
Symmetry Reduction for SAT Representations of Transition Systems

Jussi Rintanen
Albert-Ludwigs-Universiẗat Freiburg, Institut f̈ur Informatik

Georges-K̈ohler-Allee, 79110 Freiburg im Breisgau
Germany

Abstract

Symmetries are inherent in systems that consist of several
interchangeable objects or components. When reasoning
about such systems, big computational savings can be ob-
tained if the presence of symmetries is recognized. In ear-
lier work, symmetries in constraint satisfaction problems
have been handled by introducing symmetry-breaking con-
straints. In reasoning about transition systems, notably in
model-checking and reachability analysis in computer-aided
verification, symmetries have been handled by symmetry re-
duction algorithms that eliminate redundant search caused by
symmetries.
In this work, we investigate symmetry handling in a problem
in the intersection of these two areas: handling symmetries
in representations of transition systems in the propositional
logic. The problem shows up in representations of AI plan-
ning as a satisfiability problem, and in recent approaches to
model-checking that represent transition systems as propo-
sitional formulae. Symmetry-breaking constraints can be
added to the propositional logic representation of transition
sequences for removing all the symmetry at one point of time,
but removing symmetry from the whole transition sequence
is much more difficult, and has not been addressed in earlier
work. We present a solution to the problem.

Introduction
Symmetry breaking has been extensively investigated in
connection with problems represented in the propositional
logic (Crawfordet al. 1996; Joslin & Roy 1997). Symme-
tries divide the set of all solutions to equivalence classes:
two symmetric solutions belong to the same equivalence
class. The standard way of utilizing symmetries is by so-
called symmetry-breaking constraints that eliminate from
each equivalence class of symmetric solutions all but one.
On some types of problems these constraints yield exponen-
tial speed-ups.

Earlier, symmetry reductions in explicit-state reachability
analysis and in different forms of model-checking have been
investigated. In explicit-state model-checking and reacha-
bility analysis, for example in Petri net reachability analy-
sis, during the traversal of the state space restriction to only
one of a class of symmetric successor states is made (Starke

Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1991). Similarly, model-checking algorithms for temporal
logics have been modified to work on the quotient struc-
ture resulting from identification of states that are equivalent
modulo symmetries (Emerson & Sistla 1996). These tech-
niques solve the symmetry reduction problem for planning
algorithms that use plain backward or forward search in the
state space.

Satisfiability testing in the propositional logic has been
used as a computational framework for solving a number
of problems about transition systems. In planning by sat-
isfiability (Kautz & Selman 1996) and its extensions (Rin-
tanen 1999; Majercik & Littman 1999), sequences of ac-
tions/transitions are represented in the classical proposi-
tional logic or its quantified extensions. Similarly, bounded
model-checking (Biereet al. 1999) represents transition se-
quences in the classical propositional logic.

None of the existing techniques for eliminating symmetry
is directly applicable to representations of transition systems
in the propositional logic. The symmetry reduction algo-
rithms developed for model-checking take as input the cur-
rent state, and compute one successor state from each class
of successor states equivalent modulo symmetry. In princi-
ple, this kind of algorithms could be embedded in a satisfi-
ability algorithm, but this would complicate the structure of
such algorithms tremendously.

Also, symmetry-breaking constraints as used in satisfia-
bility testing and constraint satisfaction do not directly gen-
eralize to symmetries in sequences of states. Conventional
symmetry-breaking constraints can easily be applied to one
time point at a time: just order the states for example lexi-
cographically using standard techniques. However, separate
lexicographic ordering of states in consecutive time points
does not preserve the solvability of the problem instance.
This is because the successors of the lexicographically first
states are not necessarily lexicographically first: the tran-
sition relation does not preserve the lexicographic ordering
imposed on the states by the symmetry-breaking constraints.

This paper addresses the following problem. Given a rep-
resentation of finding transition sequences satisfying a cer-
tain property, expressed in the propositional logic, produce a
new representation that allows only one sequence from each
class of symmetrical transition sequences. This problem has
not been solved in earlier work. Our framework is very gen-
eral and can represent many different types of properties of



transition sequences needed in different applications, like
reachability of a state satisfying a given propositional for-
mula (AI planning (Kautz & Selman 1996)) and satisfaction
of given formula in the linear temporal logic LTL (bounded
model-checking (Biereet al. 1999)), and allows eliminating
symmetries from the search space in all these cases.

We propose a new approach for eliminating symmetries in
representations of transition sequences in the propositional
logic. The idea is to not order the symmetric states at given
time points, but to order the sequences of transitions. Tran-
sition sequences can be ordered lexicographically given an
ordering on the transition relations.

In general, not all symmetry can be eliminated by order-
ing transition sequences, as transition relations that are not
symmetric in some states still may produce successor states
that are symmetric. However, in very many cases removing
symmetries from transition sequences also removes all sym-
metry from the sequences of states these sequences generate.

The structure of the paper is as follows. First we exactly
explain what is the problem we try to solve and why it can-
not be solved by extensions of earlier approaches to symme-
try elimination. Then we discuss how transition sequences
can be ordered and what are the conditions under which
two transition relations can be considered interchangeable
in a given state, and how symmetry-breaking constraints are
derived. The effect of adding the symmetry-breaking con-
straints on sizes of formulae is experimented with by using
a simple and highly symmetric benchmark from AI plan-
ning. Finally, we will compare our results to earlier work
on symmetries, and conclude the paper by discussing open
problems raised by the work.

Symmetries in Transition Systems
Our transition systems consist of a set of states and a set of
transition relations. Deterministic planning as well as tran-
sition systems in model-checking are compatible with this
definition.

Definition 1 A transition system〈S, I, T 〉 consists of a set
S of states, a setT of transition relationst ⊆ S ×S,1 and a
setI ⊆ S of initial states.

