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Abstract

We introduce a novel method for encoding cost optimal
delete-free STRIPS Planning as SAT. Our method is based on
representing relaxed plans as partial functions from the set of
propositions to the set of actions. This function can map any
proposition to a unique action that adds the proposition dur-
ing execution of the relaxed plan. We show that a relaxed plan
can be produced by maintaining acyclicity in the graph of all
causal relations among propositions, represented by the men-
tioned partial function. We also show that by efficient encod-
ing of action cost propagation and enforcing a series of upper
bounds on the total costs of the output plan, an optimal plan
can effectively be produced for a given delete-free STRIPS
problem. Our empirical results indicate that this method is
quite competitive with the state of the art, demonstrating a
better coverage compared to that of competing methods on
standard STRIPS planning benchmark problems.

Introduction
Delete-free planning problems are those for which every ac-
tion can add propositions but not delete them. Every plan-
ning problem can be relaxed into a delete-free problem in
linear time. The optimal cost of the solution for delete-free
relaxation of a planning problem, denoted by h+ is a lower
bound of the optimal cost of the original problem. Comput-
ing h+, however, is NP-equivalent (Bylander 1994), and also
hard to approximate (Betz and Helmert 2009).

Solving delete-free planning problems is important for
several reasons. Many admissible heuristics functions have
been introduced to compute lower bounds for h+. Exam-
ples are hmax heuristic (Bonet and Geffner 2001), LM-cut
heuristic (Helmert and Domshlak 2009), set-additive heuris-
tic (Keyder and Geffner 2008), and cost-sharing approxima-
tions of hmax (Mirkis and Domshlak 2007). This accentu-
ates the need for computing the exact value of h+, as it is a
measure for informativeness of such heuristic functions.

Moreover, efficient solving of delete-free planning prob-
lems is inherently important, as there exist delete-free plan-
ning tasks that are of interest for AI community. Examples
of such problems are the minimal seed-set problem (Gefen
and Brafman 2011), and the problem of determining join or-
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ders in relational database query plan generation (Robinson,
McIlraith, and Toman 2014).

Another reason for importance of efficient delete-free
planning emerges from the fact that optimal plans for gen-
eral planning problems can be produced by iterative solving
and reformulating delete-free planning tasks (Haslum 2012).
This can be done by repeatedly finding optimal plans for
delete-free relaxations of the planning problem, while re-
ducing the relaxation by reformulating the problem in each
iteration, until the optimal plan for the delete-free problem
is in fact an optimal plan for the original problem.

The current state-of-the-art methods for finding exact
value of h+ are based on Integer and Linear Program-
ming (IP/LP) (Haslum, Slaney, and Thiébaux 2012; Imai
and Fukunaga 2015; Castro et al. 2020). Because proposi-
tional satisfiability has a limited expressive power compared
to that of LP and IP, using it for computing h+ might seem
counter-intuitive. In our view, however, there are compelling
reasons to the contrary.

Representing and reasoning about causality, which is
a sizable part of knowledge representation and inference
needed to compute h+, is inherently propositional. There-
fore, propositional satisfiability is a well-suited platform to
perform such tasks. Nevertheless, the main tentative weak-
ness of satisfiability is representing and propagating infor-
mation about action costs.

In this work, we show that by using succinct representa-
tion of causality, and also careful encoding of action cost
propagation, one can efficiently compute h+ using propo-
sitional satisfiability. Our empirical results indicate that our
method is quite competitive with the state of the art, demon-
strating a better coverage than LP/IP based methods on con-
ventional STRIPS planning problems.

Preliminaries and Background
We formalize a STRIPS planning problem as a 5-tuple
Π = (P, I,A,G, cost) where P is a finite set of Boolean
state variables, also called propositions. I , the initial state,
and G, the set of goal conditions, are subsets of P . A is
a finite set of actions. Each member a of A is a triple
(pre(a), add(a), del(a)), where pre(a), add(a) and del(a)
are sets of propositions denoting the set of preconditions,
positive effects, and negative effects of a, which are the
propositions that a requires, adds, and deletes, respectively.



The cost function cost maps every members of A to a non-
negative integer.

