
Planning with Partial Observability by SAT

Saurabh Fadnisr0000´0001´9307´281Xs and Jussi Rintanenr0000´0001´5983´0074s

Aalto University, Department of Computer Science

Abstract. Ge�ner & Ge�ner (2018) have shown that �nding plans by
reduction to SAT is not limited to classical planning, but is competitive
also for fully observable non-deterministic planning. This work extends
these ideas to planning with partial observability. Speci�cally, we handle
partial observability by requiring that during the execution of a plan,
the same actions have to be taken in all indistinguishable circumstances.
We demonstrate that encoding this condition directly leads to far better
scalability than an explicit encoding of observations-to-actions mapping,
for high numbers of observations.

1 Introduction

Ge�ner and Ge�ner [7] have shown how SAT yields an e�ective method for
solving non-deterministic fully observable (conditional) planning problems. This
is the �rst time SAT has been directly used for solving a broad class of problems
outside deterministic planning, by only a polynomial number of SAT calls in
the size of the plan being constructed. This approach is in strong contrast with
earlier constraint-based approaches, which have required formalisms stronger
than SAT, for example Σp

2 -hard SSAT [11, 12] or QBF [16], or separate calls to
SAT solvers for plan generation and veri�cation [6] (again going up to Σp

2) and
using SAT as a sub procedure of an otherwise exponential search algorithm, even
when restricting to plans of a polynomial size.

We view as the core idea in Ge�ner & Ge�ner's work that contingent plan-
ning is in NP whenever all executions of a plan have a representation that has
polynomial size. Our work demonstrates that the same applies also to the far
harder problem of planning with partial observability.

1.1 Background

Finding plans in classical planning, with one initial state and deterministic ac-
tions, can be represented as propositional formulas of a size that is linear in the
number of actions in a plan. The formula with length parameter n is satis�able
if and only if there is a sequence of n actions that reaches a goal state from the
given initial state. For plans with a polynomial length, the NP-complete problem
of �nding them can be done with a SAT solver [8, 9].

When a plan can have multiple alternative executions, planning is harder.
Conditional planning, with branching program-like plans, is in the complexity
class Σp

2 for poly-sized plans, and hence � in general � believed to be outside

2 S. Fadnis and J. Rintanen

the reach of the NP-complete SAT problem, and to require the more powerful
framework of quanti�ed Boolean formulas (QBF) [15, 21, 16].

The idea that Σp
2 complexity was somehow inherent to practically signi�cant

conditional planning was broken by Ge�ner & Ge�ner [7] who showed that �
under full observability � the two separate NP computations for plan search and
for plan veri�cation collapse to a single NP computation, if execution graphs and
plans have the same form. Plans are (possibly cyclic) graphs, with non-terminal
nodes associated with actions, and executions are viewed as paths in the graph.
The states in a node are represented by the literals that are true in it.

Given a problem instance of size m and an n ě 0, Ge�ner & Ge�ner generate
a propositional formula so that any satisfying assignment represents a graph that
has n nodes and represents a conditional plan and all of its executions. The size
of the formula is polynomial in n and m. The formula leaves the structure of the
plan open, and it is the SAT solver that chooses the (positive) literals in each
node, the action in each node, and the outgoing arcs for each node.

1.2 Contributions

Our contributions are as follows. We present the �rst SAT-based encodings of
succinctly represented (state variable based) planning problems under partial ob-
servability. Earlier works either use more powerful (and less scalable) formalisms
than SAT such as QBF or e�ectively simulate such [6, 16], use a non-succinct
enumerative representation [5], or cover full observability only [7, 14].

We use 3-valued (partial) execution graphs to represent all possible execu-
tions of a plan. Earlier 3-valued representations [1] have low complexity and are
scalable, but lead to incompleteness, as most state sets do not have a 3-valued
representation. We will show how case analysis on state variables marked un-
known makes the 3-valued approach complete, that is, being able to represent a
plan whenever one exists, by selectively eliminating partiality.

Finally, we show how an implicit representation of small memory plans can
make the approach better scalable. Instead of accurately keeping track of the
belief state, only an abstraction of the belief state is maintained, as a state as in
a �nite automaton, in order to distinguish between di�erent execution histories.
Plans are mappings from memory states and observations to next actions and
next memory states. As the number of observables increases, the sizes of these
mappings increase exponentially, making an explicit representation impractical:
a smaller and smaller fraction of all observation combinations actually occur in
any execution of a plan. A main result is that replacing an explicit encoding of
small memory plans (as in [5]) by an implicit encoding can lead to substantial
scalability improvements. We can still guarantee the existence of these mappings,
and they can be easily extracted from satisfying assignments.

2 Planning with Partial Observability

A key idea in Ge�ner & Ge�ner's representation of branching plans as graphs
is that each path can represent multiple possible executions as the nodes corre-

Planning with Partial Observability by SAT 3

spond to partial states which determine the values of some state variables only.
A partial state is essentially a representation of a set of states. For example,
with state variables a, b, c and d, the partial state represented by the partial
valuation ta “ 1, b “ 0u corresponds to the set of those four states that match
the partial valuation on a and b, and assign any value combination to c and d.

