
Planning for Partial Observability by SAT and Graph Constraints

Binda Pandey and Jussi Rintanen∗

Department of Computer Science
Aalto University, Helsinki, Finland

Abstract

Chatterjee et al. have recently shown the utility of SAT
in solving a class of planning problems with partial ob-
servability. A core component of their logical formulation
of planning is constraints expressing s-t-reachability in di-
rected graphs. In this work, we show that the scalability of
the approach can be dramatically improved by using dedi-
cated graph constraints, and that a far broader class of im-
portant planning problems can be expressed in terms of s-t-
reachability and acyclicity constraints.

Introduction
Chatterjee et al. (2016) proposed a new framework for solv-
ing contingent planning problems with partial observabil-
ity, bounded memory, and the objective of reaching a goal
state. This planning problem can be understood as a sim-
plification of the partially observable Markov decision pro-
cess (POMDP) problem, in which transition probabilities are
ignored, and instead of numeric rewards on all transitions,
reaching a goal state is viewed as generating a reward.

Interestingly, this problem for a fixed number of mem-
ory states is NP-complete (Chatterjee, Chmelik, and Davies
2016). In contrast, classical planning is polynomial-time
solvable in the size of the state space (by a simple graph
traversal of the state space), and the POMDP problem is un-
solvable in general (Madani, Hanks, and Condon 2003) and
PSPACE-hard even when restricted to short horizons with
lengths that equal the cardinality of the state space (Mund-
henk et al. 2000; Papadimitriou and Tsitsiklis 1987). Hence
the limitation to small-memory policies represents a dra-
matic reduction in the complexity of the problem. Further,
and more interestingly, there is a relatively straightforward
reduction to the satisfiability problem of the propositional
logic, SAT. This provides an interesting addition to plan-
ning problems solvable by SAT and related methods (Kautz
and Selman 1996; Cimatti et al. 2003; Shin and Davis 2005;
Ferraris and Giunchiglia 2000; Rintanen 2007; Shin and

∗Also affiliated with Griffith University, Brisbane, Australia,
and the Helsinki Institute for Information Technology, Finland.
This work was funded by the Academy of Finland (Finnish Cen-
tre of Excellence in Computational Inference Research COIN,
251170).
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Davis 2005; Rintanen 2017). A major role in the reduction
is played by a representation of s-t-reachability of directed
graphs as a set of clauses, which is needed for stating the
following: for every non-goal state of the execution, if the
execution state is reachable from an initial state under the
chosen plan, then a goal state is reachable from the state.

The main challenge in this approach is the encoding the
s-t-reachability constraint as a propositional formula. These
constraints strongly dominate the size of the overall formula,
which led Chatterjee et al. to limit the constraints by ad hoc
means, without which scalability is poor.

Our first contribution is to show how the size of the en-
codings can be reduced from quadratic to linear (in the size
of the graph representing all possible executions), by re-
placing the CNF-encoded graph constraints by specialized
constraints for graph properties. This change, together with
a SAT solver extended with acyclicity constraints, dramati-
cally improves the scalability of the approach, without hav-
ing to resort to ad hoc limitations of the constraints which
compromise the correctness of the approach.

Our second contribution presents two infinite-horizon
classes of plans, and establishes tight connections between
the different notions of plans and graph constraints: the char-
acterization of plans in terms of properties of graphs repre-
senting their behaviors is particularly natural and elegant.
The new plan classes with infinite executions extend and
strengthen the approach considerably: many applications of
AI planning involve unbounded time horizons, for example
a robot performing the same task indefinitely. Planning that
does not acknowledge that goals are to be reached repeat-
edly are in these domains insufficient: being able to reach
a goal once is not enough, because it is also necessary to
guarantee that the goals remain reachable in the future. A
simple example is a robot doing cleaning or maintenance in
a complex building with limited accessibility of rooms (due
to locks in the doors), with the robot performing a task in
a way that locks itself in a part of building so that no fur-
ther tasks can be completed. Other examples are using up or
decapacitating critical resources.

To cover such more general scenarios, the concepts used
by Chatterjee et al. have to be generalized. We show how
this generalization can be very elegantly achieved by using
graph constraints. To illustrate the ideas, we first show how
the strong plans concept – guaranteed one-time reachability

of goals in a bounded number of steps – of Cimatti et al.
(2003) can be expressed in terms of acyclicity constraints.
Then, we generalize these two finite execution problems to
corresponding infinite execution problems, in which goals
are repeatedly reached an infinite number of times, respec-
tively with a bounded and an unbounded execution between
visits of goal states. Surprisingly, the powerful notions of in-
finite plans are obtained from the finite execution encodings
by very small modifications.

The significance of these results is that earlier works
on planning for non-deterministic and partially observable
problems limit to finite executions (Bonet and Geffner 2000;
Bertoli et al. 2006; Bertoli, Cimatti, and Pistore 2006), with
no obvious generalization path to infinite executions by the
types of methods used. Hence, we argue that SAT and graph
constraints are a conceptually simple and effective approach
to these infinite horizon problems, not requiring much on top
of the basic framework with finite executions only.

In the experimental part of the work we show that the
proposed solution to the quadratic reachability constraints
works very well: we observe steep and growing improve-
ments in the runtimes as the instance sizes grow, in accor-
dance with the reduction from quadratic to linear size reach-
ability constraints. The second part of the work is concep-
tual, and is not experimented with.

