

Strengths of satisfiability planning (SATP)

Satisfiability planning (Kautz & Selman, 1992/96) seems to be the most efficient and promising approach for solving (inherently) difficult planning problems:

- optimal solutions to otherwise easy problems (Most of the standard planning benchmarks are solvable by very simple poly-time algorithms!!!)
- problems in the phase transition region [Rintanen, KR'04]
- difficult real-world planning problems

Jussi Rintanen

August 26, ECAI'04 3/49

SATP vs. heuristic state-space planning

Heuristic state-space search [Bonet & Geffner 2000], e.g. the HSP planner, seems to have been considered stronger than SATP on many problems, *but*

- apples vs. oranges: SATP planners like BLACKBOX give optimality guarantees, planners like HSP do not, and
- nobody has used SATP planners for non-optimal planning.

So how efficient SATP actually is when optimality is not required?????

Jussi Rintanen

August 26, ECAI'04 4/49

Experimentation

- How do runtime profiles of different benchmarks look like?
- benchmarks from planning competitions 1998, 2000, 2002
 samples from the set of all instances [Rintanen, KR'04]
- Tests were run with Siege SAT solver version 4 (by Lawrence Ryan of University of Washington and Synopsys).

(This is one of the best SAT solvers for planning problems.)

• Siege randomizes \Rightarrow We give average runtimes over 40 runs.

Jussi Rintanen

August 26, ECAI'04 7/49

Difficult problems with 20 state variables

- Sampled from the space of all problems instances with 20 state variables, 40 or 42 STRIPS operators each having 3 precondition literals and 2 effect literals.
- This is in the phase transition region [Rintanen, KR'04].
- We show here some of the most difficult instances.
- Easier instances are solved (by satisfiability planners) in milliseconds. (Also ones with many more state variables.)

Jussi Rintanen

```
August 26, ECAI'04 14/49
```


Algorithm A n processes: evaluate n plan lengths simultaneously (starting from lengths 0 to n - 1) When a process finishes one length, in continues with the first unallocated one. Special case n = 1 is Algorithm S.

	Algorith	Algorithm A with n							
instance	1	2	4	8	16				
logistics-39-0) -	-	54.2	8.7	5.4				
logistics-39-1	-	564.9	84.2	15.6	5.3				
logistics-40-0) 1279.0	732.8	86.7	10.6	5.1				
logistics-40-1	-	-	59.9	42.7	8.3				
logistics-41-0) -	-	375.0	4.6	8.6				
logistics-41-1	-	-	138.3	18.8	7.7				
	Alg. S	Algorithm B with γ							
instance		0.500	0.750	0.875	0.938				
logistics-39-0) -	136.4	17.2	9.5	10.1				
logistics-39-1	-	86.2	11.6	7.8	8.9				
logistics-40-0) 1279.0	83.8	11.5	7.5	8.7				
logistics-40-1	-	206.3	29.5	15.6	15.7				
logistics-41-0) -	70.9	13.9	11.1	13.7				
logistics-41-1	-	219.2	26.0	14.2	14.5				

	Alg. S	Algorithm	B with γ		
instance		0.500	0.750	0.875	0.938
blocks-22-0	150.1	163.0	99.9	53.4	40.9
blocks-24-0	2355.8	1822.8	390.1	171.2	95.0
blocks-26-0	-	4100.6	1919.6	547.1	243.0
blocks-28-0	-	2041.3	545.6	229.4	155.7
blocks-30-0	-	22777.6	3573.0	1462.2	900.2
blocks-32-0	-	> 27h	> 27h	7590.5	2637.2
blocks-34-0	219.4	231.0	238.5	246.3	236.4

Note: We can "improve" most of the runtimes on these slides to fractions by considering only e.g. plan lengths $0, 10, 20, 30, \ldots$

Jussi Rintanen

August 26, ECAI'04 42/49

	Alg. S	Algorith	m B with γ		
instance	Ū	0.500	0.750	0.875	0.938
gripper-3	0.5	0.5	0.2	0.2	0.3
gripper-4	14.2	3.6	1.4	0.5	0.4
gripper-5	710.1	10.4	1.8	0.6	0.4
gripper-6	-	28.6	4.7	2.3	2.3
gripper-7	-	1600.4	82.6	10.8	3.8
gripper-8	-	9786.4	393.0	42.1	17.5
gripper-9	-	> 27h	2999.7	117.9	26.6
gripper-10	-	> 27h	12027.4	183.3	34.7
gripper-11	-	> 27h	3712.5	55.1	9.4
gripper-12	-	> 27h	43813.2	198.9	19.4
gripper-13	-	> 27h	> 27h	761.4	119.6
gripper-14	-	> 27h	> 27h	20949.6	892.3
gripper-15	-	> 27h	> 27h	3412.9	160.3