Example 1. In this navigation problem moving into a wall is not allowed, and
hence it must be possible to detect which cells are next to a wall (observations
N “ y4, S “ y0, E “ x4, W “ x0, indicating which wall(s) the robot is next to).

Considering the non-wall locations as possible starting locations, the plan
that �rst moves to north until the north wall is encountered, and then moves
west until the NW corner is encountered, is depicted on the right in Figure 1.

One graph that represents all executions of this plan is partly given in Figure
1. The rest of graph would be similar and repeats the �move west� action when
north wall is observed until the NW corner location is reached.

t␣x0,␣x4,␣y0,␣y4un0

t␣x0,␣x4,␣y0,␣y3,␣y4un1

t␣x0,␣x4,␣y0,␣y1,␣y2,y3,␣y4u

n2

t␣x0,␣x4,␣y0,␣y1,␣y4un3

t␣x0,␣x4,␣y0,␣y1,␣y2un4

t␣x0,␣x4,␣y0,␣y1,␣y2,␣y4un5

t␣x0,␣x4,␣y0,␣y1,␣y2,␣y3,y4un6

␣y3 y3

move north

move north

move north

␣y4 y4

move north

Ò

Ò

Ò

Ò

Ò

Ò

Ò

Ò

Ò

Ð Ð Ð

y0

y1

y2

y3

y4

x0 x1 x2 x3 x4

Fig. 1. Execution of a grid navigation problem (part)

In this example, the topmost branching (node n0 in the graph) is on the
variable y3. We call such branching Case Analysis and it is discussed in the next
subsection. The thing to note here is that y3 is not observable, and in general the
branching is not directly related to observations, but to the di�erent execution
paths of a given plan. Despite the branching being on an unobservable variable,

4 S. Fadnis and J. Rintanen

the graph is still a faithful representation of all executions of the plan. The key
property here is that if an action is taken, then it is the same action that is taken
in all mutually indistinguishable states with respect to observations: move north
in all (partial) states that are not next to any wall (nodes n1,n2,n3 and n5 in
�gure 1), and move west whenever next to the north wall.

In this example there is no need to remember any of the previous belief states.
In cases where this memory is needed, the same action is taken in all mutually
indistinguishable states with respect to observations and memory. If the plan
includes memory, more �ne-grained choice of actions is possible. We consider
small-memory plans [10, 13, 5], which means that at execution time there are
only a small number of possible �memories� in the execution mechanism, and
they � together with the observations � determine the next action and memory.
We represent the di�erent memories as integers from 0 to some small Mmax.

2.1 Case Analysis

For 3-valued partial representations, if some state variable values are unknown,
the determination of which observations can be made, or what are the e�ects of
actions with conditional if-then e�ects becomes problematic. This necessitates
case analysis on the values of a state variable x with an unknown value: a node
in the plan will have two successors, with x true in one and x false in the other.

Example 2. Consider a node n0 with literals tp,␣qu, and for which the plan
assigns the action a1 “ p␣q, tIF r THEN tp, qu ELSE t␣p,␣quuq. Since the
value of r is not known in n0, the values of p and q in the successor node cannot
be determined based on the information in n0.

If some of these values need to be known, a case-analysis on r is performed
in n0 instead, before executing the action. Now n0 has two successor nodes, one
with literals tp,␣q, ru and the other tp,␣q,␣ru. In both nodes the action a1 is
taken. The successor of the �rst node has literals tp, q, ru and the successor of
the second node has t␣p,␣q,␣ru.

This example shows that we can always make enough of the state explicit so
that values of su�ciently many observables can be determined so that actions
can be chosen, and literals in successor nodes can be determined.

3 Formal De�nition of Planning

We view states as valuations of Boolean state variables. If X is the set of state
variables, then a state s : X Ñ t0, 1u assigns a value to every state variable in
X. By identifying states and Boolean valuations, we can directly use de�nitions
from the Propositional Logic to talk about states. For example, we can say that
a formula ϕ is true in a state s if s |ù ϕ, that is, this formula ϕ is true in the
valuation s. We denote the set of all states (over some �xed set X) by S.

Next, problem instances are formally de�ned. Atomic e�ects are of the form
x :“ 0 or x :“ 1, where x is a state variable. A conditional e�ect has the form

Planning with Partial Observability by SAT 5

IF ϕ THEN e, where ϕ is a formula over X, and e is a set of atomic e�ects. An
action is associated with a set of atomic and conditional e�ects. For simplicity,
we don't discuss non-deterministic actions in this work.

De�nition 1 (Problem Instance). A problem instance in planning is a tuple
Π “ xX,A, I,G,Oy where

� X is a set of state variables,
� A is a set of actions pp, eq, where

‚ p is a formula over X, and
‚ e is a set of e�ects,

� the initial states are represented by a formula I over X,
� the goal states are represented by a formula G over X, and
� the observations are a set O of formulas over X.

4 Execution Graphs

Our introduction of case analysis nodes in the execution graphs allows to com-
plete, on demand, the approximated information su�ciently that every problem
instance has a solution as a 3-valued execution graph.