We now define symmetries. Our definitions are similar or
equivalent to those used earlier work on symmetries (Starke
1991; Emerson & Sistla 1996). A main difference to much
of the earlier work is that the transition between two states
has to be mapped to a symmetric transition. This labeling
of the arcs in the transition graphs is not needed for the def-
inition of symmetries in AI planning nor in many types of
problems in computer-aided verification when symmetries
are handled at the level of states, but in our case it is impor-
tant for defining symmetries for transition sequences.

Definition 2 For a transition systemP = 〈S, I, T 〉 and a
propertyE : S → X (for some setX), a symmetry groupG
of P is a set of pairs〈σ, τ〉 such that

1For classical (deterministic) planning the transition relations
are partial functionst : S → S.

C

A

B

F

D

E

K

L

H

I

GJ

Figure 1: A symmetric transition system

• σ : S → S is a permutation onS,

• τ : T → T is a permutation onT ,

• for all {s1, s2} ⊆ S and t ∈ T , (σ(s1), σ(s2)) ∈ τ(t) if
and only if(s1, s2) ∈ t,

• andE(s) = E(σ(s)) for all s ∈ S.

Further, for every〈σ, τ〉 ∈ G there is〈σ−1, τ−1〉 ∈ G where
f−1 is the inverse of the bijectionf , and the pair〈1S , 1T 〉
of identity functions1S(s) = s, s ∈ S and1T (t) = t, t ∈ T
for states and transition relations also belong toG.

This is called a symmetry group because the setG fulfills
the axioms of groups under composition of pairs of functions
〈f, g〉 ◦ 〈f ′, g′〉 = 〈f ◦ f ′, g ◦ g′〉.

The functionE formalizes the properties of the states that
determine whether a given symmetry can be considered ad-
missible. For example, when the objective of planning is to
reach one of a setS′ ⊆ S of goal states,E is defined as
E(s) = 1 for s ∈ S′ andE(s) = 0 for s ∈ S\S′. This
means that the relevant properties of the states, whether they
are goal states or not, is invariant under the automorphism
in question. For model-checking problemsE could be used
for partitioning the state space to sets of states that assign
the same truth-value to all the state variables occurring in
the formula to be model-checked.

A symmetry groupG induces an equivalence relation≡
on S ass ≡ s′ if and only if there is〈σ, τ〉 ∈ G such that
s = σ(s′). The relation partitionsS into equivalence classes
[s] = {s′ ∈ S|s ≡ s′}.

Define[X] = {[s]|s ∈ X} for setsX.
The equivalence relation induces a quotient transi-

tion system 〈[S], [I], {tG|t ∈ T}, EG〉 where tG =
{〈[s], [s′]〉|〈s, s′〉 ∈ t} for all t ∈ T , andEG([s]) = E(s)
for all s ∈ S.

Example 3 Figure 1 shows a transition system with sym-
metries. Let the functionE(x) = 1 for x ∈ {B,E,H, K}
andE(x) = 0 otherwise. This graph has the following non-



trivial automorphisms (isomorphisms to itself.)

αy = {〈A,D〉, 〈B,E〉, 〈C,F 〉, 〈D,A〉, 〈E,B〉, 〈F,C〉,
〈G, J〉, 〈H,K〉, 〈I, L〉, 〈J,G〉, 〈K, H〉, 〈L, I〉}

αx = {〈A, J〉, 〈B,K〉, 〈C,L〉, 〈D,G〉, 〈E,H〉, 〈F, I〉,
〈G, D〉, 〈H,E〉, 〈I, F 〉, 〈J,A〉, 〈K, B〉, 〈L,C〉}

αd = {〈A,G〉, 〈B,H〉, 〈C, I〉, 〈D,J〉, 〈E,K〉, 〈F,L〉,
〈G, A〉, 〈H,B〉, 〈I, C〉, 〈J,D〉, 〈K, E〉, 〈L,F 〉}

The automorphismαy is mirroring horizontally,αx is mir-
roring vertically, andαd is mirroring diagonally. (In this ex-
ample we do not present the mappings on edges separately.)

Hence there are automorphisms that map the stateA to
statesD, G andJ , the stateB to E, H andK, and the state
C to F , I andL, and all these automorphisms are invari-
ant under the functionE. Therefore the following equiva-
lence classes of symmetric states are induced by the auto-
morphisms.

[A] = {A,D,G, J}
[B] = {B,E,H, K}
[C] = {C,F, I, L}

The three automorphisms together with the identity permu-
tation αid : S → S form a symmetry group of the transi-
tion system. Other symmetry groups are{αid}, {αid, αx},
{αid, αy}, and{αid, αd}. �

The standard approach for breaking symmetries is to
consider the quotient transition system and represent each
equivalence class[s] by one of its elements, thecanonical
states. When performing a transition from[s] to [s′] where
s′ is the successor ofs, the successor equivalence class[s′]
is again represented by the canonical states′′ of [s′] = [s′′].
All of a set of mutually symmetric states are mapped to the
same canonical state. As the number of canonical states (and
equivalence classes) is on highly symmetric problems a very
small fraction of the number of all states, big speed-ups are
obtained.

However, computing canonical states is non-trivial for
big transition systems succinctly represented for example in
terms of state variables. The successors′ of a canonical state
s with respect to a transition is in general not a canonical
state of[s′]. Non-trivial computation is needed for comput-
ing the canonical states.

The problem is more pronounced in representations of
transition systems in the propositional logic. For the first
time point symmetry-breaking constraints can be used for
choosing the first elements among the members of[s], but
the same constraints on the successor time point are usually
inconsistent with the description of the transition from[s] to
[s′], because successors of the canonical elements are often
not canonical elements of their equivalence classes.