The structure of the paper is as follows. In the next sec-
tion we discuss four different objectives for planning with
non-deterministic actions and partial observability. Then we
formalize the planning problem in terms of its state space
representation and executions under a given plan, followed
by definitions of the four objectives that plans may have
to satisfy. This is followed by translations of all resulting
planning problems into the propositional logic, including
the related graph constraints. In the experiments section we
investigate the impact of replacing a standard CNF-based
SAT solver with one that includes specialized propagators
for graph constraints. We conclude by summarizing the re-
sults and pointing out topics for future research.

Planning with Partial Observability
Planning with partial observability was perhaps first pur-
sued in the context of partially observable Markov decision
processes (POMDP) (Smallwood and Sondik 1973). The
high complexity of POMDPs, as well as the lack of numeric
probabilities in some applications, has motivated research
on partial observability without numeric probabilities (Peot
and Smith 1992; Weld, Anderson, and Smith 1998). See the
related works section for a brief overview.

In this work we focus on the recent approach by Chat-
terjee et al. (2016) to planning without numeric probabili-
ties and with partial observability, which is motivated by the
need to reduce the overall complexity of planning with par-
tial observability, and which focuses on cases where only a
small number of belief states are needed, that is, it is pos-
sible to reach the goals without having to remember much
about the past execution of the plan.

This approach has been so far defined for one specific no-
tion of plans, those that reach the specified goal states even-
tually, meaning that reaching the goals is guaranteed, but

there are no finite upper bound on the number of steps that
may be needed. This notion of plans was first discussed by
Cimatti et al. (2003) – called strong cyclic plans by them
– in the context of planning with non-deterministic actions
and full observability,

Chatterjee et al. (2016) presented an interesting approach
to find strong cyclic plans in the partially observable setting,
restricted to small-memory plans. Their work was based on
the observation that solving the class of planning problems
they focused on is NP-complete, and therefore solvable by
reduction to the propositional satisfiability problem SAT.

In this section we review existing notions of plans which
limit to finite executions, and propose two extensions to in-
finite executions.

Bounded Reachability (Strong Plans)
A non-deterministic planning problem has a strong plan if
for every state there is an action that guarantees the reduc-
tion of the remaining steps to a goal state by at least one.
We call this bounded reachability, as the plans reach the
goals with a bounded number of steps. The concept was
originally proposed by Cimatti et al. (2003), for planning
with full observability, and they also proposed efficient (low
polynomial) time algorithms1 for finding such plans, starting
from the set of goal states (having distance 0 to goal states),
and then finding states that are guaranteed to reach goals by
one action (states with distance 1), then finding states that
are guaranteed to reach either a distance 1 or a distance 0
state by one action, and so on, iteratively covering longer
and longer distances.

Eventual Reachability (Strong Cyclic Plans)
Eventual reachability means that goals are eventually
reached, with no guarantee of reaching them with any finite
number of steps. This concept – called strong cyclic plans
– was first investigated by Cimatti et al. (2003), again for
fully observable problems, to cover cases in which no strong
plans exist. Consider the goal of tossing a coin with the goal
of the coin landing on heads. There is no certainty that heads
will be reached in any finite number of steps. But, assum-
ing that all possible non-deterministic outcomes do actually
occur (fairness), the probability of eventually reaching the
goal is 1, despite the possibility of an infinite sequence of
unsuccessful tosses which has probability 0. To find strong
cyclic plans (plans that guarantee eventually reaching the
goal states) Cimatti et al. propose a clever iterative algo-
rithm that starts from the set of goal states S0 = G, and
iteratively finds larger and larger sets Si such that for every
state s ∈ Si, there is an action as such that taking that action
in s always reaches a state in Si and sometimes reaches a
state in Si−1. The iteration ends for an i such that all initial
states are included in Si.

The concept of strong cyclic plans has been generalized
to planning with partial observability (Bertoli, Cimatti, and
Pistore 2006). Chatterjee et al. (2016) formalized the same

1Cimatti et al. propose the use of Binary Decision Diagrams
(Bryant 1992) to scale up the approach to very large state spaces,
but we do not discuss this possibility in this work.

notion of plans in the partially observable case in terms of s-
t-reachability, and showed that with bounded memory the
problem is NP-complete and solvable with standard SAT
solvers.

Repeated Bounded Reachability
The previous two objectives only cover finite executions. In-
finite executions are needed whenever some goal has to be
reached repeatedly, with no a priori bound on how many
times. The strongest notion of plans in this setting is that
of repeated bounded reachability, which requires that goal
states are reached an infinite number of times, and – simi-
larly to bounded reachability – the number of steps between
any two consecutive visits to goal states is finitely bounded.

Repeated Eventual Reachability
Repeated eventual reachability are analogous: goal states
are visited repeatedly, but now there is no requirement that
the interval between the visits is bounded. It is only re-
quired that eventually reaching the goals once more is guar-
anteed, subject to the fairness assumption, similarly to even-
tual reachability. Repeated eventual reachability is impor-
tant when no plans for repeated bounded reachability exist.

Infinite executions are standard in most works on MDPs
and POMDPs, where the objective is to collect the maximum
expected discounted rewards over an infinite horizon. This
objective can be viewed as a natural non-metric counterpart
of the plans for MDPs and POMDPs with infinite horizons.

Preliminaries
Definition 1 A transition system P = (S,A,O, δ, Z, I,G)
consists of

• S is a finite set of states,
• A is a finite set of actions,
• O is a finite set of observations,
• δ ⊆ S × A ×S is the transition relation,
• Z : S → O is the observation function,
• I ⊆ S is the set of initial states, and
• G ⊆ S is the set of goal states.