Below we show a basic formalization of (2-valued) execution graphs without
partiality, and then provide a proof sketch of the completeness of our approach
by showing that any execution graph can be represented in terms of a (some-
times much more compact) 3-valued execution graph. The key result maps every
non-approximate 2-valued execution graph to a 3-valued execution graph that
includes case analysis nodes so that all executions in the former are represented
also in the latter. Additionally, the approach is sound, so the 3-valued representa-
tion only represents solutions that are representable in the 2-valued framework.

De�nition 2 (Execution graphs). Given an instance Π “ xX,A, I,G,Oy,
an execution graph is G “ xN,E, P, S,M,By where

� N is a �nite set of nodes,
� E Ď N ˆN are the arcs of the graph,
� the (partial) function P : N Ñ A maps non-terminal nodes to actions,
� the function S : N Ñ S assigns a state to every node.
� M “ t0, . . . ,Mmaxu is the set of memory states with Mmax ě 1, and
� the function B : N ÑM assigns a memory state to every node.

The memory state with the highest index Mmax is for indicating that a goal
state has been reached.

De�nition 3 (Solutions as execution graphs). An execution graph G “

xN,E, P, S,M,By is a solution to Π “ xX,A, I,G,Oy if the following hold.

1. The graph xN,Ey is acyclic (it has no directed cycles.)
2. ts P S | s |ù Iu “ tSpnq | n P N,n has no parentsu
3. Spnq |ù G for every n P N such that Bpnq “Mmax

6 S. Fadnis and J. Rintanen

4. Bpnq “ 0 for every node n with no parent
5. Bpnq “Mmax for every node n that has no successors
6. Spnq |ù p if P pnq “ pp, eq
7. For x P X and nodes n1 with a parent, Spn1q |ù x i� there is n P N such that
pn, n1q P E and P pnq “ pp, eq, and either
� px :“ 1q P e,
� (IF ϕ THEN x :“ 1q P e and Spnq |ù ϕ, or
� Spnq |ù x and px :“ 0q R e and Spnq |ù ϕ for all (IF ϕ THEN x :“ 0q P e.

8. Spn1q |ù ␣x analogously
9. For all n1, n2 P N , if P pn1q ‰ P pn2q, then either Bpn1q ‰ Bpn2q or for

some ω P O, Spn1q |ù ω i� Spn2q |ù ω.
10. For all pn1, n

1
1q, pn2, n

1
2q P E, if Bpn11q ‰ Bpn12q, then either Bpn1q ‰ Bpn2q

or for some ω P O, Spn1q |ù ω i� Spn2q |ù ω.

Condition 7 guarantees that the changes in the values of state variables be-
tween a node and its successor exactly correspond to the changes caused by the
action in that node.

Conditions 9 and 10 express the distinguishability between two situations
during the execution of a plan: if two situations cannot be distinguished through
the memory or the observations, then the same actions have to be taken in both,
and the next memory states have to be the same.

An execution graph represents every possible execution s0, . . . , sn explicitly,
and di�erent executions (state sequences) are represented by di�erent paths in
the graph. Hence, for any problem instance for which an exponential number of
di�erent states has to be considered, the size of the execution graph is exponen-
tial. Next we de�ne partial execution graphs that can represent large numbers of
states and executions more compactly..

5 Partial Execution Graphs

Partial execution graphs can be exponentially smaller than execution graphs if
many executions share the same structure. The nodes in partial execution graphs
are labelled with partial states which only determine the values of a subset of
state variables. One partial state represents all states that assign the same values
to the represented state variables. This same idea has been used by Ge�ner &
Ge�ner in their work on planning with full observability [7].

De�nition 4. A partial state is a partial function z : X Ñ t0, 1u.

Toggle the table of contents We denote the set of all partial states by Sp.
Clearly, S Ă Sp. A partial state z represents all states that do not disagree
on the value of any state variable. That is, z represents ts P S | spxq “
zpxq or zpxq is not de�ned, for all x P Xu.

De�nition 5. A partial execution graph G “ xN,E, P,C, S,M,By for a prob-
lem instance Π “ xX,A, I,G,Oy consists of

Planning with Partial Observability by SAT 7

� a �nite set N of nodes,
� a set E Ď N ˆN of arcs,
� a (partial) function P : N Ñ A that assigns an action to some of the nodes,
� a (partial) function C : N Ñ X that assigns a state variable to some of the

nodes (for case analysis),
� a function S : N Ñ Sp that assigns a partial state to every node.
� M “ t0, . . . ,Mmaxu is the set of memory states with Mmax ě 1, and
� the function B : N ÑM assigns a memory state to every node.

The function C indicates in which nodes a case analysis is performed. If
Cpnq “ x, then node n has two successor states n1 and n2 so that Spn1q |ù x
and Spn2q |ù ␣x. From now on, we assume all formulas to be in Negation Normal
Form (NNF)1. We de�ne truth of a formula in a partial state as follows.

