

Introduction

- SAT planning
 - vs. state-space search
- 3 Algorithm S
 - Experimentation
- 5 Algorithms
 - Algorithm A
 - Algorithm B
 - Illustration

Experiments

Conclusion

Evaluation Strategies for Planning as Satisfiability

Jussi Rintanen

Albert-Ludwigs-Universität Freiburg, Germany

August 26, ECAI'04

Introduction

- We consider evaluation strategies for satisfiability planning: find a (not necessarily shortest) plan. Trade-off: quality vs. cost to produce.
- Application domain: any approach to planning in which basic step is finding a plan of a given length, like planning as satisfiability, by CSP, by MILP, Graphplan, ...
- Significance: speed-ups of 0, 1, 2, 3, 4, ... orders of magnitude in comparison to the standard sequential evaluation strategy (as used in Graphplan, BLACKBOX, ...)

Satisfiability planning (Kautz & Selman, 1992/96) is an efficient approach for solving inherently difficult planning problems:

- optimal solutions to otherwise easy problems (Most of the standard planning benchmarks are solvable non-optimally by simple poly-time algorithms!!!)
- hard problems in the phase transition region [Rintanen, KR'04]
- combinatorially difficult planning problems

ntroduction

SAT planning vs. state-space search Algorithm S Experimentation Algorithms Experiments Conclusion Heuristic state-space search [Bonet & Geffner 2000] has been considered stronger than SATP on many non-optimal planning problems, but

- apples vs. oranges: SATP planners give optimality guarantees but planners like HSP do not, and
- nobody has used SATP planners for non-optimal planning.

Open question

How efficient SATP actually is when optimality is not required?

Introduction SAT planning vs. state-space search Algorithm S Experimentation Algorithms Experiments Conclusion

SATP for non-optimal planning

Goal Non-optimal planning: relax all optimality requirements, any plan will do! Consequence SATP becomes extremely good on standard big-and-easy benchmarks. Disclaimer Problems that are very easy and very big likely remain to be solved by more specialized planning techniques: After all, SAT solvers are general-purpose problem solvers and cannot be as efficient as more specialized techniques on all types of problems.

SAT planning vs. state-space search Algorithm S Experimentation Algorithms Experiments Conclusion

Formula ϕ_j represents the question *Is there a plan of length j*?

```
PROCEDURE AlgorithmS()

i := 0;

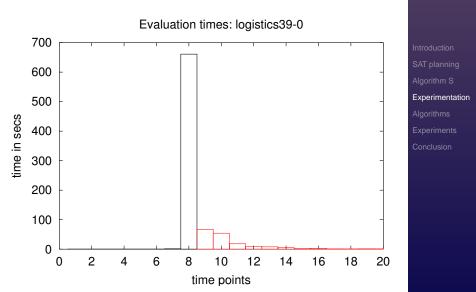
REPEAT

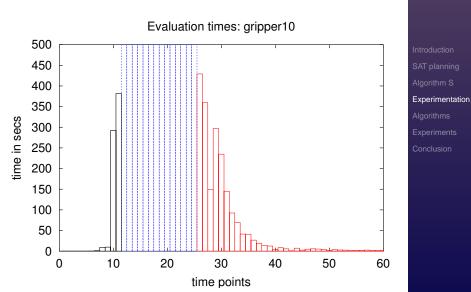
test satisfiability of \phi_i;

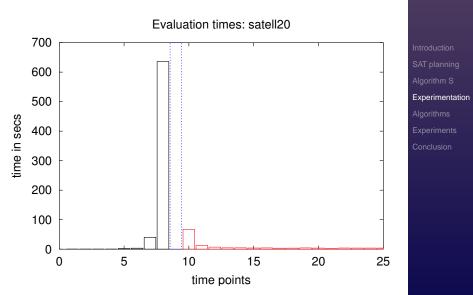
IF \phi_i is satisfiable THEN terminate;

i := i + 1;

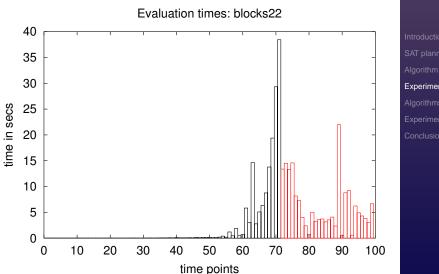
UNTIL 1=0;
```