Memory-Free Plans
A memory-free plan is a function π : O −→ A that, given
an observation O of a state s ∈ S, chooses one of the ac-
tions. States with the same observation are associated with
the same action because π(Z(s)) = π(Z(s′)) whenever
Z(s) = Z(s′), independently of the past observations and
actions.

Bounded-Memory Plans
Sometimes it is necessary to keep track information from
the execution history which consists of earlier observations
and actions, to be able to choose an appropriate action. This
information is characterized by the memory state. For exam-
ple, consider a multi-story building where the agent has to
reach the fourth floor. If all floors look identical, the agent
needs to count the visited floors to be able to decide, which

floor to enter. With no memory (and deterministic plans), the
agent would be forced to behave in the same way whenever
it encounters the same observation.

Instead of remembering everything in the past, bounded-
memory plans allow only a small number of different mem-
ory states M . The base case |M | = 1 means that there is
no memory, that is, alternative past executions cannot be ex-
plicitly distinguished from each other at all.

Definition 2 A bounded-memory plan is a tuple
(M,πα, πµ,m0) such that the following hold.
• M is a finite non-empty set of memory states.
• The function πα : M × O −→ A is the action selection

function which, given a memory state and an observation,
chooses an action.

• The function πµ : M × O −→ M is the memory update
function which, given a memory state and an observation,
determines the new memory state.

• The initial memory state is m0 ∈M .

The behavior of a transition system under a plan is de-
scribed by the execution graph. It will be later used in defin-
ing the different objectives, and also in the encodings of con-
tingent planning in the propositional logic.

Definition 3 (Execution Graph) The execution graph for a
transition system P and a plan (M,πα, πµ,m0) is a graph
(V,E), such that
• the set V of nodes consists of all (s,m) ∈ S ×M ,
• the set E ⊆ V × V of arcs includes ((s1,m1), (s2,m2))

iff (s1, a, s2) ∈ δ for πα(m1, Z(s1)) = a and
πµ(m1, Z(s1)) = m2, and

• the initial nodes of the execution graph are (s,m0) such
that s ∈ I .

Definition 4 (Bounded Execution Graph) The bounded
execution graph is like the execution graph, except that
there are no outgoing arcs from goal nodes.

Formalization of Objectives
We now state the four objectives more formally in terms of
the properties of execution graphs. The bounded execution
graph is used by the bounded objectives, and the full execu-
tion graph is used by the objectives with infinite executions.
The differences between the objectives show up in the dif-
ferent graph properties that need to be satisfied.
1. Eventual Reachability

Eventual Reachability requires that if there is a path from
an initial node (s0,m0) of the bounded execution graph
to some (s,m) such that s 6∈ G, then there is a path from
(s,m) to a goal node (s2,m2) where s2 ∈ G.

2. Repeated Eventual Reachability
Repeated Eventual Reachability differs from Eventual
Reachability simply by looking beyond the goal states:
if there is a path from an initial node (s0,m0) of the (un-
bounded) execution graph to some (s,m), then there is a
path from (s,m) to some (s2,m2), where s2 ∈ G.

3. Bounded Reachability
Bounded Reachability requires the following.

• The bounded execution graph is acyclic to ensure that
the goal is reached in a finite number of steps.
• All non-goal nodes (s,m) (with s 6∈ G) that are reach-

able from an initial node in the bounded execution
graph, have a successor node.

These two conditions guarantee that all executions are
finite (because of acyclicity), and because all non-goal
nodes have a successor, the last node of every execution
must be a goal node.

4. Repeated Bounded Reachability
Repeated Bounded Reachability requires the following.

• All nodes reachable from an initial node (m0, s0) have
a successor node.
• Every cycle in the execution graph contains at least one

node (s,m) such that s ∈ G. That means, cycles that
do not involve a goal state are not allowed.

Testing for the existence of plans under all these objec-
tives and under plans with a fixed memory size is in NP, as
demonstrated by the reductions to SAT given later. The de-
cision problems are also NP-hard, which can be proved by
simple modifications of earlier proofs (Chatterjee, Chmelik,
and Davies 2016). NP-completeness of these problems is
what justifies the use of a SAT solver to find plans for them.
If the problems were polynomial time (like fully observable
MDP problems), using a SAT solver would be an overkill.

Encodings in the Propositional Logic
In this section, we explain how the three new objectives are
encoded as a SAT problem. Given k ≥ 1, we will define a
propositional formula which is satisfiable iff there is a plan
with memory k.

The encodings rely on implicitly representing all possible
plans and all possible execution graphs. The choice of a plan
– the choice of actions and memory updates for all observa-
tion and memory state combinations – induces one particu-
lar execution graph. A plan is determined by a truth-value
assignment to variables πα and πµ below, and the remain-
ing variables represent the corresponding execution graph
(through the variables Arc) and its properties.

Variables used in the Encodings
A number of propositional variables are defined to encode
contingent planning problem with bounded memory into
SAT. The first two represent the functions πα and πµ of
bounded-memory plans.

• πα(m, o, a) means that action a is taken in memory state
m with observation o.

• πµ(m, o,m′) means that memory state m′ follows mem-
ory state m with observation o.

• Arc(s,m, s′,m′) means that there is a transition between
state-memory pairs (s,m) and (s′,m′), for all (s, s′) ∈ Y
where Y = {(s, s′) ∈ S × S|(s, a, s′) ∈ δ for some a ∈
A}.