1. s |ù3 x if spxq “ 1, and s |ù3 ␣x if spxq “ 0
2. s |ù3 α^ β i� s |ù3 α and s |ù3 β
3. s |ù3 α_ β i� s |ù3 α or s |ù3 β

Here it is critical that we do not de�ne a formula ␣ϕ to be true if ϕ is not true
(as in 2-valued logic), because the value of ϕ might be undetermined due to the
partiality of the state.

De�ne cubeofpsq that maps a partial state s to a corresponding conjunction
of literals cubeofpsq “

Ź

ptx P X | spxq “ 1u Y t␣x | x P X, spxq “ 0uq.

De�nition 6. A partial execution graph G “ xN,E, P,C, S,M,By is a solution
to Π “ xX,A, I,G,Oy if the following hold.

1. The graph xN,Ey is acyclic (it has no directed cycles.)
2. I |ù3 δ1 _ ¨ ¨ ¨ _ δm, where n1, . . . , nm are the nodes with no parents, and

δi “ cubeofpSpniqq for every i P t1, . . . ,mu
3. Spnq |ù3 G for every n P N such that Bpnq “Mmax

4. Bpnq “ 0 for every n P N with no parent
5. Bpnq “Mmax for every n P N that has no successors
6. Spnq |ù3 p if P pnq “ pp, eq, for every n P N
7. For every n P N , exactly one of the following holds.

� Cpnq is de�ned
� P pnq is de�ned
� Bpnq “Mmax

8. If Cpnq “ x for some x P X, then n has exactly two successors, n1 and n2,
and Spn1q |ù3 x and Spn2q |ù3 ␣x.

9. If Cpnq is de�ned and pn, n1q P E, then Bpnq “ Bpn1q.
10. If Cpnq “ x and s “ Spnq, then spxq is not de�ned.
11. If Spn1q |ù3 x for n1 P N that has a parent n P N , then either

(a) pn, n1q P E and P pnq “ pp, eq and
� px :“ 1q P e,

1 In NNF, a formula contains only connectives _, ^ and ␣, and all negations ␣ are
directly in front of an atomic proposition.

8 S. Fadnis and J. Rintanen

� (IF ϕ THEN x :“ 1q P e and Spnq |ù3 ϕ, or
� Spnq |ù3 x and px :“ 0q R e and Spnq |ù3 ϕ for all (IF ϕ THEN

x :“ 0q P e.

(b) or n is a case analysis node with Cpnq “ x,

(c) or n is a case analysis node with Cpnq ‰ x and Spnq |ù3 x.

12. Spn1q |ù3 ␣x analogously

13. For all n1, n2 P N , if P pn1q ‰ P pn2q, then either Bpn1q ‰ Bpn2q or for
some ω P O, either Spn1q |ù3 ω and Spn2q |ù3 ␣ω, or Spn1q |ù3 ␣ω and
Spn2q |ù3 ω.

14. For all n1, n2 P N and n11, n
1
2 such that pn1, n

1
1q, pn2, n

1
2q P E, if Bpn11q ‰

Bpn12q, then either Bpn1q ‰ Bpn2q or for some ω P O either Spn1q |ù3 ω and
Spn2q |ù3 ␣ω, or Spn1q |ù3 ␣ω and Spn2q |ù3 ω.

A key feature of partial execution graphs, similarly to the work by Ge�ner
& Ge�ner [7], is that some state variable values may be �forgotten� when going
from a node to its successor. Increasing the partiality this way allows parts of a
plan to be more general in being applicable for more states.

An important question about partial execution graphs is whether they can
represent any solution, as expressible by an execution graph.

Proposition 1. For every execution graph G, there is a partial execution graph
G1 that represents exactly the same solution.

Proof. Sketch: The most trivial way to eliminate all partiality is to enumerate all
states that satisfy the initial state formula I, and create an initial node for each
of those states s. So the partial states in all initial states are (total) states. The
partial execution graph in this case does not contain any case analysis nodes,
and its structure is exactly the same as that of the execution graph. Stated
di�erently, execution graphs are a special case partial execution graphs, only
without case analysis nodes, and with (total) states instead of partial states.

6 Encodings of Partial Execution Graphs

Next we describe the encoding of partial execution graphs as propositional for-
mulas. Table 1 lists the atomic propositions used in the encoding.

State variable x is true in node n if Pn
x holds and false if Nn

x holds. Otherwise
its value is unknown (could be either true or false.) To refer to the truth of
arbitrary formulas in a node, we de�ne Lϕ

n as the formula obtained from ϕ by
transforming it to the Negation Normal Form (NNF) and then (for all x P X)
replacing subformulas ␣x by Nn

x , and �nally replacing subformulas x by Pn
x .

Hence Lϕ
n is true in a partial state z i� ϕ is true in all states represented by z.

In the rest of the section, the schema variables n, a, x (possibly with sub-
scripts or other embellishments) are instantiated with all possible nodes, action
names or state variable names, unless stated otherwise.

Planning with Partial Observability by SAT 9

Pn
x , Nn

x State variable x is true or false in node n, respectively.
oPn

ω , oNn
ω Observation ω or ␣ω is made in n, respectively, for ω P O.

pn, aq Action a is applied in node n.
pn, a, n1

q n1 is the next node after action a is applied in node n.
pn, n1

q n1 is a successor node of n.
An Node n is an action node

CAn n is a case analysis node.
CAn

x Case analysis is done in node n on variable x.