Expressing the transition relation in a way that produces
canonical elements from canonical elements would solve the
symmetry problem. However, encoding transition relations
in this way is very complicated as it would essentially mean
that the encoding of the problem in the propositional logic
would include a complete symmetry reduction algorithm,
the expression of which even in a conventional program-
ming language is often a complicated task. Consequently,
this approach would result in impractically big formulae.

Symmetry Reduction with Transition
Sequences

Our idea is to not consider equivalence classes of states
directly, but instead equivalence classes of transition se-
quences. Expressing a lexicographic ordering on the transi-
tion sequences is much easier than representing the compu-
tation of canonical elements of equivalence classes of states,
and yields a practically feasible approach for handling sym-
metries in representation of model-checking, planning and
other computational problems in the propositional logic.

The basic insight is that for symmetry reduction that does
not involve mapping states to the canonical states of their
equivalence classes, it is sufficient to find automorphisms
that map the current state to itself and under which two tran-
sitions enabled in the current state are interchangeable. If
such an automorphism exists, we can safely ignore one of
the transitions. For representing this in the propositional
logic we needs to do the following.

1. Impose some ordering< on the transition relations.

2. As a preprocessing step identify automorphisms that al-
low interchanging given two transition relationst andt′.

3. Synthesize a formula that tests for an automorphism that
interchangest andt′, whether a given state is mapped to
itself. If it is, the automorphism allows interchangingt
andt′ in that state.

4. Synthesize a formula that prevents using one oft and
t′ whenevert and t′ may be interchanged in the current
state. Chooset if t < t′ and otherwise chooset′.

In this section we formalize the first part of this idea, the con-
ditions under which two transition relations can be viewed
interchangeable, and show that it leads to symmetry reduc-
tion that preserves the existence of solutions to the model-
checking or planning problem. Because finding arbitrary au-
tomorphisms is computationally very expensive, in the next
section we discuss a practically relevant and computation-
ally more tractable class of symmetries for which the deriva-
tion of symmetry-breaking constraints is much easier.

The formal definition of interchangeability is as follows.

Definition 4 Let s ∈ S be a state. Transition relationst ∈
T andt′ ∈ T are interchangeable ins if 〈s, s′〉 ∈ t for some
s′ ∈ S and there is〈σ, τ〉 ∈ G such that

1. σ(s) = s, and
2. τ(t) = t′.

The interchangeability condition allows ignoring one of
two interchangeable transition relations: if there is a transi-
tion sequence starting witht and leading to a goal state or
satisfying some formula to be model-checked, then there is
a symmetric transition sequence starting witht′ and having
the same properties with respect toE, and it suffices to con-
sider only one oft andt′.

Next we formally show that ignoring one of two inter-
changeable transitions never eliminates all the transition se-
quences having a property we might be looking for.

An ordering< on transition relations induces an ordering
on transition sequences for example lexicographically. Two



transition sequencesp = t1t2 · · · tn andp′ = t′1t
′
2 · · · t′n are

ordered asp < p′ if ti < t′i for somei ∈ {1, . . . , n} and
tj = t′j for all j ∈ {1, . . . , i− 1}.

Theorem 5 Let t1, . . . , tn be a transition sequence starting
in states0 and visiting the sequence of statess0, s1, . . . , sn.
Let t′i be interchangeable withti in state si−1. Then
there is a sequence of transitionst′i+1, . . . , t

′
n that visits

statess′i, . . . , s
′
n such thatE(sj) = E(s′j) for everyj ∈

{i, . . . , n}.

Proof: Becauseti and t′i are interchangeable, there is
〈σ, τ〉 ∈ G such thatσ(si−1) = si−1 andτ(ti) = t′i. De-
fine s′i, . . . , s

′
n by s′j = σ(sj) andt′i, . . . , t

′
n by t′j = τ(tj)

for all j ∈ {i, . . . , n}. By definition of symmetry groups
E(s′j) = E(σ(sj)) = E(sj) for all j ∈ {i, . . . , n}. �

This result means that at any point of a transition sequence
the next transitiont can be replaced byt′ if t andt′ are in-
terchangeable in the current state andt′ < t. If at every time
point the<-minimal transition is chosen among those that
are interchangeable, from every equivalence class of sym-
metric transition sequences a lexicographically<-minimal
transition sequence is obtained. This is the idea that we will
implement in the following sections for encodings of transi-
tion systems in the propositional logic.

Symmetries from Schemata
Recognizing all symmetries in a transition system repre-
sented succinctly in terms of plan operators or some other
high-level language is computationally very expensive. This
is because sizes of the transition systems may be exponential
in the size of their high-level descriptions.

However, there are important classes of symmetries that
are easily recognized by syntactic inspection of high-level
descriptions of transition systems. Indeed, an important rea-
son for using high-level descriptions is that with them de-
scribing symmetric systems, with repetitive structure and
multiple copies of some components, is more manageable.
This has been recognized in earlier works on symmetries.

To avoid expensive computation needed for recognizing
arbitrary symmetries, the use of special data types that in-
duce symmetric transition systems has been proposed by
Ip and Dill (1996). Interchangeability of objects has been
pointed as a main source/consequence of symmetries in
constraint satisfaction problems (Freuder 1991), and this
has been taken advantage of for example by Joslin and
Roy (1997) in computing symmetries for different types of
constraint satisfaction problems, including planning, from
schematic descriptions.

In this paper we use high-level descriptions of transition
systems that are based on state variables, as widely used
in computer-aided verification and AI planning. The set of
possible transitions expressed in terms of operators acting
on state variables is typically not presented by enumerat-
ing them. Instead, a schematic description is instantiated by
some set of objects. This kind of schematic descriptions of-
ten directly lead to symmetric transition systems. The sym-
metries are induced by the interchangeability of the objects.

A=1, B=1 A=1, B=2

A=2, B=1 A=2, B=2

A=1, B=3

A=2, B=3

A=3, B=1 A=3, B=2 A=3, B=3

Figure 2: A transition system that is symmetric with respect
to interchangingA andB.