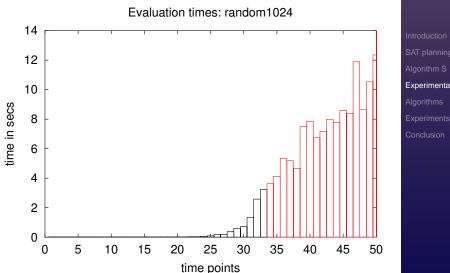

Problem


This algorithm proves that the plan has optimal length!!!

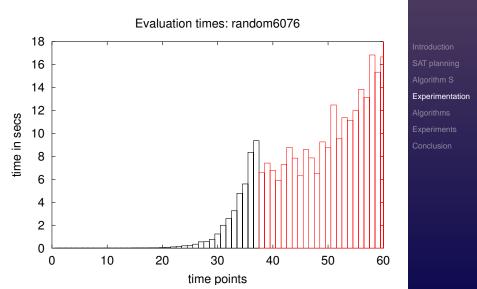

Experimentation

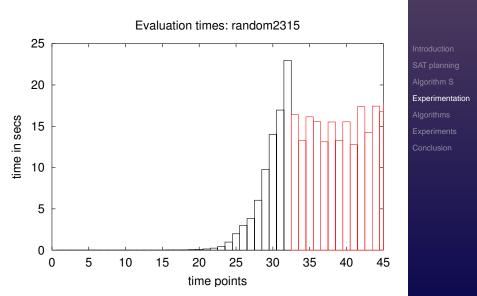

- How do runtime profiles of different benchmarks look like?
 - benchmarks from planning competitions 1998, 2000, 2002
 - samples from the set of all instances [Rintanen KR'04]
- Tests were run with Siege SAT solver version 4 (by Lawrence Ryan of University of Washington and Synopsys).

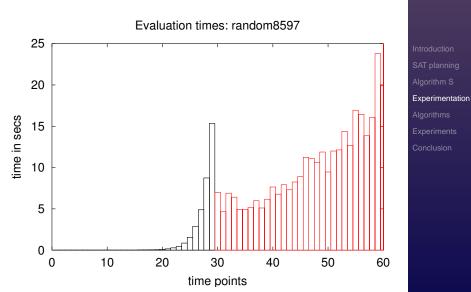

This is one of the best SAT solvers for planning problems.



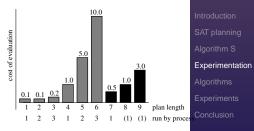
Experimentation




Difficult problems with 20 state variables


- Sampled from the space of all problems instances with 20 state variables, 40 or 42 STRIPS operators each having 3 precondition literals and 2 effect literals.
- This is in the phase transition region [Rintanen, KR'04].
- We show here some of the most difficult instances.
- Easier instances are solved (by satisfiability planners) in milliseconds.

Experimentation



The important insight

- Characteristic shape:
- Most of the difficulty is in the last unsatisfiable formulae.
- Devise evaluation strategies that get to evaluate the easier satisfiable formulae early!!

- n processes: evaluate n plan lengths simultaneously (starting from lengths 0 to n - 1)
- When a process finishes one length, in continues with the first unallocated one.
- Special case n = 1 is Algorithm S.