CA1
n,n1 n1 is the successor node with Pn1

x when case analysis is done on x in n.

CA0
n,n1 n1 is the successor node with Nn1

x when case analysis is done on x in n.

pn,mq node n has the memory state m.
Zm

i,j Nodes i and j have the same memory state m.
Zω

i,j Nodes i and j are indistinguishable w.r.t. observation ω.
Zi,j Nodes i and j are indistinguishable w.r.t. memory state and all observations.

Table 1. Atomic propositions used in the encoding

6.1 Nodes and arcs

State variables are true, false or unknown (1). Preconditions are true (2).

␣Pn
x _␣N

n
x (1) pn, aq Ñ Lϕ

n where ϕ is the precondition of a (2)

The acyclicity of the encoding is handled by instantiating all formulas referring
to arcs from node n to a successor n1 so that the index of n1 is strictly higher
than the index of n.

Node n has at least one action if and only if An is true (3), and An excludes
case analysis in the same node (4). The variable pn, aq is de�ned by (5). Action
nodes have exactly one successor node (6). 2

An Ø
ł

aPA

pn, aq (3) ␣pAn ^ CAn
q (4)

pn, aq Ø
ł

n1PNztnu

pn, a, n1q (5)

An Ñ exactly1ptpn, n1q | n1 P Nuq (6)

Anything true in a successor node of an action node is an e�ect of the action or
something that was true already and not made false by the preceding action.

pn, n1q ^An ^ Pn1

x Ñ LPpcx_px^␣Npcxqn (7)

pn, n1q ^An ^Nn1

x Ñ LNpcx_p␣x^␣Ppcxq
n (8)

where Ppcx “ χ1 _ ¨ ¨ ¨ _ χm and is the disjunction of the conditions χi under
which action ai makes x true, and Npcx is the same for making x false. Each χi

consists of the action variable pn, aiq and additionally for conditional e�ects the
condition under which x becomes true or false. This encodes Condition 11a.

2 To encode the constraints exactly-one and at-most-one for ϕ1, . . . , ϕk, we use the
quadratic encoding ␣ϕi _␣ϕj for all 1 ď i ă j ď k. Better encodings exist [18].

10 S. Fadnis and J. Rintanen

For the implicit encoding in Section 6.4 we have to enforce this explicitly by

␣pn, a1q _ ␣pn, a2q whenever a1 ‰ a2 (9)

Note that (7) and (8) allow the e�ects of an action to be true in the successor
node, but they do not have to be. This is because those values might not be
needed, and the successor node is more general the fewer values are made explicit.
This is as in the work by Ge�ner & Ge�ner [7].

6.2 Case Analysis

The following formulas encode how case analysis is done on some x so that a
node has two successors, respectively with x true and false.

CAn
Ø

ł

xPX

CAn
x (10)

For case analysis nodes, there is some variable to do the case analysis on, and
there are two successor nodes (respectively for x and ␣x).

ł

n1PNztnu

CA1
n,n1 Ñ

ł

xPX

CAn
x (11)

ł

n1PNztnu

CA0
n,n1 Ñ

ł

xPX

CAn
x (12)

CAn
x Ñ exactly1n1PNztnuCA

1
n,n1 (13) CAn

x Ñ exactly1n1PNztnuCA
0
n,n1 (14)

Case analysis is on at most one variable (15). Case analysis on x is only possible
if its value is unknown (16). If node n does case analysis on x, then n has two
successor nodes, and they respectively have x and ␣x (17-18). The only new
facts in the successor nodes of a case analysis node are x and ␣x (19-22).

atmost1ptCAn
x | x P Xuq (15) CAn

x Ñ ␣Pn
x ^␣N

n
x (16)

CAn
x ^ CA1

n,n1 Ñ Pn1

x (17) CAn
x ^ CA0

n,n1 Ñ Nn1

x (18)

CA1
n,n1 ^ Pn1

x Ñ CAn
x _ Pn

x (19) CA1
n,n1 ^Nn1

x Ñ Nn
x (20)

CA0
n,n1 ^Nn1

x Ñ CAn
x _Nn

x (21) CA0
n,n1 ^ Pn1

x Ñ Pn
x (22)

The last six are for nodes n and n1 such that n ‰ n1.
Arcs are induced by case analysis or by actions only.

pn, n1q Ø

˜

CA1
n,n1 _ CA0

n,n1 _
ł

aPA

pn, a, n1q

¸

(23)

6.3 Initial and Goal Nodes

We assume the initial state formula to be in DNF as I “ ϕ1 _ ¨ ¨ ¨ _ ϕk. Let
ΦI “ tϕ1, . . . , ϕku. We require that for each ϕ P ΦI , at least one of the nodes
n0, . . . , nk´1 does not falsify any of the literals in ϕ (and hence all initial states
for ϕ are �included� in some initial node), and that node has memory 0. We have
for every ϕ P ΦI the following.

k´1
ł

i“0

ppni,m0q ^ ␣L
␣ϕ
ni
^

ľ

ωPO

p␣oPni
ω ^␣oNni

ω qq (24)

Planning with Partial Observability by SAT 11

The unique goal node ng has memory mMmax
and the formula G holds in ng,

and other node has memory mMmax
.

png,mMmax
q ^ LG

ng
(25) ␣pn,mMmax

q for all n ‰ ng (26)

6.4 Encoding of Small-Memory Plans Implicitly

The implicit encoding, which does not make the plans explicit and only guaran-
tees that one exists that matches the execution graph, is the one better scalable
than the explicit encoding when there is a high number of observation combina-
tions. It consists of the following.

exactly1ppn,m0q, . . . , pn,mMmax
qq (27)

For case analysis nodes, the successor nodes have the same memory.