When states are represented as subsets of P , the successor
s′ = execa(s) of s with respect to action a ∈ A is defined
if pre(a) ⊆ s, and s′ = (s\del(a)) ∪ add(a). An action se-
quence a1, ..., an is executable in state s if execa1,...,an(s) =
execan(execan−1(...execa2(execa1(s)))) is defined. A plan
for Π is a sequence π of actions from A such that G ⊆
execπ(I). The cost of plan π = 〈a1, . . . , an〉 for Π, denoted
by cost(π), is defined by Σi=1,...,ncost(ai). An optimal plan
for Π is a plan with minimal cost for Π.

For any STRIPS planning problem Π =
(P, I,A,G, cost), the delete relaxation (Bonet and Geffner
2001) Π+ = (P, I,A+, G, cost) is defined, where A+ is
produced from A by replacing the set of negative effects
of each member of A with the empty set. A plan for Π+

is called a relaxed plan for Π. The optimal cost of Π+ is
denoted by h+(Π). If there is no relaxed plan for Π, we set
h+(Π) to∞.

Related Works
Encoding h+ using constraint programming has been exten-
sively studied. Most of the research in this field has been
focusing on finding lower bounds for h+ using Linear Pro-
gramming. Examples are getting information from abstrac-
tion heuristics (van den Briel et al. 2007), using linear pro-
gramming to derive heuristic estimates from landmarks for
classical planning (Karpas and Domshlak 2009) and nu-
meric planning (Scala et al. 2017), the state-equation heuris-
tic (Bonet 2013), and post-hoc optimization heuristics (Pom-
merening, Röger, and Helmert 2013). A unified formulation
for combining Integer and Linear Programming approaches
has also been introduced (Pommerening et al. 2014).

Finding the exact value of h+ has also been done us-
ing Integer and Linear Programming. Most notably, Haslum,
Slaney, and Thiébaux (2012) find the value of h+ by using
set-inclusion minimal disjunctive landmarks and solving the
LP relaxation of the integer programming formulation of a
hitting set problem. Imai and Fukunaga (2015) compute the
value of h+ by solving a Mixed Integer and Linear Program-
ming (MILP) formulation of delete-free planning problems.
Another notable work is computing h+ by using relaxed De-
cision Diagram based heuristics (Castro et al. 2020).

Currently, the MILP formulation mentioned above is con-
sidered to be the state-of-the-art method for optimally solv-
ing delete-free problems, though the work introduced in
(Haslum, Slaney, and Thiébaux 2012) shows a somewhat
complementary coverage.

Causal Relaxed Plan Representations
In this section, we provide an alternative representation
of relaxed plans that corresponds to our SAT encoding of
delete-free STRIPS problems. We only consider STRIPS
planning problems for which the value of h+ is finite. This
assumption is not restrictive as h+(Π) = ∞ is decidable in
polynomial time (Hoffmann and Nebel 2001).

Definition 1 (Minimal Relaxed Plans). Let Π =
(P,A, I,G, cost) be a STRIPS planning problem and π =

〈a1, . . . , an〉 be a relaxed plan for Π. We say π is a minimal
relaxed plan for Π iff each action ai in π adds at least one
proposition that is neither in I , nor in the positive effects of
any other action aj in π for j < i .

Clearly, every optimal relaxed plan for Π is also a minimal
relaxed plan for Π.

Let f be a partial function from X to Y . The domain of f
is the set of members ofX for which f is defined. The range
of f , also Range(f), is the set of members of Y to which
some member of X is mapped by f .

Definition 2 (Causal Relaxed Plan Representations). Let
Π = (P,A, I,G, cost) be a STRIPS planning problem. As-
sume that f is a partial function from P\I to A such that
1) if f(p) = a then a adds p; 2) if f(p) = a then for every
precondition q of a, either q ∈ I or f is defined for q; 3)
for every p ∈ G, either p ∈ I or f is defined for p. We call
any partial function with conditions 1 to 3 a causal partial
function for Π. LetGf = (P,Ef ) be a graph for which there
is an edge in Ef from q to p iff for some a, f(p) = a and
q is a precondition of a. We say f is a causal relaxed plan
representation for Π iff Gf is acyclic. The cost of f , denoted
by cost(f), is defined by the total costs of all actions in the
range of f , i.e., those actions to which some proposition is
mapped by f .