0.500 0.750 0.875 0.938 instance sched-47-1 7153.6 370.5 113.2 92.5 sched-47-2 1512.2 100.0 51.2 54.8 sched-48-0 380.3 107.9 105.3 80.4 sched-48-1 -252.0 50.9 25.9 27.7 sched-48-2 28.9 32.9 238.7 40.5 sched-49-0 29178.4 802.6 103.0 59.7 sched-49-1 22.2 13.9 17.1 26.6 sched-49-2 152.0 95.7 45.5 33.7 39.7 sched-50-0 140.1 27.8 14.5 13.5 14.8 sched-50-1 > 27h4813.1 664.0 358.7 sched-50-2 35.1 27.5 104.3 32.4 sched-51-0 -> 27h2768.4 389.3 212.9 sched-51-1 1033.0 209.6 -30011.7 144.5 sched-51-2 > 27h4236.0 825.8 -605.7

Alg. S | Algorithm B with γ

Jussi Rintanen

August 26, ECAI'04 44/49

Jussi Rintanen

August 26, ECAI'04 43/49

		Alg. S	Algorith	m B with γ	r		
i	nstance	Ū	0.500	0.750	0.875	0.938	
C	driver-4-4-8	0.3	0.4	0.6	0.9	1.6	
0	driver-5-5-10	805.4	754.0	304.0	284.4	376.4	
0	driver-5-5-15	83.1	111.1	136.5	170.3	272.9	
0	driver-5-5-20	667.1	103.8	92.7	134.1	230.3	
0	driver-5-5-25	-	> 27h	24641.5	10817.7	10851.0	
0	driver-8-6-25	-	> 27h	> 27h	17485.9	5429.7	
Distant	en				Augu	st 26, ECAI'04	45/49

	Alg. S	Algorit	hm B wit	h γ	
instance		0.500	0.750	0.875	0.938
depot-09-5451	12.5	21.4	39.1	74.7	145.8
depot-10-7654	0.1	0.1	0.1	0.2	0.2
depot-11-8765	0.4	0.6	0.7	1.1	1.8
depot-12-9876	148.1	3.2	2.9	3.9	6.0
depot-13-5646	0.1	0.1	0.1	0.2	0.2
depot-14-7654	0.2	0.3	0.5	0.8	1.4
depot-15-4534	63.8	124.6	246.1	489.1	975.1
depot-16-4398	0.1	0.1	0.1	0.2	0.2
depot-17-6587	0.1	0.1	0.1	0.1	0.2
depot-18-1916	2.6	1.4	1.7	2.4	4.0
depot-19-6178	0.2	0.2	0.3	0.5	0.7
depot-20-7615	51.2	6.8	4.5	5.4	8.1
depot-21-8715	0.3	0.5	0.9	1.7	3.0
depot-22-1817	174.9	347.3	692.1	1381.8	2761.2
en				Aug	ust 26, ECAI'04

New efficient SAT encodings (JELIA'04 paper)

Very efficient encodings of a relaxed notion of parallel plans (based on an idea of [Dimopoulos et al. 1997]):

Parallel application of operators is allowed if they can be linearized to *at least one total order*.

n Russian dolls can be nested in **one step**. Standard parallelism: need n-1 steps.

Jussi Rintanen

August 26, ECAI'04 47/49

Conclusions

- Our work makes the trade-off between plan quality and planning difficulty in satisfiability planning explicit.
- Possibility of arbitrarily high performance gains is obtained by accepting the possibility of a small constant-factor slow-down and the loss of guarantees for plan optimality.
- A planner based on the new evaluation algorithms and new efficient encodings [Rintanen, Heljanko & Niemelä, JELIA'04] outperforms Kautz & Selman's BLACKBOX by ...,3,4,5,6,... orders of magnitude on some problems.

Jussi Rintanen

August 26, ECAI'04 48/49

More on the topic

Jussi Rintanen. Automated planning, 2004.

Jussi Rintanen, Keijo Heljanko and Ilkka Niemelä. *Parallel encodings of classical planning as satisfiability*, Logics in Artificial Intelligence, Ninth European Conference, JELIA'04, Lecture Notes in Computer Science, Springer-Verlag, 2004.

Jussi Rintanen, *Phase transitions in classical planning: an experimental study*, in Proceedings of the 14th International Conference on Automated Planning and Scheduling, pages 101–110, AAAI Press, 2004. (+ also see slides on my web page)

Jussi Rintanen

August 26, ECAI'04 49/49