Example 6 Consider the transition system in Figure 2. It is
described by the schematic descriptionF (x), x ∈ X that is
instantiated by members of the setX = {A,B}:

CASE x OF
1⇒ x := 2;
2⇒ x := 3;
3⇒ x := 1;

The transition relationF (B) is depicted by dotted arrows,
and the remaining arrows depictF (A).

The transition system has two automorphisms (we assume
that the functionE for example assigns only the stateA =
3, B = 3 a non-zero value): the pair of identity functions
for the states and the transition relations, and another one
consisting of the following permutation of states (we depict
a state that assignsx andy respectively toA andB asxy)

{〈11, 11〉, 〈12, 21〉, 〈13, 31〉, 〈21, 12〉, 〈22, 22〉, 〈23, 32〉,
〈31, 31〉, 〈32, 23〉, 〈33, 33〉}

and the permutation{〈F (A), F (B)〉, 〈F (B), F (A)〉} of
transition relations.

These two automorphisms together with the identity auto-
morphism form a symmetry group of the transition system.
The equivalence classes of symmetric states induced by the
automorphisms are the following.

[11] = {11}
[12] = {12, 21}
[13] = {13, 31}
[22] = {22}
[23] = {23, 32}
[33] = {33}

In this example, the number of automorphisms isn! when
the cardinality of the setX is n, and the number of equiva-
lence classes is

∑n+1
i≥1 i, which isO(n2). Because the num-

ber of equivalence classes grows slowly with respect to the
growth rate of the cardinalities of the state space (3n), some
of the equivalence classes have a very high cardinality, and
the transition systems are highly symmetric. �

The most basic automorphisms for problems represented
schematically are those that correspond to interchanging
some two constantsc1, c2 ∈ X. All other automorphisms
implicit in the schematic description can be obtained by
composition from these.



For c1 andc2 to be interchangeable their only occurrence
in the schematic description must be as a member of a set
of objects used for instantiating the schemata. If one of
these constants occurs in the schemata explicitly (without
a matching occurrence of the other), the constants are not in
general interchangeable. In Example 6 the variablesA and
B satisfy this property.

Representation of Transition Sequences in the
Propositional Logic

In this section we briefly describe how planning and
bounded model-checking can be represented in the propo-
sitional logic. The possible transitions of a transition sys-
tem are represented by formulaeρ(P, P ′) on the setP ∪ P ′

of propositions, withP describing the truth-values of the
state variables in the predecessor state andP ′ describing the
truth-values of the state variables in the successor state.

A deterministic transition relationt can be translated into
a formulaφt = ct ∧ et wherect is a formula overP (de-
scribing whether the transition can take place) andet is a
conjunction of equivalencesφp ↔ p′, one for everyp ∈ P ,
whereφp is a formula overP that describes the condition
under whichp is true in the successor state. The truth-
value of every state variable in the successor state is hence
uniquely determined by the predecessor state. We also intro-
duce a propositiont for every transition relation. Now the
representation of one time step is

ρ(P, P ′) = (t1 ∨ · · · ∨ tn) ∧ (t1→φt1) ∧ · · · ∧ (tn→φtn)

with one propositiont for each transition.
A sequence ofn transitions from a set of states described

by ι and ending in a state satisfyingΓ is represented by

ι0 ∧ ρ(P 0, P 1) ∧ ρ(P 1, P 2) ∧ · · · ∧ ρ(Pn−1, Pn) ∧ Γn

with ι andΓ respectively expressed in terms of the propo-
sitionsP 0 andPn representing values of state variables re-
spectively in time points0 and n. The propositionst for
transitions have time tags similarly.

It is also possible to allow several transitions in parallel.
See for example (Kautz, McAllester, & Selman 1996). Par-
allelism is interpreted in the sense of interleaving semantics,
that is, parallelity oft1 andt2 means that the transitions can
take place in either order, firstt1 and thent2, or vice versa.
For this to be well-definedt1 andt2 may not interfere, that
is, they may not undo changes done by the other nor enable
or disable the other transition.

Derivation of Symmetry-Breaking Constraints
A main insight to the symmetries induced by a schematic de-
scription is that for two transition relationst andt′ there is
at most one member〈σ, τ〉 ∈ G of the symmetry group that
need to be considered: the minimal substitution that makest
and t′ equal. Intuitively, transition relationsF (a, b, c) and
F (q, b, c) are symmetric by interchanginga and q; inter-
changing anything else, likev andw for example, could not
lead to finding further symmetry.

Based on Definition 4 we now derive symmetry-breaking
constraints. Constantsc1 and c2 occurring in a schematic

description of a transition system areinterchangeableif they
do not explicitly occur in the schematic description of tran-
sition relation or in the (schematic) goal or whatever object
is used in describing the functionE.

Two transition relationst andt′ are candidates for the in-
terchangeability test of Definition 4 in a given state if one
can be obtained from the other by exchangingc1 andc2 (or
a higher number of constants.) We assume that the order-
ing < of all the transition relations orderst beforet′, that is
t < t′.

Let 〈σ, τ〉 be an automorphism that corresponds to the
substitution that interchangesc1 with c2. Henceτ(t) = t′.
Now testing the conditionσ(s) = s for a states reduces
to testing whether all pairs(v, v′) of state variables that are
obtained from each other by interchangingc1 andc2 have
the same truth-value ins. If they have, then a conventional
symmetry-breaking constraint should be applied tot andt′.
All this can be expressed by the following formula.

((v1 ↔ v′1) ∧ · · · ∧ (vm ↔ v′m))→(t′→ t) (1)

So, we extend the formulaeρ(P i, P i+1) of the preceding
section by these constraints. No other changes are needed.