Introduction SAT planning Algorithm S Experimentation Algorithms Algorithm B Illustration Experiments Conclusion

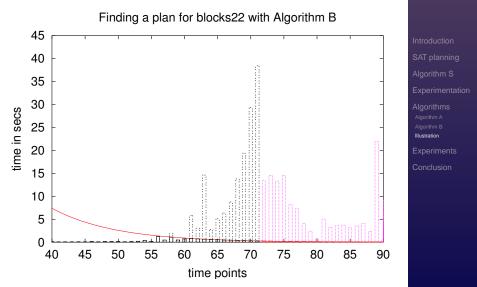
Algorithm B

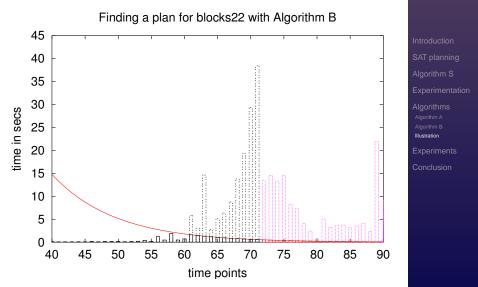
- Evaluate all plan lengths simultaneously at different rates.
- If rate of length n is r, evaluate length n+1 at rate γr.
 γ is a constant 0 < γ < 1.
- The CPU times allocated to the formulae form a geometric sequence

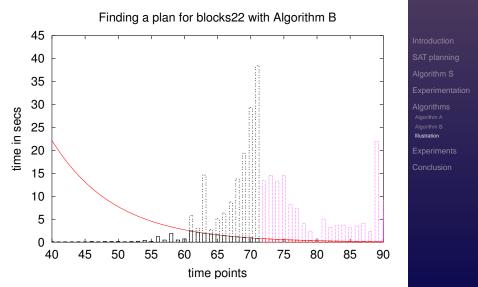
$$t\gamma^0, t\gamma^1, t\gamma^2, \dots$$

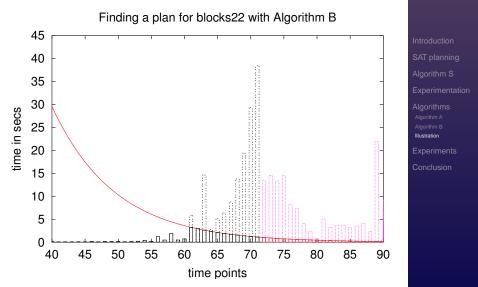
with a finite sum

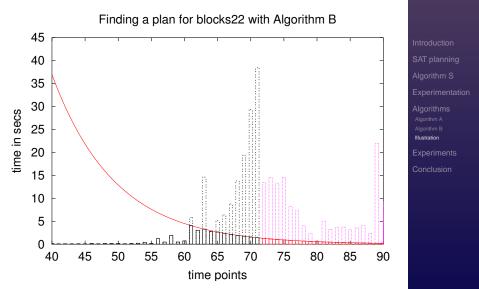
$$\frac{t}{1-\gamma}$$

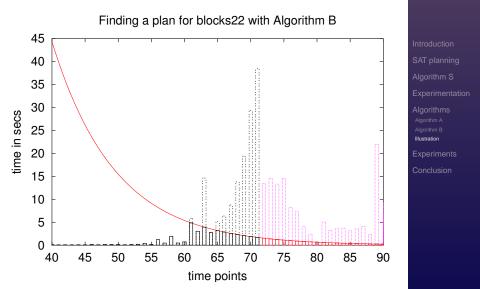

٠

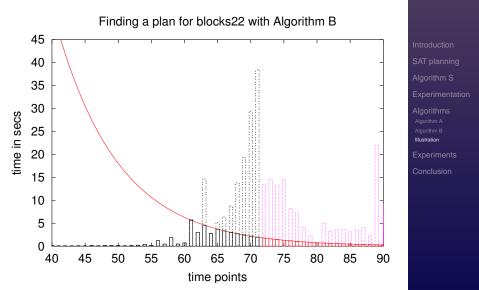

ntroduction SAT planning Algorithm S Experimentation Algorithms Algorithm B Mustration Experiments Conclusion

