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Abstract

Most planners are based on grounding, that is, generating all
instances of a parameterized action during a preprocessing
phase. For some problems the number of ground actions is
too high, causing a performance bottleneck. Building upon
an existing approach, we present an enhanced method to split
action schemas automatically during the grounding phase, to
reduce the number of ground actions. First, we propose to ex-
ploit the structural knowledge of the problems to have a more
informative dependency graph. Then, we suggest a better ob-
jective function to define and choose the best split. Finally,
we present a more effective search to find it. We experimen-
tally measure the impact of each of these improvements, and
show that our approach significantly outperforms the state of
the art.

Introduction
Planning is a branch of Artificial Intelligence (AI) that stud-
ies the problem of choosing a sequence of actions to reach
a given goal from a given initial state. Actions are usually
specified in a schematic form (by parameterizing it) in lan-
guages such as PDDL (Ghallab et al. 1998), and most plan-
ners ground actions in their preprocessing step by instantiat-
ing the parameters with all possible value combinations. The
resulting non-parametric ground actions are easier to handle
computationally: all parameter-related decisions are made
simultaneously by selecting a single ground action, with-
out the need for explicit parameterization consideration dur-
ing the search process. However, this simplification comes
with a price: when the number of parameter combinations
becomes impractically high, grounding-based planners stall
in their preprocessing step.

There are multiple approaches to address this issue. First,
planning problems can be solved without grounding (Pen-
berthy and Weld 1992; Ernst, Millstein, and Weld 1997;
Robinson et al. 2008; Ridder and Fox 2014; Wichlacz,
Höller, and Hoffmann 2022). In this way, they are directly
handled in their schematic representation. The state-of-the-
art approach in this category, Powerlifted, efficiently finds
the successors of a state by using relational algebra query
evaluation techniques (Corrêa et al. 2020), and also ex-
tends the delete relaxation (Bonet and Geffner 2001) and
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FF (Hoffmann and Nebel 2001) heuristic functions to the
schematic representation (Corrêa et al. 2021, 2022).

Another approach to tackle this issue is to manually re-
formulate the problems so that the number of ground ac-
tions stays feasible. Essentially, schematic actions corre-
sponding to a large number of ground actions are broken
down into sequences of smaller actions, thus reducing the
number of ground actions substantially. This requires an ex-
pert familiar with domain knowledge and AI Planning. The
formalizations of the Pipesworld domain (Milidiú, dos San-
tos Liporace, and de Lucena 2003) in the International Plan-
ning Competition (IPC) 2004 and Genome Edit Distance
(Haslum et al. 2011) are examples of this approach.

Finally, Areces et al. (2014) have proposed to perform the
aforementioned reformulation fully automatically. However,
they split each action separately and only based on struc-
tural information about the action itself. This limits the ef-
fectiveness of the approach and the generalization of its hy-
perparameters. Thus, its hyperparameters need to be tuned
for each problem, otherwise it might have an adverse effect
on planner performance.

In this work, we take the ideas of Areces et al. further to
make them better applicable to planners targeting a broad
range of problems, not only hard-to-ground ones. Our goal
is to exploit information explicitly expressed in the prob-
lem definition or derivable from it, such as the domain size
of each type, the problem’s invariants, and estimates of the
numbers of applicable ground actions of action schemas. Us-
ing this information, not only can we provide a more effec-
tive splitting approach, but also our hyperparameters can be
more generalized so that our approach can be applied to a
wide range of problems without further tuning or a notice-
able deterioration of performance.

To achieve our goals, we propose improvements on three
components of the Areces et al. approach. Specifically, we
consider improving the dependency graph, the objective
function, and the search algorithm. We encode some in-
variant information about the problem into the dependency
graph. We also take an additional criterion into account in
converting the graph into a sequence of smaller actions. We
also provide a more meaningful objective function as a pri-
ority list of features; the highest priority one is the most im-
portant but coarsest feature, and the lowest priority feature
is the least important but the finest feature. Finally, we pro-



pose a new search algorithm, which potentially covers more
of the search space, adjusting to the properties of the prob-
lem at hand.