We call the above-mentioned representation causal, be-
cause for each p, f(p) is intended to be equal to an action
that is the cause of p becoming true. Condition 1 of Defi-
nition 2 is thereby necessary. Condition 2 guarantees that if
action a is the cause of p becoming true, then the precondi-
tions of a need to have causes. Condition 3 provides that all
goals must have causes. The acyclicity of Gf is required to
avoid causal cycles.

We now prove that for every STRIPS planning problem Π,
minimum cost over all causal relaxed plan representations is
equal to h+(Π).

Theorem 1. For every STRIPS planning problem Π =
(P,A, I,G, cost), there exist a causal relaxed plan repre-
sentation f for Π such that cost(f) = h+(Π).

Proof. Let π = 〈a1, . . . , an〉 be an optimal relaxed plan
for Π. We construct partial function f from P\I to A. Let
f(p) = ai iff ai adds p, p /∈ I , and for every j < i, aj
does not add p. Clearly, f is well-defined. Assume that for
some p ∈ P , f(p) = ai. For every precondition q of ai
if q /∈ I , then there must exist j < i such that aj adds q,
and thus, f is defined for q. Similar discussion shows that
for every p ∈ G, either p ∈ I or f is defined for p. Let
Gf be the graph constructed as described in Definition 2.
Members of I cannot be in any cycles as they have no in-
coming arcs. We define function g on the domain of f , such
that g(p) = i iff f(p) = ai. It is easy to check that g is
monotonically increasing along the nodes of any path inGf .
Therefore, Gf is acyclic. We conclude that f is a causal re-
laxed plan representation for Π. Since π is a minimal re-
laxed plan for Π, Range(f) is equal to {a1, ..., an}. Thus,
cost(f) = cost(π).



Theorem 2. Let Π = (P,A, I,G, cost) be a STRIPS plan-
ning problem and f be a causal relaxed plan representation
for Π. Then cost(f) is an upper bound of h+(Π).

Proof. SinceGf described in Definition 2 is acyclic, we can
order members of the domain of f by the topological sorting
according toGf . Let p1, ..., pn be such an order. We now or-
der members of Range(f). For each action a in Range(f),
let O(a) = argmini{pi|f(pi) = a}. One clear conclusion
is that if f(pi) = a, then O(a) ≤ i. Let a1, ..., am be the in-
creasing ordering of members of Range(f) according to O.
This ordering is well-defined because by definition, f does
not map any proposition to different actions. We show that
π = 〈a1, ..., am〉 is valid relaxed plan for Π. For k such
that 1 ≤ k ≤ m, assume that O(ak) = i, and therefore pi
is an add effect of ak. If pj ∈ pre(ak)\I , then there is an
arc in Gf from pj to pi, and we have: j < i. According
to Definition 2, there must exist al such that f(pj) = al.
Therefore, O(al) ≤ j < i = O(ak), and thus l < k. We
conclude that every precondition of ak must be provided ei-
ther in the initial state or by another action ordered before ak
in π. Furthermore, According to Definition 2, every member
ofGmust be added by some action in the range of f . There-
fore, π is a relaxed plan for Π. Since cost(f) = cost(π), we
conclude that cost(f) is an upper bound of h+(Π).

Theorem 1 shows that for every STRIPS planning prob-
lem Π, there exists a causal relaxed plan representation f
such that cost(f) = h+(Π). On the other hand, Theorem
2 shows that cost of no causal relaxed plan representation
for Π can be lower than h+(Π). In other words, finding the
minimum cost over all possible causal relaxed plan represen-
tations is equivalent of finding h+. The proof of Theorem 2
is also constructive: once a causal relaxed plan representa-
tions has been found, the optimal plan can be extracted in
polynomial time from it by the method described in proof of
Theorem 2.

SAT Encoding of Causal Relaxed Plan
Representations

We now introduce propositional variables and formulas
needed to encode the causal partial function of Definition 2.
We then explain our choice of the method used here for guar-
anteeing acyclicity of Gf . This method is based of the work
done in (Rankooh and Rintanen 2022), which leverages low
directed elimination widths (Hunter and Kreutzer 2007) of
the underlying graph of our SAT formula, i.e., Gf .

