
Evaluation Strategies for Planning as Satisfiability

Jussi Rintanen
Albert-Ludwigs-Universität Freiburg

Germany

Jussi Rintanen August 26, ECAI’04 1/49

This work

• We consider evaluation strategies for satisfiability planning:
find a (not necessarily shortest) plan.
Trade-off: quality vs. cost to produce.

• Application domain: any approach to planning in which basic
step is finding a plan of a given length (like planning as
satisfiability (or CSP, MILP, ...), Graphplan, ...)

• Significance: speed-ups of 0, 1, 2, 3, 4, ... orders of magnitude
in comparison to the standard sequential evaluation strategy
(as used in Graphplan, BLACKBOX, ...)
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Strengths of satisfiability planning (SATP)

Satisfiability planning (Kautz & Selman, 1992/96) seems to be
the most efficient and promising approach for solving (inherently)
difficult planning problems:

• optimal solutions to otherwise easy problems
(Most of the standard planning benchmarks are solvable by
very simple poly-time algorithms!!!)

• problems in the phase transition region [Rintanen, KR’04]

• difficult real-world planning problems

Jussi Rintanen August 26, ECAI’04 3/49

SATP vs. heuristic state-space planning

Heuristic state-space search [Bonet & Geffner 2000], e.g. the
HSP planner, seems to have been considered stronger than
SATP on many problems, but

• apples vs. oranges: SATP planners like BLACKBOX give
optimality guarantees, planners like HSP do not, and

• nobody has used SATP planners for non-optimal planning.

So how efficient SATP actually is when optimality is not
required?????
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SATP as non-optimal planning

• Relax all optimality requirements: any plan will do!

• Consequence (this work): SATP becomes extremely good on
standard big-and-easy benchmarks.

• However, problems that are very easy and very big likely
remain to be solved by more specialized planning techniques:
After all, SAT solvers are general-purpose problem solvers
and cannot be as efficient as more specialized techniques on
all types of problems.
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The sequential evaluation algorithm

Formula φj represents the question Is there a plan of length j?

PROCEDURE AlgorithmS()
i := 0;
REPEAT

test satisfiability of φi;
IF φi is satisfiable THEN terminate;
i := i + 1;

UNTIL 1=0;

This algorithm proves that the plan has optimal length!!!
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Experimentation

• How do runtime profiles of different benchmarks look like?

1. benchmarks from planning competitions 1998, 2000, 2002
2. samples from the set of all instances [Rintanen, KR’04]

• Tests were run with Siege SAT solver version 4 (by Lawrence
Ryan of University of Washington and Synopsys).

(This is one of the best SAT solvers for planning problems.)

• Siege randomizes ⇒ We give average runtimes over 40 runs.
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Difficult problems with 20 state variables

• Sampled from the space of all problems instances with 20
state variables, 40 or 42 STRIPS operators each having 3
precondition literals and 2 effect literals.

• This is in the phase transition region [Rintanen, KR’04].

• We show here some of the most difficult instances.

• Easier instances are solved (by satisfiability planners) in
milliseconds. (Also ones with many more state variables.)
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Observations

• Characteristic shape:

• Most of the difficulty is in the last
unsatisfiable formulae.

• Devise evaluation strategies that get
to evaluate the easier satisfiable
formulae early!!
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Algorithm A

• n processes: evaluate n plan lengths simultaneously (starting
from lengths 0 to n − 1)

• When a process finishes one length, in continues with the first
unallocated one.

• Special case n = 1 is Algorithm S.
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Algorithm B

• Evaluate all plan lengths simultaneously at different rates.

• If rate of length n is r, evaluate length n + 1 at rate γr.

γ is a constant 0 < γ < 1.

• The CPU times allocated to the formulae form a geometric
sequence

tγ0, tγ1, tγ2, . . .

with a finite sum
t

1 − γ
.
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Properties of Algorithm B

• The first unfinished formula gets 1 − γ of the CPU.

With γ = 0.9 this is 1

10
, with γ = 0.5 it is 1

2
.

• Speed-up is between 1 − γ and ∞.

Speed-up =
runtime with Algorithm S
runtime with Algorithm B

Worst-case slow-down only a constant factor!

Speed-up can be arbitrarily high!!
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Algorithm A with n

instance 1 2 4 8 16
logistics-39-0 - - 54.2 8.7 5.4
logistics-39-1 - 564.9 84.2 15.6 5.3
logistics-40-0 1279.0 732.8 86.7 10.6 5.1
logistics-40-1 - - 59.9 42.7 8.3
logistics-41-0 - - 375.0 4.6 8.6
logistics-41-1 - - 138.3 18.8 7.7

Alg. S Algorithm B with γ

instance 0.500 0.750 0.875 0.938
logistics-39-0 - 136.4 17.2 9.5 10.1
logistics-39-1 - 86.2 11.6 7.8 8.9
logistics-40-0 1279.0 83.8 11.5 7.5 8.7
logistics-40-1 - 206.3 29.5 15.6 15.7
logistics-41-0 - 70.9 13.9 11.1 13.7
logistics-41-1 - 219.2 26.0 14.2 14.5
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Alg. S Algorithm B with γ

instance 0.500 0.750 0.875 0.938
blocks-22-0 150.1 163.0 99.9 53.4 40.9
blocks-24-0 2355.8 1822.8 390.1 171.2 95.0
blocks-26-0 - 4100.6 1919.6 547.1 243.0
blocks-28-0 - 2041.3 545.6 229.4 155.7
blocks-30-0 - 22777.6 3573.0 1462.2 900.2
blocks-32-0 - > 27h > 27h 7590.5 2637.2
blocks-34-0 219.4 231.0 238.5 246.3 236.4