Example 7 Consider the problem of getting from city cen-
ter to the university either by bus or by train, expressed in
terms of state variables V = {I=city, I=bus, I=train,
I=uni, B=city, B=uni, T=city, T=uni}. I, B and T denote
the passenger, the bus, and the train, respectively, and their
locations may be the university or the city. Additionally, the
passenger may be in the bus or in the train. There are actions
for boarding and driving the bus and the train. Boarding a
bus or a train in the city center can be expressed by the fol-
lowing schematic formula withx ∈ {B, T}.

board-x = (I=city ∧ x=city) ∧ (> ↔ (I=x)′)
∧(⊥ ↔ (I=city)′)∧∧

p∈V \{I=x,I=city}(p ↔ p′)

We can identify equivalence classes of states by interchang-
ing the truth-values of pairs of state variables obtained by in-
terchanging B and T. Similarly, transition relations board-T
and board-B turn out symmetric. The constraint for break-
ing the symmetry between boarding the bus and the train is
the following.

((B=city ↔ T=city) ∧ (B=uni↔ T=uni)∧
(I=bus↔ I=train))→(board-B→board-T)

�

Symmetry-Breaking for Parallel Transitions
Formula 1 is general enough for breaking symmetries also
in the presence of parallel transitions. If there aren sym-
metric transitions that are enabled and could take place in
parallel, there aren + 1 equivalence classes of symmetric
sets of transition relations: subsets of cardinalities from0 to
n. Our symmetry-breaking constraint allows only one set of
transition relations from each equivalence class.



Example 8 Consider switching offn lamps. The following
formula is instantiated withx ∈ {1, . . . , n}.

switchoff(x) = on(x) ∧ (⊥ ↔ (on(x))′)

The constraint on switching of every pair{i, j} ⊆
{1, . . . , n}, i < j of lamps is

(on(i) ↔ on(j))→(switchoff(i)→switchoff(j)).

These constraints say that if lampi is to be switched off, then
also all lampsj ∈ {i + 1, . . . , n} are. If initially all lamps
are on, these constraints allow only one subset of each of the
n + 1 equivalence classes of symmetric sets of actions that
are possible. �

However, if there are dependencies between the transi-
tions that are enabled at the same time point in the sense that
some of them have mutually contradictory effects or can-
not be fired simultaneously without violating the interleav-
ing semantics of parallel transitions, the symmetry-breaking
constraints may reduce the amount of parallelism possible.
We illustrate this with an example.

Example 9 Consider a set of chess players1, 2, 3. Each
potential player has two actions, choose White or choose
Black. Each color can be chosen by at most one player, and
no player can choose more than one color. In this example
both players and colors are mutually interchangeable.

We order the possible actions 1W, 2W, 3W, 1B, 2B, 3B
according to the players as 1W> 2W > 3W and 1B> 2B
> 3B, and according to the colors as 1W> 1B and 2W>
2B and 3W> 3B.

Assume that all potential players are ready to choose, and
both colors are available. Now the symmetry-breaking con-
straints allow 1 to choose White. But all other simultaneous
choices are blocked by the constraints. However, in the next
time step Black is still available, and as the constraints order
2B before 3B, player 2 will choose Black.

Without these constraints it is possible for player 1 to
choose White simultaneously with player 2 choosing Black.
So our symmetry-breaking constraints do not allow all the
potential parallelism. �

This kind of dependencies between transitions can be han-
dled by a simple extension to the symmetry-breaking con-
straints. A symmetry-breaking constraint ont and t′ that
preferst to t′ is ignored whenevert is blocked by a higher-
priority transitiont′′ that according to the interleaving se-
mantics cannot be parallel tot. This is achieved by weaken-
ing the constraint fort andt′ with a new antecedent¬t′′ in
the implication in Formula 1.

So lett1, . . . , tn be all the higher-priority transitions that
interfere witht. Then the symmetry-breaking constraint that
allows all parallelism that was possible in the original prob-
lem formulation without symmetry-breaking is as follows.

((v1 ↔ v′1) ∧ · · · ∧ (vm ↔ v′m)
∧¬t1 ∧ · · · ∧ ¬tn) → (t′→ t) (2)

Theorem 10 Let the transitionsX = {t1, . . . , tn} be those
that are fired in parallel at a given time point. Then there is
a symmetric transition sequenceτ(t1), . . . , τ(tn) for some
〈σ, τ〉 ∈ G that satisfies the symmetry-breaking constraints.

Proof: We give a proof sketch.
Assume that transitionsX ′ = {τ(t1), . . . , τ(tn)} are

fired in parallel in states ∈ S and thatX ′ is the lexico-
graphically first among sets of transitions that are symmetric
to X.

We show that all symmetry-breaking constraints are sat-
isfied. Let(φ ∧ t′1 ∧ · · · ∧ t′m)→ (t′→ t) be any of the con-
straints. Heret′1, . . . , t

′
m are the higher-priority transitions

that interfere witht andφ is a conjunction of equivalences
v ↔ v′. The constraint is obviously satisfied ift′ 6∈ X ′

or t ∈ X ′ or φ is false. So we consider the case in which
t′ ∈ X ′ andt 6∈ X ′ and the formulaφ is true, that is,t′ and
t are interchangeable and only the transitiont′ is fired.

It suffices to show that one of the transitionst′i is in X ′.
Assume none of them is. Now we can produce a setX ′′

of transitions applicable inS and that is lexicographically
better thanX ′, thus contradicting our assumptions. Let
X ′′ = (X ′∪{t})\{t′}. Becauset andt′ are interchangeable
in s andt′ is applicable ins, alsot is applicable ins. Be-
cause none of the higher priority transitions is inX ′, there is
nothing that would prevent firingt. And becauset < t′ and
X ′ andX ′′ agree on all other transitions,X ′′ is lexicograph-
ically better thanX ′, thus contradicting our assumptions.�

Example: A Simple Planning Problem
We demonstrate all the stages of symmetry reduction by us-
ing a simple planning problem that has in recent years been
a focus of interest of many planning researchers.