Encoding of Causal Partial Functions
Let Π = (P,A, I,G, cost) be a STRIPS planning problem.
Without loss of generality assume that all members of I have
been removed from P , preconditions and effects of all ac-
tions, and G. In order to encode causal partial function f of
Definition 2 we use the following propositional variables:

• for each p ∈ P , fp indicates whether f is defined for p.
• for each a ∈ A and p ∈ add(a), fp,a indicates whether
f(p) = a.

Conjunction of the following formulas encodes f :∧
p∈P

(fp ↔
∨

p∈add(a)

fp,a) (1)

∧
a,a′∈A,p∈add(a)∩add(a′),a6=a′

fp,a → ¬fp,a′ (2)

∧
a∈A,p∈add(a),q∈pre(a)

fp,a → fq (3)

∧
p∈G

fp (4)

Formulas (1) to (4) are straightforward translation of condi-
tions in Definition 2. Formulas (1) and (2) guarantee that f
is a partial function. Formulas (3) and (4) ensure conditions
(2) and (3) of Definition 2, respectively.

Encoding of Acyclicity
According to Definition 2, for any given causal partial func-
tion f , the graph Gf is needed to be acyclic in order to
achieve a causal relaxed plan representation. Assume that
P = {p1, ..., p|P |}. To encode the edges of Gf , we use
propositional variable ei,j to indicate whether there is an
edge in Gf from pi to pj . Formula (5) below encodes Gf :∧

a∈A,pi∈pre(a),pj∈add(a)

fpj ,a → ei,j (5)

We now need to encode checking the acyclicity forGf . This
can be done simply by enforcing transitive closure on Gf
using formulas (6) to (8) below (Gebser, Janhunen, and Rin-
tanen 2014), where propositions ti,j indicate whether there
is an edge in the transitive closure of Gf from pi to pj∧

(vi,vj)∈Ef

ei,j → ti,j (6)

∧
(vi,vj)∈Ef ,pk∈P

ei,j ∧ tj,k → ti,k (7)

∧
(vi,vj)∈Ef

ei,j → ¬tj,i (8)

However, as it will be shown in our Empirical Results sec-
tion, encoding acyclicity can be done in a more efficient
way by using vertex elimination graphs (Rose and Tarjan
1975) instead of transitive closure graphs. We now review
the encoding of acyclicity for SAT formulas with underly-
ing graphs using vertex elimination method, which has pre-
viously been introduced in (Rankooh and Rintanen 2022).

Propositional Formulas with Underlying Digraphs As-
sume that φ is a propositional formula over the set of propo-
sitional variables P . Let G = (V,E) be a digraph and g
be a partial function from P to E. Then φ is a proposi-
tional formula with underlying digraph G with respect to
g. In this work, we avoid explicit definition of g by denot-
ing the proposition in φ that is mapped by g to (s, t) ∈ E
by es,t. If there exists a model M for φ, we can con-
struct GM = (V,EM), the underlying graph ofM, where
EM = {(s, t)|M(es,t) = true}.



It should be clear that the conjunction of formulas (1) to
(5) is a propositional formula with underlying graphGf . We
now explain how cycles can be avoided in the underlying
graph.

Vertex Elimination Graphs Vertex elimination graph has
originally been introduced in (Rose and Tarjan 1975). Let
G = (V,E) be a directed graph, G+ = (V,E+) be the
transitive closure of G, and O = v1, ..., v|V | be an arbi-
trary ordering of members of V . According to ordering O,
we produce a sequence of graphs G0 = G, ..., G|V | by
eliminating vertices of G. For each i > 0, Gi is produced
from Gi−1, by eliminating vi, and adding edges from all
its in-neighbors to all its out-neighbors. Formally, Gi =
(Vi, Ei) is produced from Gi−1 = (Vi−1, Ei−1) so that
Vi = Vi−1\{vi}, and Ei = Ei−1\({(vj , vi)|(vj , vi) ∈
Ei−1} ∪ {(vi, vk)|(vi, vk) ∈ Ei−1})

⋃
Di, where Di =

{(vj , vk)|(vj , vi) ∈ Ei−1, (vi, vk) ∈ Ei−1, j 6= k}. G∗ =
(V,E∗) is the vertex elimination graph of G according to
elimination ordering O, where E∗ =

⋃
i=1,...,|V |Ei.

