4. The representation can be viewed as a variant of the linear-
size representations of interference constraints presented by Rinta-
nen et al. [14] and the representation of many-valued propositions by
Giunchiglia et al. [7].

The idea is to impose an arbitrary ordering on then literals, and
starting from each literal introduce a sequence of implications to the
right through a sequence of auxiliary variables, leading to the nega-
tion of each literal on the right. When one of the literals is true, all of
the auxiliary variables right from it must be true, and consequently
all of the literals to the right must be false. This guarantees that if one
of the literals is set true, all others are set false simply by applications
of the unit resolution rule employed by most satisfiability algorithms.

v = 1 v = 2 v = 3 v = 4 v = 5

x1 x2 x3 x4

Figure 4. Representation of a clique in terms ofO(n) clauses and
additional variables. An edge→ from l to l′ denotes the formulal→ l′ and

an edge6→ from l to l′ denotes the formulal→ l′.

The number of clauses in this linear-size representation is3n− 4
for n ≥ 2. For 5 values the quadratic-size and linear-size representa-
tions respectively require 10 and 11 2-literal clauses, for 6 values re-
spectively 15 and 14 clauses. Hence starting from 6 values the linear-
size representation is smaller than the quadratic-size representation.

3.3 O(n log n) Representation withO(log n)
Auxiliary Variables

Although the previous representation has an asymptotically optimal
O(n) size, the linear number of additional auxiliary variables may be
considered high. Indeed, we can substantially decrease the number of
auxiliary variables with the cost of a small increase in size.

The next representation hasO(n log n) size andO(log n) auxil-
iary variables. LetC = {l0, . . . , ln−1} be a clique consisting ofn
literals. Letx0, . . . , xm−1 be newm = dlog2 ne Boolean variables.
The constraint that only one literal can be true at a time is imposed by
associating a different binary number with each literal. Since these
binary numbers are represented in terms of the same variables, at
most one of the literals can be true at a time. The representation is

l0→(bit0(0) ∧ bit1(0) ∧ · · · ∧ bitm−1(0))
l1→(bit0(1) ∧ bit1(1) ∧ · · · ∧ bitm−1(1))
...
ln−1→(bit0(n− 1) ∧ bit1(n− 1) ∧ · · · ∧ bitm−1(n− 1))

where biti(j) = xi if the ith bit of j is 1 and biti(j) = ¬xi if the ith
bit of j is 0.

For n literals the number of the resulting 2-literal clauses is
ndlog2 ne. For 5 values the numbers of clauses are respectively 15
and 11 for this representation and the linear-size representation, and
numbers of auxiliary variables are respectively 3 and 4. For 32 val-
ues the numbers of clauses are respectively 160 and 92 and number
of auxiliary variables are respectively 5 and 31.

This representation has been used by Frisch and Peugniez [5] and
in more recent works [1], and the idea of two redundant representa-
tions connected by channelling constraints is familiar from the CSP
context [4, 15].

4 Bicliques of the Constraint Graph

The presence of cliques in constraint graphs seems to be tied to par-
ticular classes of planning, model-checking and constraint satisfac-
tion problems, and cannot be claimed to be extremely common. In-
deed, in standard planning benchmarks, cliques of sizen restrict an
n-valued state variable, which is represented in terms ofn Boolean
state variables, to have at most one value at a time.

There is a need for techniques for compactly representing more
general classes of constraint graphs. It is easy to see by a simple com-
binatorial argument that most constraint graphs do not have a com-
pact representation, but there are many practically important graphs
that do have many regularities that may be taken advantage of.

It seems that bicliques in constraint graphs are much more com-
mon than cliques. First, by partitioning any cliqueC to two dis-
joint setsC1 and C2 yields a bicliqueC1, C2. So there are bi-
cliques whenever there are cliques. Second, consider a subgraphC
that is almost a clique but not quite. LetE′ be the missing edges
so that{{n, n′}|n ∈ C, n′ ∈ C, n 6= n′} ⊆ E ∪ E′. Now
C′ = C\

S
e∈E′ e is a clique,C\C′, C′ is a biclique because all

the missing edges are between nodes inC\C′, andC\C′ may con-
tain non-trivial bicliques.