The schematic state variables are at-robot(R), at(B,R),
free(H) and carry(B,H), that get instantiated asR ∈
{roomA, roomB}, B ∈ {ball1, ball2} andH ∈ {left, right}.

The transitions (operators) are move(R,R’) for moving the
robot from one room to another (R 6= R′), pick(B,R,H)
picking up a ball in a room, and drop(B,R,H) dropping a
ball in a room.

In the initial state the state variables at-robot(roomA),
free(left), free(right), at(ball1,roomA) and at(ball2,roomA)
are true, and the rest are false. All states satisfying
at(ball1, roomB) ∧ at(ball2, roomB) are goal states.

Because none of the possible values ofB occur explicitly
in the schematic definitions of transitions and all the balls
are mentioned in the goal symmetrically, all possible values
of B are interchangeable. Similarly for H. The rooms, how-
ever, are not interchangeable because the balls are required
to be in roomB in the goal state.

Next we derive the symmetry-breaking constraints on the
transitions for picking up the balls in roomA. Let us order
the balls and the hands as ball1< ball2 and left< right.
From this we get the orderings

pick(ball1, roomA, left) < pick(ball1, roomA, right)
pick(ball2, roomA, left) < pick(ball2, roomA, right)
pick(ball1, roomA, left) < pick(ball2, roomA, left)
pick(ball1, roomA, right) < pick(ball2, roomA, right)



on transitions. The symmetry-breaking constraint for the
fourth pair of transitions is

(((carry(ball1, left) ↔ carry(ball2, left))
∧(carry(ball1, right) ↔ carry(ball2, right))
∧(at(ball1, roomA) ↔ at(ball2, roomA))
∧(at(ball1, roomB) ↔ at(ball2, roomB))
∧¬pick(ball1, roomA, left))
→
(pick(ball2, roomA, right)→pick(ball1, roomA, right))

Impact on Sizes of SAT Encodings: Example
Given a transition system withT transitions withN occur-
rences of a constant in a state variable name, and a planning
or model-checking problem withD time points, the size of
the set of symmetry-breaking constraints isO(DNT 2). So
the size of the set of constraints grows linearly in the length
D of the transition sequences sought for, linearly in the num-
ber N of state variables, and quadratically in the number
T of transitions. In general, the symmetry-breaking con-
straints may dominate the size of the encodings, but do not
affect the asymptotic size of the encodings, because the ax-
ioms restricting the parallel firing of interfering transitions
similarly have quadratic size. The symmetry-breaking con-
straints just bring the constantN on top of this. Extending
the constraints with the additional antecedents for allowing
maximal parallelism adds a further factorT and makes the
size of the formulae cubic in the number of transitions in the
worst case.

To see how the symmetry-breaking constraints affect the
size of concrete problem encodings, we have implemented
the symmetry reduction technique as a part of a SAT/QBF
based planning system that takes as input in a standard plan-
ner input language, translates problem instances into formu-
lae in the propositional logic, and outputs them in a format
used by most implementations of satisfiability algorithms
that work on formulae in CNF.

The implementation automatically recognizes objects that
are symmetric with respect to the operators and the goal de-
scription, derives the symmetry-breaking constraints, and
adds them to the encoding of transition relations in the
propositional logic. Because translation of the constraints
into CNF (as required by most of the publicly available sat-
isfiability solvers) may increase their size considerably, we
have also implemented a simplification procedure that elim-
inates redundancies in them: some of the equivalences in
the antecedent of a constraint, or their negations, may be
completely or partially entailed by the precondition of the
lower-priority transition, which often allows simplifying the
constraints a lot, in some cases eliminating some of them
completely. On some of the example formulae discussed
below this cuts the number of clauses to less than half.

The impact of symmetry reduction on a very wide range
of computational problems is so well documented that we
cannot claim to provide much new information on the topic.
For illustrating the applicability of our technique we briefly
discuss it in connection with a simple problem from AI
planning, just to make concrete what effect adding the
symmetry-breaking constraints can have on the size of the

without with
balls truth len clauses time clauses time

4 F 6 3564 0.0 3756 0.0
4 T 7 4154 0.0 4378 0.0
6 F 10 10314 1.6 11034 0.1
6 T 11 11342 0.2 12134 0.3
8 F 12 18884 32.4 31556 0.7
8 F 13 20454 663.2 34182 2.8
8 F 14 22024 > 900 23816 0.9
8 T 15 23594 8.9 25514 2.4

10 F 18 39942 > 900 43542 9.9
10 T 19 42158 141.4 45958 2.5
12 F 22 65316 > 900 71652 5.7
12 T 23 68282 > 900 74906 5.5
14 F 26 99394 > 900 109586 35.7
14 T 27 103214 > 900 113798 10.2
16 F 30 143424 > 900 158784 7.6
16 T 31 148202 > 900 164074 14.8
18 F 34 198654 > 900 220686 35.5
18 T 35 204494 > 900 227174 169.6
20 F 38 266332 > 900 296732 108.1
20 T 39 273338 > 900 304538 81.9

Table 1: Solution of the gripper problems with satisfiability
algorithms. Symmetry-breaking for pairs of operators dif-
fering in only one parameter. The columns show the number
of balls in the problem instance, truth-value of the formula,
plan length, number of clauses, and runtime in seconds.

problem encodings and runtimes.
Some statistics on the formulae are given in Tables 1 and

2. The first table lists formulae with symmetry-breaking for
pairs of operators that differ only in one parameter, and the
second table in the general case. Having all constraints dou-
bles the number of clauses related to symmetry-breaking and
increases the runtimes. Another interesting phenomenon is
the decrease in runtimes when leaving out the antecedents
referring to interfering operators: solution lengths increase,
but contrary to satisfiability planning and bounded model-
checking typically, runtimes decrease.