The paper is structured as follows. We begin by providing
background information on the planning problem. Next, we
present an overview of the approach of Areces et al. (Areces
et al. 2014). We then describe our contributions in three ar-
eas. In the following section, we report on and discuss our
experiments. Finally, we conclude the paper.

Preliminaries
Following Areces et al. (2014), we focus on the STRIPS
fragment of PDDL. However, our approach can easily be ex-
tended to support actions with conditional effects and other
more advanced features, but for the presentational simplic-
ity, we ignore these extensions.

We define a planning problem instance by a quintuple of
Σ = ⟨O,P,A, si, g⟩, where O is the set of objects, P is
the set of predicates, A is the set of action schemas, si de-
scribes the initial state, and g denotes the goal condition. A
predicate symbol Pn ∈ P has arity n and denotes a relation
among n objects. For example, the literal Pn(o1, . . . , on)
states that the relation Pn holds among o1, . . . , on

1. An ac-
tion schema a[X] ∈ A is a pair of a[X] = ⟨pX , eX⟩, where
X is the list of parameters of the action, pX denotes its con-
junctive precondition formula, and eX specifies the effects.
Each pX and eX is represented as a set of literals, with their
arguments either from O or X .

We represent a state s by specifying all relations that hold
in it, as the set of positive literals and assume the relations
corresponding to those literals are holding in the state, and
the rest of the other possible relations do not hold. Thus,
we can denote the initial state si of the problem by a set of
positive literals. We say sg is a goal state if g is true in sg
(sg |= g).

We can apply a ground action a[O] to a state s to transit
to another state s′. Here, O = ⟨o1, . . . , on⟩ , oi ∈ O, and
the ground action a[O] = ⟨pO, eO⟩ is an instance of a[X] =
⟨pX , eX⟩, which is constructed by an instantiation function
σ : X → O that substitutes each parameter in X with their
corresponding element in O, for all literals in pX and eX . In
other words, pO and eO are the ground versions of pX and
eX under σ. We can apply the action a[O] on state s only if
s |= pO; in this case, the next state s′ will be constructed by
eliminating all negative literals of eO from s and adding the
positive literals of eO to it.

Existing Approach to Splitting
Most planners ground action schemas in A at their prepro-
cessing step. However, grounding will easily become in-
tractable as the number of parameters and their possible
values increase, potentially leading to an exponential in-
crease in the number of ground instances. More precisely,
the upper-bound number of ground instances of an action
schema a[X] is |O||X|, where |O| and |X| denote the size
of O and X , respectively; this shows the high sensitivity of

1For brevity, we omit the superscript n if there is no ambiguity.

grounding on the domain size (number of objects) and the
parameter size of actions.

To alleviate this issue, Areces et al. (2014) proposed an al-
gorithm to split actions into chains of smaller actions, which
we call micro-actions. For example, the action schema a[X]
can be split into a chain α = ⟨a1[X1], . . . , an[Xn]⟩ of
micro-actions, which consequently decreases the parame-
ter size |X| (the exponent term). The number of ground in-
stances is reduced to

∑
i |O||Xi|. However, this reduction in

the number of ground instances comes at the price of in-
creasing plan length. By recognizing this trade-off, the pro-
posed approach provides a mechanism to specify the optimal
point for the ratio of these two quantities.

This approach starts by decomposing an action schema
into its atomic parts; the atomic parts of an action schema are
the literals in its precondition and effects because they can-
not be broken into any smaller entities. Additionally, to dis-
tinguish the literals in precondition and effects, they are an-
notated with the role they have. In the next step, dependen-
cies among those atomic parts are determined. Since an ac-
tion’s precondition needs to be checked before applying the
effect, we should prevent modifying a relation until the pre-
condition corresponding to that relation is checked. More-
over, in a ground action, there might be effects that specify a
relation simultaneously exists and does not exist in the next
state (effects may contain both a literal and its negation). To
resolve this ambiguity, the positive literal is picked; or in the
terms of splitting, we first apply the negative effect and then
the positive one, by placing the positive literal in the same
or later micro-actions in the chain. We can define a directed
graph to show these dependencies.