The directed elimination width (Hunter and Kreutzer
2007) of ordering O for graph G is the maximum over the
number of neighbors of vi in Gi for i = 1, ...|V |. The di-
rected elimination width ofG is the minimum width over all
directed elimination orderings for G.

It has been shown that finding the ordering that produces
the minimum width for a given digraph is NP-complete
(Rose and Tarjan 1975). However, there are ad-hoc methods
for producing orderings with low directed elimination width
in practice. An examples is minimum degree heuristic, which
chooses vi with the minimum degree from Gi−1.

Guaranteeing Acyclicity Using Vertex Elimination We
here review the work done in (Rankooh and Rintanen 2022)
that employs vertex elimination for explicit encoding of
acyclicity for propositional formulas with underlying di-
graphs. Assume that φ is a propositional formula over the
set X of variables, with underlying graph G = (V,E). Let
O be an elimination ordering for G, G∗ = (V,E∗) be the
vertex elimination graph of G according to O, and δ be the
directed elimination width ofO forG. Let ∆ be the set of all
triangles produced by elimination ordering O for graph G.
Members of ∆ are all ordered triples (vi, vj , vk) such that
(vi, vk) is added by eliminating vj . Also if modelM satis-
fies φ, let GM be the underlying graph ofM. The encoding
of acyclicity for φ using vertex elimination according to O,
denoted by φacyclG , is produced by conjunction of formulas
(9) to (11). Note that propositional variable e′i,j indicates
whether there is an arc from vi to vj in G∗.∧

(vi,vj)∈E

ei,j → e′i,j (9)

∧
(vi,vj)∈E∗,(vj ,vi)∈E∗,i<j

e′i,j → ¬e′j,i (10)

∧
(vi,vj ,vk)∈∆

(e′i,j ∧ e′j,k)→ e′i,k (11)

It has been shown that φ has a model M such that GM
is acyclic if and only if φ ∧ φacyclG is satisfiable by an ex-

tension of M (Rankooh and Rintanen 2022). The number
of Boolean variables used in φacyclG is O(δ|V |) ⊆ O(|V |2),
and the number of clauses is O(δ2|V |) ⊆ O(|V |3).

It has also been shown that for formulas with underlying
graphs, for the cases with low directed elimination widths,
using vertex elimination for guaranteeing acyclicity can re-
sult in considerably higher performance compared to that of
alternative methods such as encoding transitive closure and
using GraphSAT (Gebser, Janhunen, and Rintanen 2014) as
the solver (Rankooh and Rintanen 2022). Our experiments
confirm that δ is low for a great majority of the underly-
ing graphs for our encodings of causal delete-free represen-
tations for STRIPS planning problems, which justifies our
choice of the method used of cycle prevention for Gf .

Enforcing Upper Bound on the Cost of Causal
Delete-Free Representations

The conjunction of formulas (1) to (5) and φacyclGf
encodes a

valid causal delete-free representation for any given STRIPS
planning problem. To minimize the cost of the produced
causal delete-free representation, we encode the enforce-
ment of a given upper bound on the total cost of all chosen
actions. We show that this can be done in two different ways:
propagating costs of chosen actions 1) along all actions, and
2) along all propositions.

Once encoding of an upper bound is established, by Theo-
rems 1 and 2, if a formula with upper bound u is unsatisfiable
then u + 1 is a lower bound of h+. Similarly, if a formula
with upper bound u is satisfiable, then u is an upper bound
of h+. By finding value u such that u is both an upper bound
and a lower bound of h+, we prove that h+ is equal to u.

Propagating Cost through Actions
Let a1, ..., a|A| be an arbitrary ordering of the actions of a
STRIPS planning problem Π = (P,A, I,G, cost). Also let
u be the upper bound that we want to enforce on the cost
of produced causal delete-free representation. Consider the
following propositional variables:

• ai for ai ∈ A to indicate action ai has been chosen to be
included in the produced relaxed plan.

• ci,j for 1 ≤ i ≤ |A| + 1 and j = 0, ..., u + 1 to indicate
that j is a lower bound of the total cost of all chosen
actions with indices lower that i.