• RI(s,m) means that (s,m) is reachable from an initial
node under the current plan.

• RG(s,m) means that a goal node is reachable from (s,m)
under the current plan.

Next we describe the constraints common to all ob-
jectives, followed by CNF encodings of reachability con-
straints, and after that we introduce the constraints specific
to each objective.

Constraints Common to All Objectives
The constraints that are common to all objectives guaran-
tee that the arc variables exactly correspond to the execution
graph of the plan represented by πα and πµ. The constraints
in the next sections impose additional constraints specific to
the four plan types.

The value assignments for πα and πµ have to correspond
to the respective functions: the functions have to be de-
fined for states that are reachable, and their values have to
be unique.

First we require that both represent functions.

¬(πα(m, o, a1) ∧ πα(m, o, a2)) (1)

for all m ∈M, o ∈ O, a1 ∈ A, a2 ∈ A such that a1 6= a2.

¬(πµ(m, o,m1) ∧ πµ(m, o,m2)) (2)

for all m ∈M,o ∈ O,m1 ∈M,m2 ∈M with m1 6= m2.
For all (s,m) ∈ S ×M , if (s,m) is reachable from an

initial node, then at least one of the actions executable in s
should be enabled in (s,m) and hence part of the plan.

RI(s,m)→
∨

a∈X(s)

πα(m,Z(s), a) (3)

Here, X(s) = {a ∈ A|(s, a, s′) ∈ δ, for some s′}.
For every memory state m ∈ M and observation o ∈ O,

at least one of the memory updates is possible.∨
m′∈M

πµ(m, o,m
′) (4)

The last constraint states that the execution graph has arc
((s,m), (s′,m′)) if and only if the plan prescribes memory
update from m to m′ for the observation Z(s) and some
action a for state s with a possible transition to s′. It is
generated for all (s, s′) ∈ Y .

Arc(s,m, s′,m′)↔πµ(m,Z(s),m′) ∧ ∨
a∈X(s,s′)

πα(m,Z(s), a)

 (5)

Here, X(s, s′) = {a ∈ A|(s, a, s′) ∈ δ}.

Reachability Constraints
The simplest – and approximating – encoding of reachability
is the following, expressed for reachability from the initial
nodes of the execution graph.

RI(s0,m0) for all initial states s0 (6)

RI(s,m) ∧Arc(s,m, s′,m′)→RI(s′,m′)

for all (s, s′) ∈ Y,m ∈M,m′ ∈M
(7)

This is an over-approximation, as RI(s,m) is true for all
nodes (s,m) which are reachable from the initial nodes, but
it may also be true for unreachable nodes. However, this
encoding is far simpler than the non-approximate encoding
we present next, and it is sufficient when we only pose the
constraint that some nodes are unreachable from the initial
states, as is the case with all encodings in this paper. This
observation was already used by Chatterjee et al. (2016).

An accurate (non-approximating) encoding of reachabil-
ity is needed for expressing that from a given node, a goal
node is reachable. It is based on calculating the distances to
goal nodes.

RG0 (sg,m) for all goal states sg and all m ∈M (8)

¬RG0 (s,m) for all non-goal states s and all m ∈M (9)

RGi (s,m)↔
(
RGi−1(s,m)∨∨

(s′,s)∈Y,m′∈M

Arc(s′,m′, s,m) ∧RGi−1(s′,m′)

 (10)

Now, a goal node is reachable from (s,m) if and only if
RGN (s,m) is true, where N is the total number of nodes.2

We define RG(s,m) as RGN (s,m). The last formulas have
a size proportional to the number of arcs in the graph. The
index i needs to be instantiated for all 1, . . . , N . Hence the
size of this encoding is linearly proportional to the product
of the number of nodes and the number of arcs.

An alternative to the reachability constraints encoded in
CNF is to use ad hoc reachability constraint propagators.
GraphSAT (Gebser, Janhunen, and Rintanen 2014b) sup-
ports the relevant constraints, and combine them with a stan-
dard SAT solver (Glucose/MiniSAT). Extensions of the stan-
dard SAT problem are motivated by the poor performance of
SAT solvers for problems dominated by graph constraints.

To use these constraints, the input file specifies the set of
nodes of a graph and a mapping from a subset of propo-
sitional variables to the arcs of the graph, for indicating,
which arcs are present. In our case, the nodes are the pairs
(s,m) ∈ V , a special initial node nI , and a special goal
node nG. The propositional variables Arc(s,m, s′,m′) are
mapped to arcs from (s,m) to (s′,m′). Additionally, we
have arcs from the special initial nodes to the initial nodes
of the execution graph, as well as arcs from the goal nodes
of the execution graph to the special goal node. The propo-
sitional variables for these arcs are always set true by includ-
ing corresponding unit clauses in the input.

Then some other propositional variables are associated
with reachability between given two nodes. In our case, we
associate RG(s,m) with the reachability from (s,m) to the

2A lower value than N could substantially reduce the formula
size, but choosing such a lower value is difficult in general because
it would be at least as high as the longest simple path in the execu-
tion graph of any valid plan.

special goal node, and RI(s,m) with the reachability from
the special initial node to (s,m).

This representation works exactly like the CNF encoding
given above from the point of view of the propositional vari-
ables RG, RI and Arc.

Additionally, GraphSAT allows the use of the acyclicity
constraint, which requires that the graph formed by the arcs
for which the corresponding propositional variable are true,
is acyclic.