Definition 1 (Dependency graph). The dependency graph
G = ⟨N,E⟩ for an action schema a[X] is a directed
graph with a node ai[Xi] ∈ N for each atomic action part
and an edge ⟨ai[Xi], aj [Xj ]⟩ ∈ E, describing the atomic
part ai[Xi] should not be placed before aj [Xj ]. We have
⟨ai[Xi], aj [Xj ]⟩ if and only if these two atomic action parts
share the same predicate symbol P and

• aj [Xj ] denotes a precondition and ai[Xi] is an effect, or
• aj [Xj ] is a negative effect and ai[Xi] is a positive effect.

Areces et al. (2014) showed that this dependency graph is
acyclic and that any of its topological orderings correspond
to a valid chain of micro-actions, satisfying the dependency
requirements mentioned earlier. Furthermore, they demon-
strated that any of its acyclic quotient graphs (constructed by
aggregating some nodes into a new node) also correspond to
a valid chain. Forming this search space of all possible quo-
tient graphs, they defined an objective function to describe
the optimal graph. The objective function employs a parame-
ter γ to control the trade-off between reducing the parameter
size of micro-actions and increasing the plan length.

An Enhanced Splitting Approach
We improve three aspects of the current approach: the de-
pendency graph, the objective function, and the search algo-
rithm. We will discuss each in turn.



Dependency Graph
Instantiating the parameters of an action schema can be
viewed as a search problem: some instantiations produce ap-
plicable ground actions, while others lead to instances that
are inapplicable in all reachable states. Our goal is to effi-
ciently find the applicable instances.

For example, consider the load action schema in the well-
known planning domain of Logistics. With the parameters
of ⟨?object, ?truck, ?location⟩, this action denotes loading
a package into some truck at some location.

load

[〈
?object,
?truck,
?location

〉]
=

〈
package(?object),
truck(?truck),
location(?location),
at(?truck, ?location),
at(?object, ?location)

 ,

{
¬at(?object, ?location),
in(?object, ?truck)

}

〉
Now, let us instantiate the parameters one by one, and

compare two different orders. In the first order, we begin
with ?object, and then ?truck (and leave the ?location as
the last parameter to be instantiated). Since there is no ex-
plicit relation between these two variables in the precondi-
tion, we can consider any packages and any trucks; thus, it
is possible that the package is not in the same place as the
truck, and we will not realize this unless we try to instan-
tiate ?location. In another order, we can prevent this dead-
end instantiation by choosing ?truck and then ?location.
Therefore, according to the precondition, we are restricted
to choosing only those packages that are in the same place
as the truck, to instantiate ?object.

While this example illustrates the importance of order-
ing parameters in instantiations, we need to figure out the
reason behind these parameter dependencies. Paying closer
attention to the precondition, we realize that the relations
at(?truck, ?location) and at(?object, ?location) are the
causes of these dependencies. More precisely, since the rela-
tion at(?object, ?location) can be viewed as an array that
maps unloaded objects to their current locations, by speci-
fying the index of the array its value can be uniquely deter-
mined. Thus, we can say the value (?location) depends on
the index (?object).
Definition 2 (Parameter dependency). For an action schema
a[X], we say the parameter u ∈ X depends on the
set of parameters Y ⊂ X,u /∈ Y if at any reachable
state, for any two applicable ground actions a[O1] and
a[O2] with the instantiation functions σ1 and σ2 such that
∀y ∈ Y : σ1(y) = σ2(y), then we have σ1(u) = σ2(u).

In other words, we say u depends on the parameters Y if
the values of Y uniquely determine the value of u.

Helmert (2009) has captured this information as mono-
tonicity invariants with weight one. In his invariant synthe-
sis approach, monotonicity invariants are pairs I = ⟨V,Φ⟩,
in which V is a set of variables called parameters, and Φ is
a set of first-order atoms. The free variables in Φ (which are
not parameters) are called counted variables. By instantiat-
ing the parameters V in Φ, we can create an instance of I.