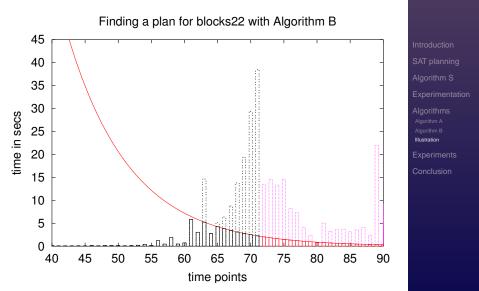

Properties of Algorithm B

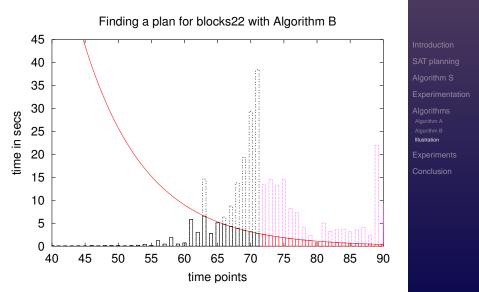

- The first unfinished formula gets 1γ of the CPU. With $\gamma = 0.9$ this is $\frac{1}{10}$, with $\gamma = 0.5$ it is $\frac{1}{2}$.
- Speed-up is between 1γ and ∞ . Speed-up = $\frac{\text{runtime with Algorithm S}}{\text{runtime with Algorithm B}}$

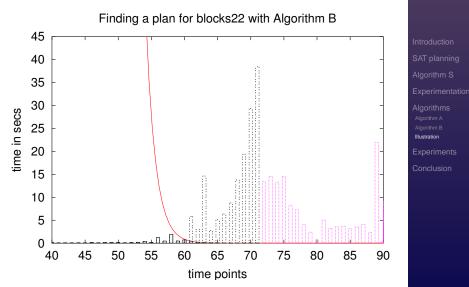

Worst-case slow-down only a constant factor! Speed-up can be arbitrarily high!! Introduction SAT planning Algorithm S Experimentation Algorithm A Algorithm B Illustration Experiments