CA1
n,n1 Ñ ppn,mq Ø pn1,mqq for m PM (28)

CA0
n,n1 Ñ ppn,mq Ø pn1,mqq for m PM (29)

Formulas (30-32) de�ne the indistinguishability of two nodes w.r.t. memory,
observations, and both respectively as Zm

i,j , Z
ω
i,j and Zi,j .

pni,mq ^ pnj ,mq Ñ Zm
i,j for i ă j,m PM (30)

␣poPni
ω ^ oNnj

ω q ^ ␣p
oNni

ω ^ oPnj
ω q Ñ Zω

i,j (31)

Zm
i,j ^

ľ

ωPO

Zω
i,j Ñ Zi,j (32)

If a node has observation ω, then ω must hold in the preceding node.

pn, n1q ^ oPn1

ω Ñ Lω
n (33) pn, n1q ^ oNn1

ω Ñ L␣ω
n (34)

If two action nodes are indistinguishable, same action must be taken in both,
and successor nodes must have the same memory state.

Zi,j ^Ani ^Anj Ñ ppni, aq Ø pnj , aqq (35)

Zi,j ^ pni, n
1q ^ pnj , n

2q ^Ani ^Anj Ñ ppn1,mq Ø pn2,mqq (36)

6.5 Encodings of Small Memory Plans Explicitly

Here we brie�y describe the encoding of explicitly represented small-memory
plans. The standard way of representing small-memory plans is by explicitly
encoding the whole mapping from all observation combinations and the memory
state to the action to be taken and the new memory state [5]. A �nite memory
plan is an automaton with

� k ě 1 memory states M “ tm1, . . . ,mku,
� mapping AM,O : MˆO Ñ A from the current memory state and observation
to an action,

12 S. Fadnis and J. Rintanen

� mapping MM,O : M ˆO ÑM from the current memory state and observa-
tion to the next memory state.

New atoms in the encoding:

� pn, ωq: observation ω is observed in node n.
� pn,Oq: O is the combination of observations observed in node n. To de�ne
the atoms, O is enumerated by valuation of all possible observations ω. For k
observations and node n, there are 2k di�erent valuations and pn,Oq atoms.

� pO,m, aq: action a is mapped to observation combination O and the current
memory state is m.

� pO,mi,mjq: the memory state mj is mapped to observation combination O
and the memory state is mi.

Explicit encoding of the small-memory plans is as follows.

valuationppn, ω1q, pn, ω2q . . . q Ø pn,Oq (37)

Map each observation valuation to an observation combination O for all nodes.

exactly1ppO,m, a1q, pO,m, a2q, . . . q (38)

exactly1ppO,mi,m1q, pO,mi,m2q, . . . q (39)

Each pair of observation combination and memory state is mapped to exactly
one action and to exactly one memory state.

pni,mjq ^ pni,Oq ^ pO,mj , aq ^Ani
Ñ pni, aq (40)

pni,mjq ^ pni,Oq ^ pni, aq Ñ pO,mj , aq (41)

Only the action mapped to the memory and the observation combination can be
applied in an action node with that memory and observation combination. Also
if an action is taken in a node, then the memory and the observation combination
must be mapped to that action in the plan.

pni, njq ^ pni,Oq ^ pni,mkq ^ pO,mk,mlq ^Ani
Ñ pnj ,mlq (42)

pni, njq ^ pni,Oq ^ pni,mkq ^ pnj ,mlq Ñ pO,mk,mlq (43)

If memory state ml is mapped to observation combination O and memory state
mk, then the successor of an action node with those observations and memory
should have memory state ml.

pni, njq ^ pni,mkq ^ CAni Ñ pnj ,mkq (44)

The memory stays the same in the successor nodes after case analysis.

exactly1ppn,m1q, pn,m2q, . . . q (45)

Each node can have only one memory state.

pn, n1q ^ ␣CAn
^ pn1, ωq Ñ Lω

n (46) pn, n1q ^ ␣pn1, ωq Ñ ␣Lω
n (47)

If a node has an observation for ω, the formula ω must hold in the predecessor.
In case analysis nodes, the observations are copied forward.

pn, n1q ^ CAn
Ñ ppn1, ωq Ø pn, ωqq (48)

Planning with Partial Observability by SAT 13

7 Sizes of the Encodings

In the implicit encoding, as given in Section 6.4, the largest component is formula
(36) with size |N |4ˆ|M |. Other dominant formulas are only quadratic with sizes
|N |2 ˆ |A| (35), |N |2 ˆ |M | (28-30) and |N |2 ˆ |O| (31, 33, 34).