The weight of an instance of I in a state s is the number of
ground atoms of Φ (which are obtained by further grounding
the counted variables in the instance of I) that are true in s.
In other words, an instance of I can be described by a set of
partially ground atoms of Φ having only counted variables
uninstantiated. By instantiating the counted variables with
all possible values, we get the set of covered facts of this in-
stance of I. We say I = ⟨V,Φ⟩ is a monotonicity invariant
with weight one if at most one of the covered facts of each
of its instances is true at any reachable state.

Theorem 1. If a monotonicity invariant I = ⟨V,Φ⟩ and an
action a[X] = ⟨pX , eX⟩ share a predicate symbol P , such
that P (r1, . . . , rn) ∈ Φ and P (s1, . . . , sn) ∈ pX , then any
parameter u ∈ {si | ri /∈ V, si ∈ X} depends on the set of
parameters Y = {si | ri ∈ V, si ∈ X}.

Proof. Suppose, for the sake of contradiction, that in a
reachable state, we have two applicable ground actions
a[O1] and a[O2] with instantiation functions σ1 and σ2 such
that ∀y ∈ Y : σ1(y) = σ2(y), and we have σ1(u) ̸= σ2(u).

Thus, in this state, there are two different relations of P
(ground atoms of P ) among two sets of objects that share the
objects corresponding to parameters Y with different objects
for the parameter u; this means at least two covered facts of
an instance of the invariant I is true at this state (the weight
of I is at least two), which is a contradiction.

Therefore, by utilizing monotonicity invariants, we can
determine the dependencies among the parameters of an ac-
tion schema. One way to utilize this information is to encode
it in the dependency graph. However, the nodes in the de-
pendency graph are atomic action parts, but we have a set of
relations among parameters. Thus, we need to extend these
relations to the dependency graph’s nodes.

Definition 3 (Precondition dependency). For an action
schema a[X] = ⟨pX , eX⟩, we say P1(r1, . . . , rn) ∈ pX
depends on P2(s1, . . . , sm) ∈ pX , if there exists an in-
variant I = ⟨V,Φ⟩ such that P2(t1, . . . , tm) ∈ Φ and
∃i, j.(rj = si ∧ ti /∈ V ).

In other words, we say precondition P1(r1, . . . , rn) de-
pends on precondition P2(s1, . . . , sn), if they both share
a common parameter si, and si is uniquely determined by
P2(s1, . . . , sn).

By adding the edges corresponding to precondition de-
pendencies to the dependency graph, we can prevent dead
ends in the search, like our load action example. However,
adding new edges might form a cycle in the graph, which
is not desirable. Thus, we omit the new edges that make a
cycle in the dependency graph.

All edges in the dependency graph are not desirable. Our
graph might have superfluous edges that only increase the
length of the micro-actions chain. For example, if an effect
has the same predicate symbol with a precondition, then we
add an edge from the precondition to the effect because those
two might instantiate with the same objects, and therefore,
the effect might have some side effect on the precondition.
Although we need to prevent such side effects, we are over-
estimating these dependencies by detecting them based on



predicate symbols only. Depending on the rest of the pre-
conditions, it might be concluded that there is no possible
way to instantiate the precondition and the effect with the
same objects. More precisely, there might be at least one
argument that will be instantiated differently for the precon-
dition and the effect, for all applicable ground actions. For
example, this could be so when the precondition contains an
inequality constraint for the variables corresponding to that
argument. In the organic synthesis domains (Matloob and
Soutchanski 2016), these inequality constraints can elimi-
nate many superfluous edges in the dependency graph.

A more advanced approach is to exploit the invariant
knowledge of the problem to infer such inequalities. In some
domains, such as Pipesworld (Milidiú, dos Santos Liporace,
and de Lucena 2003), these inequality constraints are not
explicit; they can be deduced by the preconditions and the
invariant knowledge of the problem. Although monotonicity
invariants (Helmert 2009) are effective in discovering pa-
rameter dependencies, they only cover a subset of invari-
ants. Therefore, we can utilize Rintanen’s (2017) approach
that extracts a wider class of invariants.