S-T-Reachability by Acyclicity During experimentation
with the GraphSAT solver, we noticed that instead of us-
ing GraphSAT’s specialized s-t-reachability constraints, we
could obtain a far better scalability and performance by re-
ducing s-t-reachability to GraphSAT’s specialized acyclicity
constraints. This seemed to be due to the moderately large
size of the graphs and the specifics of our reachability tests.
So, instead of the specialized s-t-reachability constraints, we
ended up representing reachability in terms of specialized
acyclicity constraints through the following reduction.

The reduction is based on the following formulas, the first
is for all goal nodes (s,m) ∈ G×M , and the latter two for
all non-goal nodes (s,m) ∈ (S\G)×M .

RG(s,m) (11)

RG(s,m)←
∨

(s,s′)∈Y,m′∈M

Arc(s,m, s′,m′) ∧RG(s′,m′)

(12)

RG(s,m)→
∨

(s,s′)∈Y,m′∈M)∈V

(Arc(s,m, s′,m′)

∧RG(s′,m′)
∧ J(s,m, s′,m′))

(13)

In addition, the graph consisting of arcs ((s,m), (s′,m′))
such that the propositional variable J(s,m, s′,m′) is true
is required to be acyclic, expressed by GraphSAT’s acyclic-
ity constraint. These variables – the justification variables –
express the idea that the justification of reachability cannot
be circular: reachability of n0 and n1 from some third node
cannot be justified simultaneously by arcs from n0 to n1 and
from n1 to n0.

In contrast to the encoding of reachability as (8), (9) and
(10), this encoding has a size linear in the size of the graph.

(Repeated) Eventual Reachability
The eventual reachability objective is the one handled by
Chatterjee et al. (2016). For this objective the executions
are finite, and we use the bounded execution graph with-
out outgoing arcs from goal nodes. For the repeated even-
tual reachability objective the (unbounded) execution graph
is used instead, with no other differences.

The only additional constraint that is needed on top of
the constraints shared by all objectives says that if (s,m) ∈
(S\G ×M) is reachable from the initial node, then a goal
node is reachable from (s,m).

RI(s,m)→ RGN (s,m) (14)

Bounded Reachability
For the bounded reachability objective, we use the bounded
execution graph, and for the boundedness condition to be
satisfied, there may not be infinite loops. This is guaran-
teed by requiring that the execution graph is acyclic, directly
achieved with the acyclicity constraint. Since formula (3)
guarantees that all reachable states have a successor state,
and there is by formula (5) correspondingly a successor state
(except for the goal states because we are using the bounded
execution graph), all of the executions of a plan must end in
a goal state, and all executions have a length bounded by the
number of nodes in the execution graph.

Repeated Bounded Reachability
The requirement here is to reach the goal states repeatedly,
necessarily inducing cycles in the execution graph, but no
cycles without the goal states are allowed. This is achieved
simply by imposing the acyclicity constraint on those arcs in
the execution graph that do not start from a goal node.

Sizes of Encodings
Asymptotic size upper bounds of the encodings follow.

category formula asymptotic size
base encoding (1) |M | × |O| × |A|2

(2) |M |3 × |O|
(3) |S| × |M | × |A|
(4) |M |2 × |O|
(5) |Y | × |M |2 × |A|

CNF non-s-t-reachability (6) |S|
(7) |M |2 × |Y |

CNF s-t-reachability (8) |S| × |M |
(9) |S| × |M |

(10) |S| × |M |2 × |Y |
reachability by acyclicity (11) |S| × |M |

(12) (|S| × |M |) + |Y |
(13) (|S| × |M |) + |Y |

(repeated) eventual reachability (14) |S| × |M |
The formulas (1) and (2) can be respectively reduced by

factors |A| and |M | by using standard cardinality constraint
encodings (Sinz 2005), which is also what our implemen-
tation does. Assuming that M and O are small, the base
encoding is effectively linear in the size of the graph that
depicts all transitions between states, labelled with the pos-
sible actions (this does not fully become visible in the size
characterization of (5).)

The improvement from representing the reachability con-
straint in CNF (formulas (8), (9) and (10)) to representing it
in terms of acyclicity (formulas (11), (12) and (13)) is sub-
stantial, essentially from quadratic to linear in the size of the
state-space graph underlying the planning problem, as also
shown in Figure 2.

Chatterjee et al. (2016) tried to solve the problem of
very large reachability encodings by manually determining –
through trial and error – boundsN for the formulas (10) that
are far lower than the longest simple paths in the graph. No
theoretical or practical justification was given for this. For

example, for the satisfiable Escape instances they consid-
ered a state to be unreachable if there are no paths of length
≤ N = 2, which is certainly far lower than the maximum
path lengths in the belief space. The Escape problems have
belief space sizes up to several thousands, and the longest
paths without repeating states in the state space have lengths
in the dozens, which would be a lower bound on acceptable
N . In contrast, we used N = |S×M |, the number all states
of execution. This leads to higher runtimes and larger for-
mulas, but is more realistic because tight upper bounds on
the required N parameter are in general not available.

Experiments
The goal of our experiments is to demonstrate that the
poor scalability of quadratic encodings of reachability con-
straints, as used by Chatterjee et al. (2016), is avoided by us-
ing specialized constraint propagators in some SAT solvers.