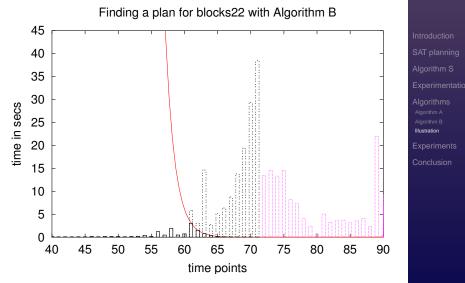


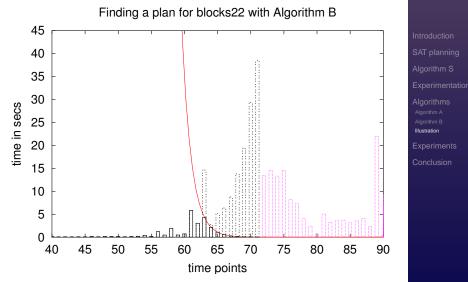


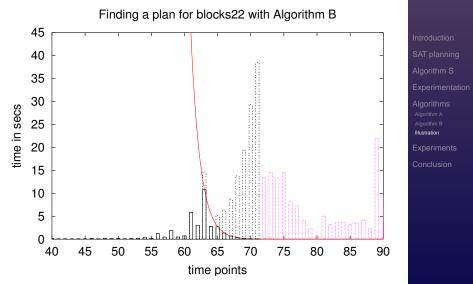


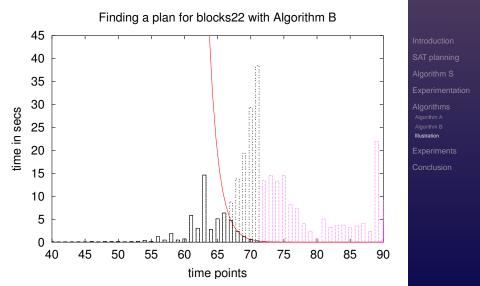


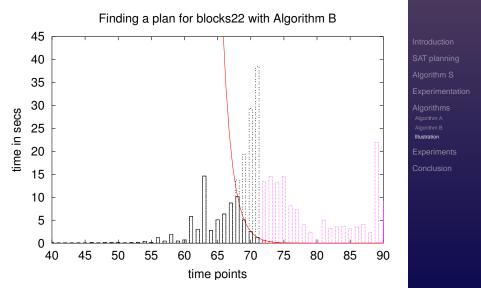


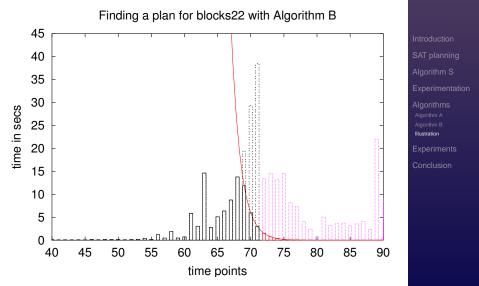


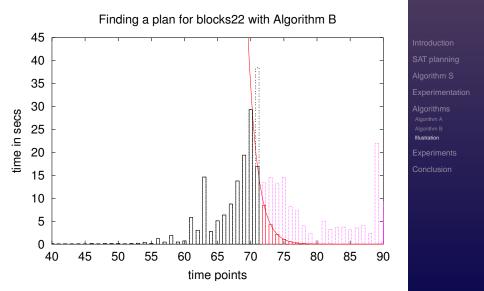


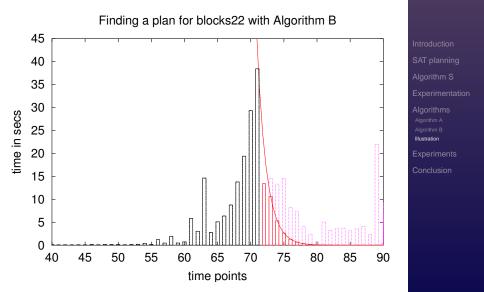












Algorithm A with n							
instance	1	2	4	8	16		
logistics-39-0	-	-	54.2	8.7	5.4		
logistics-39-1	-	564.9	84.2	15.6	5.3		
logistics-40-0	1279.0	732.8	86.7	10.6	5.1		
logistics-40-1	-	-	59.9	42.7	8.3		
logistics-41-0	-	-	375.0	4.6	8.6		
logistics-41-1	-	-	138.3	18.8	7.7		
	Alg. S	Algorithm B with γ					
instance		0.500	0.750	0.875	0.938		
					0.000		
logistics-39-0	-	136.4	17.2	9.5	10.1		
logistics-39-0 logistics-39-1	-		17.2 11.6	9.5 7.8			
0	- - 1279.0	136.4		0.0	10.1		
logistics-39-1	- - 1279.0 -	136.4 86.2	11.6	7.8	10.1 8.9		
logistics-39-1 logistics-40-0	- 1279.0 -	136.4 86.2 83.8	11.6 11.5	7.8 7.5	10.1 8.9 8.7		

	Alg. S	Algorithm B with γ					
instance		0.500	0.750	0.875	0.938		
blocks-22-0	150.1	163.0	99.9	53.4	40.9		
blocks-24-0	2355.8	1822.8	390.1	171.2	95.0		
blocks-26-0	-	4100.6	1919.6	547.1	243.0		
blocks-28-0	-	2041.3	545.6	229.4	155.7		
blocks-30-0	-	22777.6	3573.0	1462.2	900.2		
blocks-32-0	-	> 27h	> 27h	7590.5	2637.2		
blocks-34-0	219.4	231.0	238.5	246.3	236.4		

Introduction SAT planning Algorithm S Experimentation Algorithms Experiments Conclusion

Note

We can improve most of the runtimes on these slides to fractions by considering only e.g. plan lengths $0, 10, 20, 30, \ldots$