In the invariant synthesis approach proposed by Rintanen
(2017), we can extract schematic invariants by analyzing a
limited grounded instance of the problem. More precisely,
instead of considering all possible objects, Rintanen showed
that invariants can be correctly extracted from actions that
have been instantiated with only a small subset of objects.
This can significantly mitigate the grounding issue in hard-
to-ground problems. Additionally, the analysis of the lim-
ited grounded instance can directly answer our question; for
a precondition and an effect having the same predicate sym-
bol, we only need to check if there is a ground action in the
limited grounded instance of the problem that instantiates
those two predicates with exactly the same objects. If there
is no such applicable ground action, then we can remove the
corresponding edge in the dependency graph.

Areces et al. (2014) showed that any topological ordering
of the dependency graph or its acyclic quotient graph forms a
valid chain of micro-actions. A directed acyclic graph might
have several topological orderings. To choose among them,
Areces et al. proposed to select the ordering with more pre-
conditions in earlier micro-actions. This way, inapplicable
actions might be detected sooner in a forward search. In ad-
dition to this, we also propose to prefer an ordering that in-
troduces arguments with positive preconditions rather than
negative preconditions or effects.

Definition 4 (Introducing argument). For an action split
α = ⟨a1[X1], . . . , an[Xn]⟩, we say the argument u is intro-

duced in micro-action i, when u ∈ Xi and u /∈
i−1⋃
j=1

Xj . We

also say the argument u is introduced by a positive precondi-
tion, when it is introduced in micro-action i and ai contains
a positive precondition with arguments including u.

The same as preferring an ordering with a higher number
of preconditions in earlier micro-actions, the reason behind
this decision is that positive preconditions are more restric-
tive, thereby they can prune inapplicable actions sooner in a
forward search.

Objective Function
Besides the dependency graph, we investigate the opportu-
nities to improve the objective function. We pursued two
goals; the first is to provide a more intuitive objective func-
tion with planner-dependent rather than problem-dependent
hyperparameters. The second goal is to improve its accuracy
by providing a more reasonable objective function.

To choose a quotient graph from the space of all possi-
ble acyclic quotient graphs of the dependency graph, Areces
et al. (2014) proposed an objective function which can be
simplified as f(α) = γc1SplitSizeα+(1−γ)c2IntSizeα,
where c1 and c2 are constants for the action and the hyperpa-
rameter γ is basically a way to select the correct element of
the Pareto front that the problem creates. Two factors affect
the objective function: the maximum parameter (interface)
size (IntSizeα) and the length of the micro-actions chain
(SplitSizeα). By decreasing either the maximum parame-
ter size or the chain length of micro-actions, the value of the
objective function is improved. However, since decreasing
one of them increases the other, this approach controls the
optimal point through a hyperparameter, γ.

While decreasing the length of the micro-actions chain
reduces the plan length, decreasing the maximum param-
eter size of micro-actions reduces the number of ground
instances. Ideally, we want to have shorter plans, because
the complexity of finding plans is worst-case exponential
in terms of their length. This results in micro-actions with
longer parameter sizes, which might lead to an unmanage-
able number of ground instances. Having the maximum
number of ground actions can be managed by a planner as a
threshold, we need to set the hyperparameter γ with a value
that lets the optimization procedure choose a split with the
least chain size, such that the maximum parameter size of
micro-actions prevents crossing that threshold.

Not only is this not a well-defined task for tuning γ, but
also it causes the hyperparameter to become dependent on
each problem. Therefore, we need to readjust it whenever we
encounter a new problem. To address this issue, we propose
another simple yet more efficient approach that implements
our main goal. Let us assume ω is a threshold that deter-
mines the manageable number of ground instances. In this
case, we can increase the parameter size of micro-actions as
long as the number of their grounded instances does not ex-
ceed ω. Then, the objective function will simply be the least
possible length of the micro-actions chain.

Definition 5 (Number of ground instances). For an action
split α = ⟨a1[X1], . . . , an[Xn]⟩, we use #α to indicate the
total number of ground instances of all micro-actions in α.