On the other hand, the dominant formulas in the explicit encoding of small
memory plans have components of size 2|O| simply because the mapping has an
exponential size, making the encoding quickly impractical for higher numbers of
observations.

There are a number of components quadratic in |N | used by both the implicit
and explicit encoding, addressing arcs between nodes, for example in Section 6.2.

8 Invariants

Invariants are formulas (over state variables) that hold in all reachable states.
They reduce the search performed by a SAT solver. With our 3-valued partial
states, invariants don't have an obvious representation as redundant constraints,
unlike in classical planning, as their interaction with frame axioms becomes more
complicated due to partiality. Our solution is to compile invariants to actions: if
l1_ l2 is an invariant, and l1 is an e�ect, then include l2 as an e�ect. This makes
it unnecessary to handle invariants explicitly in (7) and (8). Additionally we
add redundant constraints that help SAT solvers prune the search space: For an
invariant x_y, we include ␣Nn

x _␣N
n
y in the encoding, to allow inferring ␣Nn

y

whenever Nn
x has been inferred. Note that inferring Pn

y would be too strong, as
abstraction/generalization may call for not making the value of y explicit.

We use 2-literal invariants l1 _ l2 that are found with invariant algorithms
that apply to non-deterministic actions [17].

9 Experiments

We have a proof-of-concept implementation of our framework, and we have run
computational experiments to demonstrate its potential. Table 2 shows statistics
on solving a number of planning problems. All runs were with a 2400 second time
limit and performed on Xeon E5 2680 2.50 GHz CPUs with a memory limit of
8 GB. We tested by increasing number of nodes by 5 and memory states by 2
until the instances became solvable. All experiments used the KisSAT solver [2].

The largest instances reported here have tens of thousands of states, which is
outside the scalability of methods that represent all states explicitly [5]. While
this shows good potential for this approach, it is currently not competitive with
the state-of-the-art, speci�cally the DNF/CNF family of planners [19, 20] or
reductions of partial observability to fully observable problems [3, 4].

14 S. Fadnis and J. Rintanen

Implicit Explicit

INSTANCE V A O n m time n m time

doors2 6 12 4 10 6 7.78 15 6 17.59
medical002 6 10 2 10 4 2.85 10 4 1.48
medical003 8 11 3 10 4 3.28 10 4 3.75
medical004 9 11 3 15 4 332.86 15 4 94.64
medical005 11 12 4 20 6 1364.99 35 10 TO
bombRB1 3 3 2 10 4 1.82 10 4 0.77
bombRB2 5 6 4 10 4 1.9 20 8 1501.97
bombRB3 7 9 6 15 4 74.64 35 8 TO
bombRB4 9 12 8 15 4 346.75 15 4 OM
bts010 11 20 10 15 2 93.27 5 4 OM
gridXY13 3 3 2 10 4 1.37 10 4 0.97
gridXY15 5 3 2 15 4 52.09 50 8 TO
gridXY33 6 5 4 15 4 60.31 25 8 OM
rovers2 10 17 2 15 10 1505.43 15 10 180.66
elogistics1 13 24 6 15 6 66.21 15 8 770.26
elogistics3 19 39 9 20 6 795.27 10 4 OM
egrid2 42 100 20 15 10 1815.77 5 2 OM
logistics1 13 24 6 10 6 7.94 15 8 OM
logistics3 19 39 9 15 8 137.99 5 4 OM
medpks2 6 6 2 10 4 2.64 10 4 1.68
grid2 42 100 20 15 10 1816.62 5 2 OM
blocks3 15 51 15 10 4 3.41 5 2 OM
erovers2 10 17 2 15 10 1485.55 15 8 100.47

Table 2. Comparison of the implicit and explicit encodings. V: number of variables;
A: number of actions; O: number of observations; TO: time-out ; OM: out-of-memory

10 Conclusion

We have shown how planning with a complex actions and partial observability,
can be e�ectively reduced to propositional logic and solved with SAT solvers.
This is the �rst time that planning with partial observability has been solved
with single SAT solver calls that both �nd a plan and determine its correctness,
showing signi�cant potential in the ideas presented by Ge�ner & Ge�ner [7].

Our framework is e�ective when belief states can be represented as conjunc-
tions of literals. Complex dependencies between state variables, representable
e.g. as disjunctions a _ b, require making plan executions more explicit, in-
creasing the size of the graphs and the search cost. More expressive belief state
representations should be investigated.

An obvious ine�ciency in our encoding is that the use of case analysis is not
restricted in any way, for example allowing forgetting immediately followed by
case analysis on the same variable. Another ine�ciency worth further research
is symmetry reduction for the graphs.