Efficiency on standard benchmarks

	Alg. S	Algorithm B with γ					
instance		0.500	0.750	0.875	0.938		
gripper-3	0.5	0.5	0.2	0.2	0.3		
gripper-4	14.2	3.6	1.4	0.5	0.4		
gripper-5	710.1	10.4	1.8	0.6	0.4		
gripper-6	-	28.6	4.7	2.3	2.3		
gripper-7	-	1600.4	82.6	10.8	3.8		
gripper-8	-	9786.4	393.0	42.1	17.5		
gripper-9	-	> 27h	2999.7	117.9	26.6		
gripper-10	-	> 27h	12027.4	183.3	34.7		
gripper-11	-	> 27h	3712.5	55.1	9.4		
gripper-12	-	> 27h	43813.2	198.9	19.4		
gripper-13	-	> 27h	> 27h	761.4	119.6		
gripper-14	-	> 27h	> 27h	20949.6	892.3		
gripper-15	-	> 27h	> 27h	3412.9	160.3		

Efficiency on standard benchmarks

	Alg. S	Algorithm B with γ					
instance		0.500	0.750	0.875	0.938		
sched-47-1	-	7153.6	370.5	113.2	92.5		
sched-47-2	-	1512.2	100.0	51.2	54.8		
sched-48-0	-	380.3	107.9	105.3	80.4		
sched-48-1	-	252.0	50.9	25.9	27.7		
sched-48-2	-	238.7	40.5	28.9	32.9		
sched-49-0	-	29178.4	802.6	103.0	59.7		
sched-49-1	-	22.2	13.9	17.1	26.6		
sched-49-2	152.0	95.7	45.5	33.7	39.7		
sched-50-0	140.1	27.8	14.5	13.5	14.8		
sched-50-1	-	> 27h	4813.1	664.0	358.7		
sched-50-2	-	104.3	35.1	27.5	32.4		
sched-51-0	-	> 27h	2768.4	389.3	212.9		
sched-51-1	-	30011.7	1033.0	209.6	144.5		
sched-51-2	-	> 27h	4236.0	825.8	605.7		

	Alg. S	Algorithm B with γ				
instance		0.500	0.750	0.875	0.938	
driver-4-4-8	0.3	0.4	0.6	0.9	1.6	
driver-5-5-10	805.4	754.0	304.0	284.4	376.4	
driver-5-5-15	83.1	111.1	136.5	170.3	272.9	
driver-5-5-20	667.1	103.8	92.7	134.1	230.3	
driver-5-5-25	-	> 27h	24641.5	10817.7	10851.0	
driver-8-6-25	-	> 27h	> 27h	17485.9	5429.7	

Efficiency on standard benchmarks

	Alg. S	Algorithm B with γ				
instance		0.500	0.750	0.875	0.938	
depot-09-5451	12.5	21.4	39.1	74.7	145.8	
depot-10-7654	0.1	0.1	0.1	0.2	0.2	
depot-11-8765	0.4	0.6	0.7	1.1	1.8	
depot-12-9876	148.1	3.2	2.9	3.9	6.0	
depot-13-5646	0.1	0.1	0.1	0.2	0.2	
depot-14-7654	0.2	0.3	0.5	0.8	1.4	
depot-15-4534	63.8	124.6	246.1	489.1	975.1	
depot-16-4398	0.1	0.1	0.1	0.2	0.2	
depot-17-6587	0.1	0.1	0.1	0.1	0.2	
depot-18-1916	2.6	1.4	1.7	2.4	4.0	
depot-19-6178	0.2	0.2	0.3	0.5	0.7	
depot-20-7615	51.2	6.8	4.5	5.4	8.1	
depot-21-8715	0.3	0.5	0.9	1.7	3.0	
depot-22-1817	174.9	347.3	692.1	1381.8	2761.2	

Conclusions

- Our work makes the trade-off between plan quality and planning difficulty in satisfiability planning explicit.
- Possibility of arbitrarily high performance gains is obtained by accepting the possibility of a small constant-factor slow-down and the loss of guarantees for plan optimality.
- A planner based on the new evaluation algorithms and new efficient encodings [Rintanen, Heljanko & Niemelä 2005] outperforms Kautz & Selman's BLACKBOX by ...,3,4,5,6,... orders of magnitude on many problems.