With the quadratic size of the constraints, for problems
with thousands of states, formula sizes quickly climb to
hundreds of megabytes and further, making their genera-
tion and use slow. Second, the complexity and size of the
constraints are an obstacle of solving the planning problems
efficiently. Our experiments show that both problems are
eliminated: the formulas with the linear encodings are dra-
matically smaller, and most of the time solved in a fraction
of a time in comparison to the original formulas.

We implemented a program to translate contingent plan-
ning problems into the language used by GraphSAT, which
is the DIMACS CNF format extended with graph con-
straints. We also implemented a translation from Graph-
SAT’s input language into the standard DIMACS CNF for-
mat, to be able to compare specialized graph constraint prop-
agators to the existing CNF encodings of the same con-
straints. Given the reachability constraints in the Graph-
SAT syntax, this translator produces exactly the Chatterjee
et al. reachability encoding, including the compact non-
reachability encoding without node distances.

We hypothesized that solving the planning problems
with specialized graph constraint propagators would outper-
form the purely clausal encodings used by Chatterjee et al.
(2016). This hypothesis turned out to be true. However,
very surprisingly, reducing reachability to acyclicity – with
the reduction given earlier – dramatically outperformed the
specialized reachability constraints. For this reason, in the
following we will not be reporting on the specialized reach-
ability constraints of GraphSAT.

We devised a collection of grid navigation problems simi-
lar to the ones used by Chatterjee et al. (2016), which in turn
are variants of problems proposed earlier (McCallum 1993).
In our problems a robot is moving in a grid north, south, east
or west, and attempts to reach a target grid cell, when the ini-
tial location is unknown and randomly chosen. The robot
can observe the wall in immediately neighboring cells in
the four cardinal directions. These are our problem classes
comb, emptycorner, emptymiddle and roomchain, with re-
spectively a comb-shaped grid map, empty grid with goal in
the corner (with p×p grid cells with parameter p as indicated
in the instance name), empty grid with goal in the middle
(same p parameter), and a sequence of rooms with goal in

πα E NE NW N SE SW S W -
0 N S S S N E N S S
1 W N S W S W E S N
πµ E NE NW N SE SW S W -
0 0 1 0 0 0 1 1 1 0
1 1 1 0 0 0 0 1 1 1

Table 1: Plan with 2 memory states for scanning a grid

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

G
ra

p
h

S
A

T
-C

N
F

GraphSAT-acyc

runtime in seconds

Figure 1: Runtimes for CNF constraints vs. encoding with
acyclicity

the middle room. For the comb-shaped mazes the planner
discovers the “follow the wall on the left/right” plan, and for
the others it discovers various policies for example scanning
the grid systematically vertically or horizontally, or going to
the corner and then diagonally zigzagging to the goal cell if
it is in the middle. We tried grids of different sizes, up to
some hundreds of grid cells. A sample plan for scanning a
rectangular grid for emptymiddle is depicted in Table 1.

Additionally, we formalized a pursuit-evasion scenario in
an empty rectangular grid (similar to one used by Chatter-
jee et al. (2016)), which we called newescape, in which the
robot has to avoid being hit by another robot that moves un-
predictably. The robot can observe the presence of the pur-
suing robot in neighboring grid cells. The robot survives by
staying in place until the pursuing robot comes next to it,
after which it needs to move away.

All our experiments are with the repeated eventual reach-
ability objective, as the pursuit-evasion problem is interest-
ing only with infinite executions. The other problems have
solutions also for the finite objectives.

All runs were with a 3600 second time limit and per-
formed on Intel Xeon E3-1230 V2 CPUs at 3.30 GHz.

We tested an increasing number of memory states until
the instances became solvable (respectively 3, 1, 2, 2 or 3,
1 memory states for the 5 problems, independent of the grid

instance value CNF Acyc
comb006-1 F 0.02 0.00
comb006-2 F 3.34 0.13
comb006-3 T 9.00 0.28
comb008-1 F 0.08 0.00
comb008-2 F 39.95 0.19
comb008-3 T 1573.07 0.81
comb010-1 F 0.16 0.00
comb010-2 F 129.81 0.19
comb010-3 T 1533.21 1.31
emptycorner020-1 T 12.11 0.02
emptycorner030-1 T 26.70 0.04
emptycorner040-1 T 458.54 0.11
emptycorner050-1 T 294.36 0.25
emptymiddle005-1 F 0.04 0.00
emptymiddle005-2 T 0.12 0.01
emptymiddle010-1 F 1.42 0.00
emptymiddle010-2 T 44.38 0.08
emptymiddle015-1 F 57.14 0.02
emptymiddle015-2 T 1641.48 0.54
emptymiddle020-1 F 174.56 0.03
emptymiddle020-2 T - 0.39
roomchain002-1 F 0.13 0.00
roomchain002-2 T 0.64 0.12
roomchain003-1 F 0.26 0.00
roomchain003-2 F 205.13 -
roomchain003-3 T - 26.18
roomchain004-1 F 0.56 0.01
roomchain004-2 F - -
roomchain004-3 T - 118.86
newescape02-1 T 0.01 0.00
newescape03-1 T 0.16 0.01
newescape04-1 T 1.20 0.02
newescape05-1 T 7.85 0.07
newescape06-1 T 38.17 0.06
newescape07-1 T 19.89 0.23
newescape08-1 T 58.55 0.37
newescape09-1 T 159.20 0.46

Table 2: Runtimes with GraphSAT

size except for the roomchain problem.) The graphs have
a size up to some thousands of nodes. The runtimes of the
experiments are reported in Table 2, with the same data de-
picted in Figure 1 to visualize the general trend, and Figure
2 illustrating the formula size reductions.