Planning with Partial Observability by SAT 15

References

1. Baral, C., Kreinovich, V., Trejo, R.: Computational complexity of planning and
approximate planning in the presence of incompleteness. Arti�cial Intelligence
122(1), 241�267 (2000)

2. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT competition 2020. In: Proceedings of
SAT Competition 2020 � Solver and Benchmark Descriptions, pp. 51�53. Depart-
ment of Computer Science Report Series B, vol. B-2020-1, University of Helsinki
(2020)

3. Bonet, B., Ge�ner, H.: Planning under partial observability by classical replan-
ning: Theory and experiments. In: Proceedings of the 22nd International Joint
Conference on Arti�cial Intelligence. pp. 1936�1941 (2011)

4. Bonet, B., Ge�ner, H.: Flexible and scalable partially observable planning with
linear translations. In: Proceedings of the 28th AAAI Conference on Arti�cial
Intelligence (AAAI-14). pp. 2235�2241. Citeseer (2014)

5. Chatterjee, K., Chmelik, M., Davies, J.: A symbolic SAT-based algorithm for
almost-sure reachability with small strategies in POMDPs. In: Proceedings of the
30th AAAI Conference on Arti�cial Intelligence (AAAI-16). pp. 3225�3232. AAAI
Press (2016)

6. Ferraris, P., Giunchiglia, E.: Planning as satis�ability in nondeterministic domains.
In: Proceedings of the 17th National Conference on Arti�cial Intelligence (AAAI-
2000) and the 12th Conference on Innovative Applications of Arti�cial Intelligence
(IAAI-2000). pp. 748�753. AAAI Press (2000)

7. Ge�ner, T., Ge�ner, H.: Compact policies for non-deterministic fully observable
planning as SAT. In: ICAPS 2018. Proceedings of the Twenty-Eighth International
Conference on Automated Planning and Scheduling. pp. 88�96. AAAI Press (2018)

8. Kautz, H., Selman, B.: Planning as satis�ability. In: Proceedings of the 10th Euro-
pean Conference on Arti�cial Intelligence. pp. 359�363. John Wiley & Sons (1992)

9. Kautz, H., Selman, B.: Pushing the envelope: planning, propositional logic, and
stochastic search. In: Proceedings of the 13th National Conference on Arti�cial In-
telligence and the 8th Innovative Applications of Arti�cial Intelligence Conference.
pp. 1194�1201. AAAI Press (1996)

10. Lusena, C., Li, T., Sittinger, S., Wells, C., Goldsmith, J.: My brain is full: When
more memory helps. In: Uncertainty in Arti�cial Intelligence, Proceedings of the
Fifteenth Conference (UAI-99). pp. 374�381. Morgan Kaufmann Publishers (1999)

11. Majercik, S.M., Littman, M.L.: MAXPLAN: A new approach to probabilistic plan-
ning. In: Proceedings of the Fourth International Conference on Arti�cial Intelli-
gence Planning Systems. pp. 86�93. Pittsburgh, Pennsylvania (1998)

12. Majercik, S.M., Littman, M.L.: Contingent planning under uncertainty via stochas-
tic satis�ability. Arti�cial Intelligence 147(1-2), 119�162 (2003)

13. Meuleau, N., Kim, K.E., Kaelbling, L.P., Cassandra, A.R.: Solving POMDPs by
searching the space of �nite policies. In: Uncertainty in Arti�cial Intelligence, Pro-
ceedings of the Fifteenth Conference (UAI-99). pp. 417�426. Morgan Kaufmann
Publishers (1999)

14. Pandey, B., Rintanen, J.: Planning for partial observability by SAT and graph
constraints. In: ICAPS 2018. Proceedings of the Twenty-Eighth International Con-
ference on Automated Planning and Scheduling. pp. 190�198. AAAI Press (2018)

15. Rintanen, J.: Constructing conditional plans by a theorem-prover. Journal of Ar-
ti�cial Intelligence Research 10, 323�352 (1999)

16 S. Fadnis and J. Rintanen

16. Rintanen, J.: Asymptotically optimal encodings of conformant planning in QBF.
In: Proceedings of the 22nd AAAI Conference on Arti�cial Intelligence (AAAI-07).
pp. 1045�1050. AAAI Press (2007)

17. Rintanen, J.: Regression for classical and nondeterministic planning. In: ECAI
2008. Proceedings of the 18th European Conference on Arti�cial Intelligence. pp.
568�571. IOS Press (2008)

18. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints.
In: Proceedings of the 11th International Conference on Principles and Practice
of Constraint Programming, Sitges, Spain, October 2005., pp. 827�831. Springer-
Verlag (2005)

19. To, S.T., Pontelli, E., Son, T.C.: On the e�ectiveness of CNF and DNF repre-
sentations in contingent planning. In: Proceedings of the 22nd International Joint
Conference on Arti�cial Intelligence. pp. 2033�2038. AAAI Press (2011)

20. To, S.T., Son, T.C., Pontelli, E.: A generic approach to planning in the presence
of incomplete information: Theory and implementation. Arti�cial Intelligence 227,
1�51 (2015)

21. Turner, H.: Polynomial-length planning spans the polynomial hierarchy. In: Logics
in Arti�cial Intelligence, European Conference, JELIA 2002. pp. 111�124. No. 2424
in Lecture Notes in Computer Science, Springer-Verlag (2002)