As mentioned earlier, the upper-bound number of ground
instances of an action schema a[X] is |O||X|. Although we
can use this estimate to calculate the number of ground in-
stances of micro-actions, we take into account the static re-
lations (that will not modify by any action) in the precon-
dition of micro-actions to prune inapplicable instances, and
thereby, will have a more accurate estimate.

By closely examining the chain of micro-actions, we re-
alize that certain micro-actions have a branching factor of
one. More precisely, micro-actions with zero new parame-



ters have a branching factor of one because we do not need
to choose a value for their arguments. In simpler terms, they
do not contribute to the problem’s complexity since they are
not elements that require decision-making. Hence, we can
ignore them in minimizing the length of the chain.

Definition 6 (Branching micro-action). For a split α =
⟨a1[X1], . . . , an[Xn]⟩, we say ai[Xi] is a branching micro-
action if and only if we have:

Xi −

i−1⋃
j=1

Xj

 ̸= ∅

We use ∥α∥ to denote the number of branching micro-
actions in α.

Still, we need another criterion before formally defining
our objective function. As discussed earlier, not all parame-
ter instantiations lead to applicable actions. We leverage the
invariant knowledge of the problem to prevent those instan-
tiations to some extent, during a forward search. As another
mechanism, the same as Areces et al. (2014), we prioritize a
split with a higher number of preconditions in earlier micro-
actions. In order to use this criterion, we define a function to
denote the number of preconditions of each micro-action in
a split.

Definition 7 (Precondition count). For an action
split α = ⟨a1[X1], . . . , an[Xn]⟩, with micro-actions
ai[Xi] =

〈
piXi

, eiXi

〉
, we define:

c(α) =
〈
|p1X1

|, . . . , |pnXn
|
〉

In other words, c(α) maps a split α to a tuple of values
with the same size as the split, where its ith element denotes
the number of preconditions in the ith micro-actions. We use
lexicographic order to compare two tuples. More precisely,
we say ⟨v1, . . . , vn⟩ is less than ⟨w1, . . . , wm⟩ if and only if

• ∃i.vi < wi and vj = wj for 1 ≤ j < i, or
• n < m and vj = wj for 1 ≤ j ≤ n.

Definition 8 (Objective function). For a threshold ω de-
noting the maximum number of ground actions and a split
α = ⟨a1[X1], . . . , an[Xn]⟩, we define f(α) to specify the
value of objective function for the split α as a tuple of val-
ues with the following elements:

1. max(0, #α− w)
2. ∥α∥
3. ⌊log2(#α)⌋
4. −1× c(α)
5. #α

Our objective function maps a split to a tuple of feature
values in order of their importance; the earlier elements of
the tuple have higher priorities but are coarser features while
the later elements have lower priorities but are finer features.
The first element determines if the number of ground actions
of the split crossed our threshold, and if so how much. Its
value is zero for all splits with a lower number of ground ac-
tions than our threshold. Then, the second value specifies the

number of branching micro-actions of the split; this value af-
fects the number of branching points during the search. For
two splits with the same values of the first two features, we
prefer the one if its number of ground actions is significantly
lower than the other one because this value affects the per-
formance of different parts of the search, such as calculating
the heuristic value of a state. If the numbers of their ground
actions are close to each other, then we choose the one with
more preconditions in its earlier micro-actions. Otherwise, if
the values of their first four features are the same, we prefer
the split with the least number of ground actions.

Monte Carlo
Areces et al. (2014) showed that split optimization is an NP-
complete problem. Therefore, they proposed two greedy ap-
proximate methods to find the final split. However, since the
complexity of this problem is proportional to the number of
preconditions and effects, we expect the search space should
not be too large in most cases. Thus, we adopted a variant of
the Monte Carlo method to cover this space to the great-
est extent feasible. More precisely, within a specified time
limit, we conduct multiple random walks with two enhanc-
ing strategies: 1) we prevent a duplicate random walk (by
tracking the fully explored nodes), and also 2) nodes with
objective values worse than the best-founded objective value
are pruned.