As can be seen from Figure 1, representing the reach-
ability constraints in terms of acycliclity constraints dra-
matically reduces the runtimes in comparison to the CNF-
encoded reachability constraints, often by 2 or 3 orders of
magnitude. GraphSAT with acyclicity constraints scales far
further than the instances shown in Table 2 and what we
experimented with, in all categories except the roomchain
problem. Roomchain is also the only problem in which
CNF-encoded reachability sometimes outperforms the re-
duction to acyclicity (the instance roomchain03-2, where
only the CNF encoding can determine that > 2 memory
states are needed.)

For all categories, the sizes of largest instances with CNF-
encoded reachability are in the gigabyte range. However, in
most cases the runtimes are a more limiting factor than the

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 10000 100000 1e+06 1e+07 1e+08 1e+09

G
ra

p
h

S
A

T
-C

N
F

GraphSAT-acyc

file size

Figure 2: File sizes for CNF constraints vs. encoding with
acyclicity

formula size. An exception is the newescape problem, in
which newescape06-1 has a size of 3.6 GB although it is rel-
atively quickly solvable. Larger instances in this series soon
become impractically large. See Figure 2 for a comparison
of file sizes with CNF-encoded reachability constraints and
reachability reduced to acyclicity. The size difference grows
as the instance size grows, and reaches three orders of mag-
nitude for the largest instances, that is, 1000 times larger
formulas for CNF-encoded reachability constraints.

Related Work
Planning with partial observability has been early on investi-
gated in the framework of Partially Observable Markov De-
cision Processes (POMDP) (Smallwood and Sondik 1973).
Due to the high complexity of this framework (Mundhenk
et al. 2000; Madani, Hanks, and Condon 2003), various ab-
stractions of the problem have been proposed, including ig-
noring the probabilities. Without probabilities, beliefs are
sets of states, and complexity is reduced (Rintanen 2004).
A basic approach in this vein is AND-OR tree search with
belief states (Bonet and Geffner 2000; Bertoli et al. 2006;
To, Pontelli, and Son 2011). Belief space search has also
been considered in backward direction (Weld, Anderson,
and Smith 1998; Rintanen 2005). Most works consider the
Bounded Reachability objective only: reaching the goals has
to be guaranteed within a bounded number of actions.

In connection with partial observability, eventual reacha-
bility or strong cyclic plans have been considered by Bertoli
et al. (Bertoli, Cimatti, and Pistore 2006).

The idea of bounded memory plans has earlier been ex-
tensively pursued in the context of POMDPs (Lusena et al.
1999; Meuleau et al. 1999). Many practically important
problems only require a small amount of memory, justify-
ing the approach. In addition to reduction in complexity,
small memory plans can be useful because they are smaller

and easier to understand.
Other means to limit the complexity caused by belief

states have been proposed. Albore et al. (2009) show that
bounds on the contingent width make efficient reduction to
planning with full observability possible, eliminating the
need to handle belief states explicitly.

Graph constraints occur in many applications. Acyclicity
is needed for example in representations of graphical models
for machine learning (Cussens 2008; Corander et al. 2013),
partial-order methods for SAT-based reachability (Rintanen,
Heljanko, and Niemelä 2006), and in knowledge representa-
tion languages with non-monotonic negation (Gebser, Jan-
hunen, and Rintanen 2014a).

Conclusion
We have investigated the close connection between graph
constraints and contingent planning with small-memory
plans, first showing how generalized notions of plans, in-
cluding infinite executions, can be covered by using natural
graph-theoretic concepts, and then shown through experi-
mentation that specialized solvers for graph constraints im-
prove the scalability of the approach dramatically, in many
cases almost trivializing the constraint solving process when
the basis approach can barely find solutions.

Small-memory plans, whenever applicable, are interest-
ing both for their potential to reduce complexity and their
small size in comparison to unrestricted conditional plans.

For future work we have started to pursue the application
of Mixed Integer Linear Programming (MILP) and SMT
solvers to solving small-memory POMDPs. Expressing
transition probabilities and real-valued rewards is straight-
forward in these frameworks, and together with optimization
it is possible to find the highest-reward POMDP solutions
for a given memory size.

References
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In Pro-
ceedings of the 21st International Joint Conference on Arti-
ficial Intelligence, 1623–1628. AAAI Press.
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2006.
Strong planning under partial observability. Artificial Intel-
ligence 170(4):337–384.
Bertoli, P.; Cimatti, A.; and Pistore, M. 2006. Strong cyclic
planning under partial observability. In ECAI 2006 – 17th
European Conference on Artificial Intelligence, volume 141
of Frontiers in Artificial Intelligence and Applications, 580.
IOS Press.
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Proceed-
ings of the Fifth International Conference on Artificial Intel-
ligence Planning Systems, 52–61. AAAI Press.
Bryant, R. E. 1992. Symbolic Boolean manipulation with
ordered binary decision diagrams. ACM Computing Surveys
24(3):293–318.
Chatterjee, K.; Chmelik, M.; and Davies, J. 2016. A
symbolic SAT-based algorithm for almost-sure reachability