A powerful discovery is that bicliques can be represented very
compactly. When the literal setsC and C′ form a biclique, the
|C| · |C′| binary constraints can be represented by only|C| + |C′|
2-literal clauses and only one auxiliary variable. For big bicliques
this is a very big size reduction. This is illustrated in Figure 5. Notice
that the original clause set can be obtained by resolving every pair of
clauses that containx and¬x.

Figure 5. Representation ofnm binary constraints forming ann, m
biclique (left) in terms of onlyn + m 2-literal clauses and one auxiliary
variable (right). On the left, an edge betweenl andl′ denotes the formula
l ∨ l′ (equivalentlyl→ l′.) On the right, an edge→ from l to the auxiliary

variablex denotesl→x and an edge fromx to l′ denotesx→ l′.

Figure 6. A clique of 8 nodes and 28 edges (upper left) decomposed to
three 4,4 bicliques with 16 edges each. Division is along the up-down

vertical axis (upper right), along the left-right horizontal axis (lower left),
and along the front-back horizontal axis (lower right).

4.1 Relation to Compact Clique Representation

Decomposition of constraint graphs to cliques and their compact
representation with onlyO(n log n) binary clauses can be under-
stood in terms of bicliques. Hence the clique representation is sub-
sumed by the biclique representation. A clique ofn nodes corre-
sponds todlog2 ne orthogonal bicliques. Figures 6 and 7 illustrate
the reduction from 28 edges of the original clique (O(n2)) to 24
edges (O(n log n)) in the biclique representation. This can also be
illustrated by viewing the 8 nodes as 3-bit binary numbers. Now
the three bicliques correspond to partitioning the 8 numbers by the
values of the three digits. The partitions and bicliques are accord-
ing to the first bit{000, 001, 010, 011}, {100, 101, 110, 111}, the
second bit{000, 001, 100, 101}, {010, 011, 110, 111} and the third
{000, 010, 100, 110}, {001, 011, 101, 111}. The compact represen-
tation of these bicliques exactly corresponds to then log n represen-
tation of cliques from Section 3.3.

Figure 7. The invariants of the lower left biclique in Figure 6 represented
more compactly in terms of an intermediate node.

5 Application: AI Planning

In most of the standard planning benchmarks all of the edges in
the constraint graph stem from many-valued state variables that are
encoded in terms of binary variables: the graph consists of cliques
which say that each many-valued state variable can have only one
value at a time. The representations from Section 3 encode these
graphs compactly.

For the blocks world problems, if there aren blocks, the constraint
that there can be at most one block below and above a block requires
2 × n(n−1)

2
= n(n − 1) 2-literal clauses. For representing these

cliques compactly by using theO(n) representation only6n − 8 2-
literal clauses are needed. For 20 blocks this means a reduction from
20× 20× 19 = 7600 to 20× (6× 20− 8) = 2240 clauses. For 40
blocks the reduction is from62400 to 9280.

However, for many other problems the structure of constraint
graphs is more complex and there are few cliques. One problem
with only few big cliques is the airport scheduling problem from
the 2004 planning competition. Most of this problem series can be
efficiently solved by the planning as satisfiability approach but the
biggest instances require the generation of huge propositional formu-
lae with sizes of several gigabytes that exceed the physical memory
restrictions of current 32-bit microprocessors. The invariants consti-
tute more than 90 per cent of all the clauses in the CNF representation
of the problems, and only a fraction of them forms cliques. The lo-
cations of airplanes correspond to many-valued state variables, but
invariants on a number of related state variables that control the legal
movement of airplanes through the airport do not.

We have very successfully used bicliques for making the represen-
tation of the invariants more compact. See Table 1. The size reduction
of the formulae by a factor of about 9 makes it possible to generate
all the formulae required for solving the problem series, and solve
almost all of them efficiently save some of the last ones.