Note: We can “improve” most of the runtimes on these slides to
fractions by considering only e.g. plan lengths 0, 10, 20, 30, . . ..
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Alg. S Algorithm B with γ

instance 0.500 0.750 0.875 0.938
gripper-3 0.5 0.5 0.2 0.2 0.3
gripper-4 14.2 3.6 1.4 0.5 0.4
gripper-5 710.1 10.4 1.8 0.6 0.4
gripper-6 - 28.6 4.7 2.3 2.3
gripper-7 - 1600.4 82.6 10.8 3.8
gripper-8 - 9786.4 393.0 42.1 17.5
gripper-9 - > 27h 2999.7 117.9 26.6
gripper-10 - > 27h 12027.4 183.3 34.7
gripper-11 - > 27h 3712.5 55.1 9.4
gripper-12 - > 27h 43813.2 198.9 19.4
gripper-13 - > 27h > 27h 761.4 119.6
gripper-14 - > 27h > 27h 20949.6 892.3
gripper-15 - > 27h > 27h 3412.9 160.3
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Alg. S Algorithm B with γ

instance 0.500 0.750 0.875 0.938
sched-47-1 - 7153.6 370.5 113.2 92.5
sched-47-2 - 1512.2 100.0 51.2 54.8
sched-48-0 - 380.3 107.9 105.3 80.4
sched-48-1 - 252.0 50.9 25.9 27.7
sched-48-2 - 238.7 40.5 28.9 32.9
sched-49-0 - 29178.4 802.6 103.0 59.7
sched-49-1 - 22.2 13.9 17.1 26.6
sched-49-2 152.0 95.7 45.5 33.7 39.7
sched-50-0 140.1 27.8 14.5 13.5 14.8
sched-50-1 - > 27h 4813.1 664.0 358.7
sched-50-2 - 104.3 35.1 27.5 32.4
sched-51-0 - > 27h 2768.4 389.3 212.9
sched-51-1 - 30011.7 1033.0 209.6 144.5
sched-51-2 - > 27h 4236.0 825.8 605.7
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Alg. S Algorithm B with γ

instance 0.500 0.750 0.875 0.938
driver-4-4-8 0.3 0.4 0.6 0.9 1.6
driver-5-5-10 805.4 754.0 304.0 284.4 376.4
driver-5-5-15 83.1 111.1 136.5 170.3 272.9
driver-5-5-20 667.1 103.8 92.7 134.1 230.3
driver-5-5-25 - > 27h 24641.5 10817.7 10851.0
driver-8-6-25 - > 27h > 27h 17485.9 5429.7
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Alg. S Algorithm B with γ

instance 0.500 0.750 0.875 0.938
depot-09-5451 12.5 21.4 39.1 74.7 145.8
depot-10-7654 0.1 0.1 0.1 0.2 0.2
depot-11-8765 0.4 0.6 0.7 1.1 1.8
depot-12-9876 148.1 3.2 2.9 3.9 6.0
depot-13-5646 0.1 0.1 0.1 0.2 0.2
depot-14-7654 0.2 0.3 0.5 0.8 1.4
depot-15-4534 63.8 124.6 246.1 489.1 975.1
depot-16-4398 0.1 0.1 0.1 0.2 0.2
depot-17-6587 0.1 0.1 0.1 0.1 0.2
depot-18-1916 2.6 1.4 1.7 2.4 4.0
depot-19-6178 0.2 0.2 0.3 0.5 0.7
depot-20-7615 51.2 6.8 4.5 5.4 8.1
depot-21-8715 0.3 0.5 0.9 1.7 3.0
depot-22-1817 174.9 347.3 692.1 1381.8 2761.2
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New efficient SAT encodings (JELIA’04 paper)

Very efficient encodings of a relaxed notion of parallel plans
(based on an idea of [Dimopoulos et al. 1997]):
Parallel application of
operators is allowed if they
can be linearized to at least
one total order.

n Russian dolls can be
nested in one step.
Standard parallelism: need
n − 1 steps.
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Conclusions

• Our work makes the trade-off between plan quality and
planning difficulty in satisfiability planning explicit.

• Possibility of arbitrarily high performance gains is obtained by
accepting the possibility of a small constant-factor slow-down
and the loss of guarantees for plan optimality.

• A planner based on the new evaluation algorithms and new
efficient encodings [Rintanen, Heljanko & Niemelä, JELIA’04]
outperforms Kautz & Selman’s BLACKBOX by ..,3,4,5,6,...
orders of magnitude on some problems.
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More on the topic

Jussi Rintanen. Automated planning, 2004.

Jussi Rintanen, Keijo Heljanko and Ilkka Niemelä. Parallel
encodings of classical planning as satisfiability, Logics in
Artificial Intelligence, Ninth European Conference, JELIA’04,
Lecture Notes in Computer Science, Springer-Verlag, 2004.

Jussi Rintanen, Phase transitions in classical planning: an
experimental study, in Proceedings of the 14th International
Conference on Automated Planning and Scheduling, pages
101–110, AAAI Press, 2004. (+ also see slides on my web page)
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