with small strategies in POMDPs. In Proceedings of the
30th AAAI Conference on Artificial Intelligence (AAAI-16),
3225–3232. AAAI Press.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2003. Weak, strong, and strong cyclic planning via symbolic
model checking. Artificial Intelligence 147(1–2):35–84.
Corander, J.; Janhunen, T.; Rintanen, J.; Nyman, H.; and
Pensar, J. 2013. Learning chordal Markov networks by con-
straint satisfaction. In Burges, C. J. C.; Bottou, L.; Welling,
M.; Ghahramani, Z.; and Weinberger, K., eds., Advances in
Neural Information Processing Systems 26, 1349–1357.
Cussens, J. 2008. Bayesian network learning by compiling
to weighted MAX-SAT. In UAI’08, Proceedings of the 24th
Conference in Uncertainty in Artificial Intelligence, 105–
112.
Ferraris, P., and Giunchiglia, E. 2000. Planning as sat-
isfiability in nondeterministic domains. In Proceedings
of the 17th National Conference on Artificial Intelligence
(AAAI-2000) and the 12th Conference on Innovative Ap-
plications of Artificial Intelligence (IAAI-2000), 748–753.
AAAI Press.
Gebser, M.; Janhunen, T.; and Rintanen, J. 2014a. Answer
set programming by SAT modulo acyclicity. In ECAI 2014.
Proceedings of the 21st European Conference on Artificial
Intelligence, 351–356. IOS Press.
Gebser, M.; Janhunen, T.; and Rintanen, J. 2014b. SAT
modulo graphs: Acyclicity. In Fermé, E., and Leite, J., eds.,
Logics in Artificial Intelligence, 14th European Conference,
JELIA 2014, September 2014, Proceedings, volume 8761
of Lecture Notes in Computer Science, 137–151. Springer-
Verlag.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
planning, propositional logic, and stochastic search. In Pro-
ceedings of the 13th National Conference on Artificial In-
telligence and the 8th Innovative Applications of Artificial
Intelligence Conference, 1194–1201. AAAI Press.
Lusena, C.; Li, T.; Sittinger, S.; Wells, C.; and Goldsmith, J.
1999. My brain is full: When more memory helps. In Un-
certainty in Artificial Intelligence, Proceedings of the Fif-
teenth Conference (UAI-99), 374–381. Morgan Kaufmann
Publishers.
Madani, O.; Hanks, S.; and Condon, A. 2003. On the un-
decidability of probabilistic planning and related stochastic
optimization problems. Artificial Intelligence 147(1–2):5–
34.
McCallum, R. A. 1993. Overcoming incomplete perception
with utile distinction memory. In Machine Learning: Pro-
ceedings of the Tenth International Conference on Machine
Learning, 190–196. Morgan Kaufmann Publishers.
Meuleau, N.; Kim, K.-E.; Kaelbling, L. P.; and Cassandra,
A. R. 1999. Solving POMDPs by searching the space of
finite policies. In Uncertainty in Artificial Intelligence, Pro-
ceedings of the Fifteenth Conference (UAI-99), 417–426.
Morgan Kaufmann Publishers.
Mundhenk, M.; Goldsmith, J.; Lusena, C.; and Allender, E.

2000. Complexity of finite-horizon Markov decision process
problems. Journal of the ACM 47(4):681–720.
Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The com-
plexity of Markov decision processes. Mathematics of Op-
erations Research 12(3).
Peot, M. A., and Smith, D. E. 1992. Conditional nonlinear
planning. In Proceedings of the First International Confer-
ence on Artificial Intelligence Planning Systems, 189–197.
Morgan Kaufmann Publishers.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence 170(12-13):1031–1080.
Rintanen, J. 2004. Complexity of planning with partial
observability. In ICAPS 2004. Proceedings of the Four-
teenth International Conference on Automated Planning and
Scheduling, 345–354. AAAI Press.
Rintanen, J. 2005. Conditional planning in the discrete be-
lief space. In Proceedings of the 19th International Joint
Conference on Artificial Intelligence, 1260–1265. Morgan
Kaufmann Publishers.
Rintanen, J. 2007. Asymptotically optimal encodings
of conformant planning in QBF. In Proceedings of the
22nd AAAI Conference on Artificial Intelligence (AAAI-07),
1045–1050. AAAI Press.
Rintanen, J. 2017. Temporal planning with clock-based
SMT encodings. In IJCAI 2017, Proceedings of the 26th In-
ternational Joint Conference on Artificial Intelligence, 743–
749. AAAI Press.
Shin, J.-A., and Davis, E. 2005. Processes and continu-
ous change in a SAT-based planner. Artificial Intelligence
166(1):194–253.
Sinz, C. 2005. Towards an optimal CNF encoding of
Boolean cardinality constraints. In Proceedings of the
11th International Conference on Principles and Practice
of Constraint Programming, Sitges, Spain, October 2005.
Springer-Verlag. 827–831.
Smallwood, R. D., and Sondik, E. J. 1973. The optimal
control of partially observable Markov processes over a fi-
nite horizon. Operations Research 21:1071–1088.
To, S. T.; Pontelli, E.; and Son, T. C. 2011. On the effective-
ness of CNF and DNF representations in contingent plan-
ning. In Proceedings of the 22nd International Joint Con-
ference on Artificial Intelligence, 2033–2038. AAAI Press.
Weld, D. S.; Anderson, C. R.; and Smith, D. E. 1998.
Extending Graphplan to handle uncertainty and sensing ac-
tions. In Proceedings of the 15th National Conference on
Artificial Intelligence (AAAI-98) and the 10th Conference on
Innovative Applications of Artificial Intelligence (IAAI-98),
897–904. AAAI Press.