Interestingly, despite the big reduction in the formula sizes, those
instances that were solvable before the reduction in formula size, the
SAT solver (HaifaSAT, Siege) runtimes are improved not at all or
only minimally. The biggest reductions in total runtimes are due to
faster disk I/O and processing times during formula generation.

In addition to the airport problems, for other problems substan-
tial reductions in the number of clauses for invariants are obtained,
but the total reductions in the formula sizes are smaller, for exam-
ple for the 30 block blocks world problems 50 per cent, because the
invariants do not as strongly dominate the size of the formulae. For
the simplest problems our biclique algorithm finds all maximal bi-
cliques. This is probably not true for more complicated problems,
for example the airport problem. Hence it would be interesting to
test algorithms with approximation guarantees [8].

clauses for invariants size in MB
instance before after before after
21 4halfMUC P2 182094 13191 2.59 0.37
22 4halfMUC P3 275927 21388 4.06 0.58
23 4halfMUC P4 381675 31776 5.60 0.84
24 4halfMUC P4 383791 30407 5.72 0.90
25 4halfMUC P5 478455 41719 7.24 1.18
26 4halfMUC P6 587951 50247 8.85 1.43
27 4halfMUC P6 572292 53721 9.01 1.57
28 4halfMUC P7 670530 66060 10.62 1.89
36 5MUC P2 325136 18872 4.68 0.52
37 5MUC P3 490971 30681 7.40 0.93
38 5MUC P3 487600 29464 7.30 0.86
39 5MUC P4 655616 44647 10.08 1.34
40 5MUC P4 657309 43872 10.04 1.27
41 5MUC P4 653940 42314 9.93 1.20

Table 1. Size reduction by the biclique representation. For each problem
instance we give the number of clauses when each invariant is represented

by one 2-literal clause and when bicliques of the constraint graph are
represented compactly. The formula sizes are for DIMACS-encoded CNF

formulae per time point, including the invariants and the rest of encoding of
the planning problem. For example for 100 time points the total formula size
is obtained by multiplying by 100. The first problem instance has 1696 state
variables, the last has 4957. Solving the last instances of the series (42 to 50)
require formulae with sizes up to 8 gigabytes which do not fit in the memory
of a computer with a 32-bit address space. The shortest plan for instance 22
has length 53 and the corresponding formula without compression is 222

megabytes in the DIMACS CNF format, with clique compression 187
megabytes, and with biclique compression 31 megabytes. The numbers of

clauses for invariants are respectively 275927, 231673 and 21388.

We also made a small experiment with constraint graphs that rep-
resent interference constraints for preventing simultaneous actions if
they interfere [11]. These constraint graphs have in the worst case
n2 edges forn actions but there is a specialized representation with
an asymptotically optimal linear size [14]. The biclique representa-
tion was often moderately or much smaller than the explicit and the
specializedO(n) representation, but in some cases there was very
little reduction and the specializedO(n) representation was by far
the most compact. This possibility makes the biclique representation
unattractive for this application.

6 Conclusions and Related Work

We have considered the problem of representing big constraint
graphs more compactly based on representations that involve decom-
posing parts of the graphs to cliques and bicliques. The biclique rep-
resentation, which is the new contribution of this work, turned out
to be the more general representation as the clique representation is
subsumed by it.

Constraint graphs withn nodes may haven2 edges and our com-
pact biclique representation does not improve thisO(n2) worst-case
size. However, our experiments in Section 5 show that for practically
interesting constraint graphs big size reductions are possible, by a
factor of 10, and this may be the difference between an impractically
big SAT problem (with respect to the memory requirements) and a
relatively easily solvable one.

Acknowledgements

This research was supported by DFG grant RI 1177/2-1 (during the
work at the Albert-Ludwigs-Universität Freiburg) and by National
ICT Australia (NICTA). NICTA is funded through the Australian

Government’sBacking Australia’s Abilityinitiative, in part through
the Australian National Research Council.