The formulae are rather big, for example on the 39 step
problem instance with 20 balls has 9756 propositions and
304538 clauses. Satisfiability problems this big can be very
difficult to solve. The runtimes are for the ZChaff satisfiabil-
ity solver (Moskewiczet al. 2001) and are given in seconds
of CPU time (we also tried other solvers like relsat, satz and
SATO that are slower on these problems, satz and SATO
often very much slower.) The problem instances are from
the infamous gripper domain, which involves transporting a
number of balls from one room to another by a robot that can
carry two balls at a time. All the balls are identical, and also
the robot’s two hands are identical. The problem is highly
symmetric and easy to solve, but if symmetries are not rec-
ognized, proving that plans of certain length do not exist –
and hence finding optimal plans – becomes combinatorially
very difficult for general-purpose planning algorithms.

For each problem instance we give statistics on two (or
more) formulae. The one with a highest number of time



without with
balls truth len clauses time clauses time

4 F 6 3564 0.0 3900 0.0
4 T 7 4154 0.0 4546 0.0
6 F 10 10314 1.6 11634 0.2
6 T 11 11342 0.2 12794 0.2
8 F 12 18884 32.4 21764 2.5
8 F 13 20454 663.2 23574 3.4
8 F 14 22024 > 900 25384 2.7
8 T 15 23594 8.9 27194 3.4

10 F 18 39942 > 900 46782 4.8
10 T 19 42158 141.4 49378 8.3
12 F 22 65316 > 900 77460 53.8
12 T 23 68282 > 900 80978 49.2
14 F 26 99394 > 900 119050 48.1
14 T 27 103214 > 900 123626 40.7
16 F 30 143424 > 900 173184 55.7
16 T 31 148202 > 900 178954 74.5
18 F 34 198654 > 900 241494 194.4
18 T 35 204494 > 900 248594 87.0
20 F 38 266332 > 900 325612 179.2
20 T 39 273338 > 900 334178 140.2

Table 2: Solution of the gripper problems with satisfiability
algorithms. Symmetry-breaking for all pairs of operators.

points is the one with a solution. This is the satisfiable for-
mula (indicated by T in the “truth” column) and the satis-
fying assignment represents a plan. The preceding formula
or formulae are unsatisfiable and show that no shorter plans
exist. On the 8 ball problem the runtimes on proving unsat-
isfiability grow very fast when no symmetry-breaking con-
straints are used, and the satisfiability tester is not able to
prove optimality of the solution length. In this case we also
give runtimes on shorter unsatisfiable formulae.

Related Work
Practically all prior work on symmetries in transition sys-
tems is based on dividing states to equivalence classes mod-
ulo symmetry, because this allows the more powerful forms
of symmetry reduction. A notable exception to this is by
Godefroid (1999). He considers stateless model-checking of
large software systems in which descriptions of states may
be huge and impractical to handle directly, and breaks sym-
metries in transition sequences instead.

Most symmetry reduction algorithms are embedded in
state space traversal algorithms: the successor states (or, for
backward traversal, the predecessor states or sets of prede-
cessor states) of a state are computed, each state is mapped
to its equivalence class, and each equivalence class is fur-
ther mapped to its canonical state. Because several successor
states may belong to the same equivalence class, it is possi-
ble to obtain big reductions in the number of successor states
(Starke 1991; Emerson & Sistla 1996). This kind of sym-
metry reduction has been widely used and is applicable to a
wide range of model-checking and planning algorithms, but
it is not suitable for satisfiability planning nor for bounded
model-checking, as it is difficult to express the computation

of the canonical states as propositional formulae.
Symmetry breaking has been considered for propositional

satisfiability and constraint satisfaction problems (CSP) that
do not represent transition systems, see for example (Craw-
ford et al. 1996). Symmetries are viewed as inducing sym-
metry groups like with transition systems, but as time and
change do not have to be considered, it is easier to derive
symmetry-breaking constraints.

Joslin and Roy (1997) derive symmetries from a
schematic problem representation like we do in this paper.
They show how symmetry breaking predicates can be con-
structed for a representation of planning as a SAT/CSP prob-
lem. However, they do not discuss nor solve the problem we
have solved in this paper, that is, symmetry breaking at all
steps of the plan. It seems that Joslin and Roy break only the
symmetries at the first time point.2 For a certain set of prob-
lems they show that even this restricted form of symmetry
breaking leads to big efficiency gains.

Some planning researchers (Fox & Long 1999; Guéŕe
& Alami 2001; Fox & Long 2002) have published papers
on symmetry reduction techniques that are less general and
less powerful than earlier state-of-the-art symmetry reduc-
tion techniques.

Guere and Alami call the equivalence classes of symmet-
ric statesshapes, propose an algorithm that does planning
by enumerating these equivalence classes, and show that on
highly symmetric problems improvements in runtimes can
be obtained.

Fox and Long introduce a notion of symmetries and use
them for pruning search trees in the Graphplan algorithm
(Fox & Long 1999). Their notion of symmetry does not view
transition systems as symmetric, but only certain actions
with respect to a single search state are considered either
symmetric or asymmetric based on the symmetry of objects
in that state, and symmetries initially present are lost forever
by taking one action that treats two objects differently. This
leads to a very weak form of symmetry reduction, which
Fox and Long have later improved (Fox & Long 2002). This
improved reduction technique is still strictly weaker than
the state-of-the-art symmetry reduction techniques (Starke
1991; Emerson & Sistla 1996) which are directly applicable
to the same types of algorithms for traversing state spaces.

Conclusions and Future Work
In this work we have presented a symmetry reduction tech-
nique that is applicable to representations of transition sys-
tems in the classical propositional logicá la satisfiability
planning and bounded model-checking. The work is based
on identifying symmetries in sequences of transitions, and
from these symmetries we derive constraints on the appli-
cability of transitions. The approach appears to provide a
feasible symmetry reduction method. Because the technique
operates at the level of transitions without explicitly looking
at the successor states they produce, in some cases symme-
tries are not broken when it were possible.