Consider the following formulas:

c1,0 (12)∧
ai∈A

(ai ↔
∨

p∈add(ai)

fp,ai) (13)

∧
1≤i≤|A|,0≤j≤u

ci,j → ci+1,j (14)

∧
1≤i≤|A|,0≤j≤u+1

ci,j ∧ai → ci+1,min(j+cost(ai),u+1) (15)

¬c|A|+1,u+1 (16)



Formula (12) provides the initial value of zero for the
cost. Formula (13) ensures that an action is included in the
relaxed plan iff it is a cause of some proposition. Formula
(14) guarantees the propagation of the found lower bounds
through all actions. Formula (15) updates the lower bound
in the case that an action has been chosen to be included in
the relaxed plan. Finally, formula (16) ensures that the found
lower bound is not greater than u, the supposed upper bound
of the total cost of all actions.

One important observation is that it is not necessary to use
all propositional variables of the form ci,j explained above
to encode cost propagations. The total cost of all chosen ac-
tions with indices lower that imay not take all values from 1
to u+ 1. One simple example is when the GCD of the costs
of all actions is m > 1. In this case the propagated values
only need to be divisible by m. As another example, note
that a superset of the set of feasible values for total cost of
all chosen actions with indices lower that i when i = 3 is
{0, cost(a1), cost(a2), cost(a1) + cost(a2)}. We can easily
compute a superset of the set of feasible values for total cost
of all chosen actions with indices lower that i for i ≤ |A|+1
using a dynamic programming implementation of the fol-
lowing recursive function with S(1) = {0}:

S(i) ={c|c ∈ S(i− 1)}∪
{min(c+ cost(ai−1), u+ 1)|c ∈ S(i− 1)} (17)

The variable ci,j (and also the formulas including ci,j) can
be removed from our encoding if j /∈ S(i).

Propagating Cost through Propositions
Although the method described above for propagating costs
through actions is enough to encode causal relaxed plan
representations, we show that there are situations in which
propositions may carry additional information as to the cost
of potentially produced relaxed plan. These pieces of infor-
mation could be utilized to prune the search space for the
SAT solver.

Consider a case that the SAT solver has decided to set fp
to true. Assume that every action that adds p adds no other
propositions. In this case, even before choosing any action
that adds p, we know that the cost of the potentially produced
relaxed plan must be increased at least by the minimum costs
of all actions that add p. We can also generalize this idea for
obtaining more information about to total cost.

Definition 3 (Costs of Propositions). Let f be a
causal relaxed plan representation for Π = (P =
{p1, ..., p|P |}, A, I,G, cost). We define a cost function for
propositions in P . Let cost(pi) be equal to cost(f(pi)), if
f(pi) is defined, and for every j < i, f(pj) is either un-
defined or not equal to f(pi). We let cost(pi) be equal to
0, otherwise. Furthermore, for each i we define l(pi) as a
lower bound of cost(pi). If f(pi) is undefined or 0, we set
l(pi) to 0. Otherwise, we set l(pi) to the minimum of costs of
all actions in A that add pi .

It should be clear that for every i, l(pi) ≤ cost(pi).

Theorem 3. cost(f) =
∑|P |
i=1 cost(pi).

Proof. LetM a mapping from {pi ∈ P |cost(pi) 6= 0} to the
range of f , defined by M(pi) = f(pi). M is well-defined
because by Definition 3, f must be defined for members of
P with non-zero cost. We show that M is a bijection. For
a in the range of f , the set {pi|f(pi) = a} is non-empty.
Let pj be the member with the lowest index from this set.
By Definition 3, M(pj) = a, and thus M is a bijection.
Moreover, we have cost(M−1(a)) = cost(pj) = cost(a),
where M−1 is the reverse mapping of M . Therefore:

cost(f) =
∑

a∈Range(f)

cost(a)

=
∑

a∈Range(f)

cost(M−1(a))

=

|P |∑
i=1

cost(pi)

(18)

Theorem 3 shows that propagation of cost(p) is enough
for a sound and complete encoding of f . However, we en-
code propagation of cost through propositions p1, ...p|P | us-
ing both l(pi) and cost(pi) for each i. The reason for en-
coding l(pi) is that in some situations, it does not need the
cause of pi to be determined before passing the added cost
to pi+1. Although, as it was discussed above, this added cost
could be lower than cost(pi), its propagation can cause ear-
lier pruning of the search space of the SAT solver.