REFERENCES
[1] Carlos Anśotegui and Felip Manya, ‘Mapping problems with finite-

domain variables into problems with Boolean variables’, inSAT 2004
- Theory and Applications of Satisfiability Testing: 7th International
Conference, SAT 2004, Vancouver, BC, Canada, May 10-13, 2004, Re-
vised Selected Papers, eds., Holger Hoos and David G. Mitchell, num-
ber 3542 in Lecture Notes in Computer Science, pp. 1–15. Springer-
Verlag, (2005).

[2] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan
Zhu, ‘Symbolic model checking without BDDs’, inTools and Algo-
rithms for the Construction and Analysis of Systems, Proceedings of 5th
International Conference, TACAS’99, ed., W. R. Cleaveland, volume
1579 of Lecture Notes in Computer Science, pp. 193–207. Springer-
Verlag, (1999).

[3] Avrim L. Blum and Merrick L. Furst, ‘Fast planning through planning
graph analysis’,Artificial Intelligence, 90(1-2), 281–300, (1997).

[4] B. M. W. Cheng, K. M. F. Choi, J. H. M. Lee, and J. C. K. Wu, ‘In-
creasing constraint propagation by redundant modeling: an experience
report’,Constraints, 4, 167–192, (1999).

[5] Alan M. Frisch and Timothy J. Peugniez, ‘Solving non-Boolean sat-
isfiability problems with stochastic local search’, inProceedings of
the 17th International Joint Conference on Artificial Intelligence, ed.,
Bernhard Nebel, pp. 282–288. Morgan Kaufmann Publishers, (2001).

[6] M. R. Garey and D. S. Johnson,Computers and Intractability, W. H.
Freeman and Company, San Francisco, 1979.

[7] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman Mc-
Cain, and Hudson Turner, ‘Nonmonotonic causal theories’,Artificial
Intelligence, 49–104, (2004).

[8] Dorit S. Hochbaum, ‘Approximating clique and biclique problems’,
Journal of Algorithms, 29, 174–200, (1998).

[9] R.M. Karp, ‘Reducibility among combinatorial problems’, inComplex-
ity of Computer Computations, eds., R.E. Miller and J. W. Thatcher, pp.
85–103. Plenum Press, (1972).

[10] Henry Kautz and Bart Selman, ‘Planning as satisfiability’, inProceed-
ings of the 10th European Conference on Artificial Intelligence, ed.,
Bernd Neumann, pp. 359–363. John Wiley & Sons, (1992).

[11] Henry Kautz and Bart Selman, ‘Pushing the envelope: planning, propo-
sitional logic, and stochastic search’, inProceedings of the 13th Na-
tional Conference on Artificial Intelligence and the 8th Innovative Ap-
plications of Artificial Intelligence Conference, pp. 1194–1201. AAAI
Press, (August 1996).

[12] Reńe Peeters, ‘The maximum edge biclique problem is NP-complete’,
Discrete Applied Mathematics, 131(3), 651–654, (2003).

[13] Jussi Rintanen, ‘A planning algorithm not based on directional search’,
in Principles of Knowledge Representation and Reasoning: Proceed-
ings of the Sixth International Conference (KR ’98), eds., A. G. Cohn,
L. K. Schubert, and S. C. Shapiro, pp. 617–624. Morgan Kaufmann
Publishers, (June 1998).

[14] Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä, ‘Planning as sat-
isfiability: parallel plans and algorithms for plan search’, Report 216,
Albert-Ludwigs-Universiẗat Freiburg, Institut f̈ur Informatik, (2005).

[15] Barbara. M. Smith, K. Stergiou, and T. Walsh, ‘Using auxiliary vari-
ables and implied constraints to model non-binary problems’, inPro-
ceedings of the 17th National Conference on Artificial Intelligence
(AAAI-2000) and the 12th Conference on Innovative Applications of
Artificial Intelligence (IAAI-2000), pp. 182–187. AAAI Press, (2000).

[16] M. Yannakakis, ‘Node- and edge-deletion NP-complete problems’, in
Proceedings of the Tenth Annual ACM Symposium on the Theory of
Computing, pp. 253–264. The Association for Computing Machinery,
(1978).