2Alternatively, they introduce symmetry-breaking predicates
for all time points, but this would in general not preserve solution
existence as we have pointed out.



Some open problems remain. The symmetry reduction
technique does not appear to be directly applicable to plan-
ning with partial observability. For example, planning with-
out observability, sometimes called conformant planning,
can be easily represented as quantified Boolean formulae
(Rintanen 1999), but it is not clear how widely our symmetry
reduction technique would be applicable in that context. The
problem is that conformant planning does not work in the
state space but in the belief space induced by the state space,
and symmetry reduction should be defined in terms of the
asymmetries in the belief state, not in the state space. More
concretely, in a given state two transition relations should be
considered interchangeable if beliefs concerning the related
facts are the same, not just when the actual truth-values of
the related facts are the same. One possibility would be to
test interchangeability on the basis of the sequence of tran-
sitions taken so far.

The lexicographic ordering on transition sequences orders
the temporally first transitions first, then the temporally the
second, and so on. This roughly corresponds to how sym-
metry reduction is done in an algorithm that traverses the
state space in the forward direction. It would also be possi-
ble to reverse the ordering, that is, order the last transition
first, which would roughly correspond to symmetry reduc-
tion in a backward traversal of the state space. It is not clear
what benefits or disadvantages reversing the ordering would
have.

References
Biere, A.; Cimatti, A.; Clarke, E. M.; and Zhu, Y. 1999.
Symbolic model checking without BDDs. In Cleaveland,
W. R., ed.,Tools and Algorithms for the Construction and
Analysis of Systems, Proceedings of 5th International Con-
ference, TACAS’99, volume 1579 ofLecture Notes in Com-
puter Science, 193–207. Springer-Verlag.

Crawford, J.; Ginsberg, M.; Luks, E.; and Roy, A. 1996.
Symmetry-breaking predicates for search problems. In
Aiello, L. C.; Doyle, J.; and Shapiro, S., eds.,Principles
of Knowledge Representation and Reasoning: Proceedings
of the Fifth International Conference (KR ’96), 148–159.
Morgan Kaufmann Publishers.

Emerson, E. A., and Sistla, A. P. 1996. Symmetry and
model-checking.Formal Methods in System Design: An
International Journal9(1/2):105–131.

Fox, M., and Long, D. 1999. The detection and exploita-
tion of symmetry in planning problems. In Dean, T., ed.,
Proceedings of the 16th International Joint Conference on
Artificial Intelligence, 956–961. Morgan Kaufmann Pub-
lishers.

Fox, M., and Long, D. 2002. Extending the exploitation
of symmetries in planning. In Ghallab, M.; Hertzberg, J.;
and Traverso, P., eds.,Proceedings of the Sixth Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems, 83–91. AAAI Press.

Freuder, E. C. 1991. Eliminating interchangeable values in
constraint satisfaction problems. InProceedings of the 9th
National Conference on Artificial Intelligence, 227–233.

Godefroid, P. 1999. Exploiting symmetry when model-
checking software. InFormal Methods for Protocol En-
gineering and Distributed Systems, FORTE XII / PSTV
XIX’99, IFIP TC6 WG6.1 Joint International Conference
on Formal Description Techniques for Distributed Systems
and Communication Protocols (FORTE XII) and Protocol
Specification, Testing and Verification (PSTV XIX), Octo-
ber 5-8, 1999, Beijing, China, 257–275. Kluwer Academic
Publishers.
Guéŕe, E., and Alami, R. 2001. One action is enough
to plan. In Nebel, B., ed.,Proceedings of the 17th Interna-
tional Joint Conference on Artificial Intelligence, 439–444.
Morgan Kaufmann Publishers.
Ip, C. N., and Dill, D. L. 1996. Better verification through
symmetry. Formal Methods in System Design9(1/2):41–
75.
Joslin, D., and Roy, A. 1997. Exploiting symmetry in lifted
CSPs. InProceedings of the 14th National Conference
on Artificial Intelligence (AAAI-97) and 9th Innovative Ap-
plications of Artificial Intelligence Conference (IAAI-97),
197–202. Menlo Park: AAAI Press.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
planning, propositional logic, and stochastic search. In
Proceedings of the Thirteenth National Conference on Ar-
tificial Intelligence and the Eighth Innovative Applications
of Artificial Intelligence Conference, 1194–1201. Menlo
Park, California: AAAI Press.
Kautz, H.; McAllester, D.; and Selman, B. 1996. Encod-
ing plans in propositional logic. In Aiello, L. C.; Doyle, J.;
and Shapiro, S., eds.,Principles of Knowledge Representa-
tion and Reasoning: Proceedings of the Fifth International
Conference (KR ’96), 374–385. Morgan Kaufmann Pub-
lishers.
Majercik, S. M., and Littman, M. L. 1999. Contingent
planning under uncertainty via probabilistic satisfiability.
In Proceedings of the Sixteenth National Conference on Ar-
tificial Intelligence (AAAI-99) and the Eleventh Conference
on Innovative Applications of Artificial Intelligence (IAAI-
99), 549–556. AAAI Press.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.;
and Malik, S. 2001. Chaff: Engineering an Efficient SAT
Solver. InProceedings of the 38th ACM/IEEE Design Au-
tomation Conference (DAC’01), 530–535. ACM Press.
Rintanen, J. 1999. Constructing conditional plans by a
theorem-prover.Journal of Artificial Intelligence Research
10:323–352.
Starke, P. H. 1991. Reachability analysis of Petri nets
using symmetries.Journal of Mathematical Modelling and
Simulation in Systems Analysis8(4/5):293–303.