Let p1, ..., p|P | be an arbitrary ordering of the propositions
of a STRIPS planning problem Π = (P,A, I,G, cost). Let
P ′ be the subset of P , such that p ∈ P ′ iff every action that
adds p adds no other proposition. Also, let u be the upper
bound that we want to enforce on the cost of produced causal
delete-free representation. We use propositions c′i,j for 1 ≤
i ≤ |P |+ 1 and j = 0, ..., u+ 1 to indicate that j is a lower
bound of the total cost of all propositions with indices lower
that i. Consider the following formulas:

c′1,0 (19)∧
a∈A,pi∈add(a),0≤k≤u

fpi,a ∧
∧

pj∈add(a),j<i

¬fpj ,a ∧ c′i,k

→ c′i+1,min(k+cost(a),u+1)

(20)∧
1≤i≤|P |,0≤j≤u+1

c′i,j → c′i+1,j (21)

∧
pi∈P ′,0≤j≤u

c′i,j ∧ fpi → c′i+1,min(j+l(pi),u+1) (22)

¬c′|P |+1,u+1 (23)

Formula (19) provides the initial value of zero for the
costs. Formula (20) is used to pass the updated lower bound
to pi+1 in the case that cost of pi is non-zero according to
Definition 3. Formula (21) guarantees the propagation of the
found lower bounds through all propositions. Formula (22)



passes the updated lower bound to pi+1 by adding l(pi) to
the currently found lower bound in the case that pi is added
only by actions that add no other propositions. Finally, for-
mula (16) ensures that the found lower bound is not greater
than u, the supposed upper bound of the total cost of all
propositions.

As in the case of cost propagation through actions, we
can easily compute a superset of the set of feasible values
for total cost of all propositions with indices lower that i
for i ≤ |P | + 1 using the following recursive function with
S′(1) = {0}:

S′(i) = {c|c ∈ S′(i− 1)}∪
{min(c+ cost(a), u+ 1)|
c ∈ S′(i− 1), pi−1 ∈ add(a)}

(24)

The variable c′i,j (and also the formulas including c′i,j) can
be removed from our encoding if j /∈ S′(i).

Empirical Results
We have implemented our SAT-based encoding inside
Madagascar planner (Rintanen 2012). All experiments have
been run on a cluster of Linux machines, using a timeout of
1800 seconds per problem, and a memory limit of 64 GB.
In versions that vertex elimination based method is used,
for determining the order of vertex elimination, we have im-
plemented the minimum degree heuristic, i.e., eliminating a
vertex with minimal total number of incoming and outgoing
edges in the graph produced after the elimination of previ-
ously eliminated vertices. In all cases we have used Kissat
(Biere et al. 2020) as the SAT solver.

For producing the optimal cost for the given problem,
we perform a search mechanism similar to binary search
method. First, for u = 1, 2, 4, 8, .. formulas with upper
bound u on the total cost are produced and given sequen-
tially to the SAT solver until a satisfiable formula is found.
Let l be the the upper bound for last unsatisfiable formula
found in this way. Then (l, u] is the range of all possible
values for the optimal cost. We can narrow down this range
by checking the satisfiability of a formula with upper bound
m = (u+ l)/2. The new range will be (l,m] if the formula
with upper bound m is satisfiable, and (m,u] otherwise. We
continue this scheme until value k is found such that formula
with upper bound k and k − 1 are satisfiable and unsatisfi-
able, respectively.

All of our implemented versions use some of the prepro-
cessing methods presented in (Imai and Fukunaga 2015).
The used preprocessing methods are 1) finding fact land-
marks (Gefen and Brafman 2011) and adding them to the
goal conditions; 2) doing action relevance analysis and re-
moving non-relevant actions; and 3) dominated action elim-
ination. We perform landmark extraction, relevance analy-
sis, and action domination reasoning exactly as they are de-
scribed in (Imai and Fukunaga 2015).

As our benchmark problem set, we have used the delete-
free versions of all STRIPS planning problem sets found in
the planning repository1. From IPC domains, domains from

1https://github.com/AI-Planning/classical-domains

Figure 1: P-SAT vs A-SAT runtime on STRIPS planning
problems

Figure 2: P-SAT vs AP-SAT runtime on STRIPS planning
problems

both satisficing and optimal tracks have been considered. In
total, 2212 problem instances from 84 problem sets have
been used for comparison.

The Impact of Cost Propagation Method
We first show that the method used for cost propagation
can have a considerable impact on the efficiency of our
SAT-based encoding. We have implemented three different
solvers: A-SAT by propagating costs only through actions,
P-SAT by propagating cost only through propositions, and
AP-SAT by propagating costs through actions and proposi-
tions. Figures 1 and 2 show the comparison of the time used
for solving benchmark instances for the mentioned three
versions. For all versions vertex elimination based method
has been used for guaranteeing acyclicity in the underlying
graphs. Although we observed the same patterns in the re-
sults when transitive closure method was used for acyclicity
checking, these results have not been presented here for the
sake of brevity.



Figure 3: P-SAT with vertex elimination vs P-SAT with tran-
sitive closure

Our results show that P-SAT produces the best results
among these three solvers. In total 1614, 1875, and 1808
instances were solved by A-SAT, P-SAT, and AP-SAT ver-
sions, respectively. The better performance of P-SAT comes
partly from the fact that for many planning problems, the
number of propositions is considerably smaller than num-
ber of actions. This causes the encoding of cost propagation
through proposition to produce SAT formulas with smaller
number of variables and clauses, which in turn, results in
better performance of the SAT solver.

For the rest of our empirical results, we only use the P-
SAT version as it generally outperforms the other versions.

The Impact of Acyclicity Checking Method
We have implemented both vertex elimination and transi-
tive closure based methods for guaranteeing acyclicity for
the underlying graphs of our produced formulas. Figure 3
shows the comparison of the time used for solving bench-
mark instances for these methods when implemented inside
P-SAT version of our solver.

As it can be seen in Figure 3, using vertex elimination
method for guaranteeing acyclicity in the underlying graph
has a strong impact on the efficiency of our solver. This is
mainly because the directed elimination widths of the un-
derlying graphs are often considerably smaller than the num-
ber of propositions. Since variable elimination method uses
O(δ|V |) propositions and O(δ2|V |) clauses, where δ is the
directed elimination width of the elimination order, when δ
is low, it can produce more compact formulas in comparison
to the transitive closure method that uses O(|V |2) variables
and O(|V ||E|) clauses. In total 1799 instances were solved
by transitive closure method, 76 instances less than the 1875
instances solved by the vertex elimination method.

Comparison with State-of-the-Art Methods
We have compared our method with the HST (Haslum,
Slaney, and Thiébaux 2012) and IF (Imai and Fukunaga
2015) methods. Although the Decision Diagram based
method (Castro et al. 2020) is more recent than HST and IF,

Figure 4: Cumulative number of problems solved by HST,
IF, and the SAT-based method

its results are strongly dominated by the other methods and
therefore not presented here. Since the original implementa-
tion of IF is not publicly accessible, we have used the imple-
mentation of IF that is included in HST solver. As mentioned
before, both HST and IF rely on a Linear Programming op-
timizer. As the optimizer for these methods we have used
IBM ILOG CPLEX Optimization Studio 20.12.

Figure 4 shows the comparison of the cumulative num-
ber of problems solved within the time period of 0 to 1800
seconds. In total, our SAT-based method, HST, and IF solve
1875, 1689, 1751 problems, respectively. As can be seen in
Figure 4, if the time limit is greater than approximately 17
seconds, our method outperforms both HST and IF.

Our results also demonstrate complementary solving
power of our method and the competing methods. There are
240 problems solved by our method and not by IF, and 116
problems vice versa. Moreover, 296 problems are solved by
our method and not by HST, and 110 problems vice versa.
This complementarity was expected, as our SAT-based ap-
proach is inherently different from the Linear/Integer Pro-
gramming approach used in both HST and IF.

Conclusion
We introduced a novel representation of relaxed plans for
a given STRIPS planning problem, and proved that mini-
mizing the cost over our new representations is equivalent
to finding the optimal cost of relaxed plans for the original
problem. We also provided an encoding method to translate
our representation to SAT, as well as formulas needed for
minimizing the cost of found solutions. According to our
empirical results, our method is competitive with the state
of the art, and shows better coverage in comparison to com-
peting methods for benchmark STRIPS planning problems.

2https://www.ibm.com/products/ilog-cplex-optimization-
studio
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