Here, a node is a partial chain of micro-actions in which
some of the action’s atomic parts are uniquely assigned to
the chain’s elements and the rest of them are left unassigned.
Starting from an empty chain, each walk randomly follows
a path to reach a final node, which is a complete chain.
The successor of a node can be constructed by either as-
signing an unassigned atomic part to the last element of the
chain or adding a new (empty) micro-action to the end of
the chain. To keep the search space small, we prune some
sub-optimal successors, such as those having two consecu-
tive empty micro-actions or assigning an atomic part whose
parameters are disjoint with the parameters of the last micro-
action.

Evaluation
We conducted two experiments to evaluate the effectiveness
of our approach 2. In the first experiment, we sought to eval-
uate the contribution of each of our proposed components in
solving hard-to-ground problems. In the second experiment,
our goal was to understand how our approach influences the
performance of planners when dealing with a broader range
of problems.

We chose four planners with different technologies for
our experiments: LAMA (Richter and Westphal 2010), a
heuristic-based planner; Maidu (Corrêa et al. 2023b), a
portfolio-based planner and the winner of IPC’23 in the
classical-satisficing track; a variant of BFWS (Lipovet-
zky and Geffner 2017), featuring width-based search; and
Powerlifted (Corrêa et al. 2023a), the state-of-the-art plan-
ner for hard-to-ground problems. The variant of BFWS

2The source code is available at:
https://github.com/melahi/enhanced-action-splitter



that we used in our experiment is a combination of
two modes of this planner. First, the planner is run in
goalcount-only mode for at most 15 minutes, then
it switches to f5-initstate-relevant. Additionally,
we used a slightly modified version of this planner with more
efficient memory usage. In our experiments, we ran the plan-
ners with a 30 minute time limit on 2.50 GHz Intel Processor
with an 8 GB memory limit.

To determine the threshold ω in our approach, we roughly
estimated that the upper bound for the number of ground
actions that a planner can deal with is 106. Therefore, we
set ω = 106

|A| , where A is the set of action schemas. Also,
we considered a time limit of max(50, 500

|A| ) for the Monte
Carlo search. In the report of our experimental results, we
refer to our approach as EAS (Enhanced Action Splitter).

Components Evaluation
We proposed three improvements to the Areces et al. (2014)
approach. In our first experiment, we sought to evaluate
the effectiveness of each of them. We conducted our ex-
periment on a set of hard-to-ground domains, including
Pipesworld-Tankage, Genome Edit Distance (GED), Or-
ganic Synthesis-Alkene, Organic Synthesis-MIT, and Or-
ganic Synthesis-Original. We started with the Areces et al.
approach with the hyperparameter γ = 0 as our baseline.
In the first step, we only improved its dependency graph
(EASg). Then, we changed its objective function to ours
(EASobj). Finally, in the last step, we switched to the Monte
Carlo search to find the best chain of micro-actions (EASM).
Table 1 reports the number of solved instances in each case.

According to the results, EASg considerably improved
the performance of BFWS. Its influence is also noticeable
for the Organic Synthesis-Original domain for LAMA and
Maidu. Moreover, the results show our proposed objective
function remarkably increases the coverage of planners for
the Pipesworld domain. However, the hill-climbing search
(Areces et al. 2014) in EASobj might not completely benefit
from this advantage, due to finding local optima. By switch-
ing to the Monte Carlo search in EASM, we could benefit
from the advantage of our proposed objective function to a
greater extent. Overall, we can conclude all three proposed
improvements significantly contribute to enhancing the per-
formance of planners in this experiment.

General Evaluation
We have a minimalistic design philosophy behind our pro-
posed approach: we tried to introduce as few hyperparame-
ters as possible with intuitive meanings that depend on the
planner rather than the problem. This way, we can easily
tune our approach for a wide range of problems. Addition-
ally, as another goal coming from our design philosophy,
it tries not to intervene until there is a necessity. In other
words, it does not split actions, unless it detects that the num-
ber of ground actions will be overwhelmingly high.

To evaluate our goals, we designed another experiment
with a large set of domains, including hard-to-ground do-
mains and domains from IPC’14, IPC’18, and IPC’23, ex-
cept those having universally quantified effects, as our im-

plementation does not support them yet. In this experiment,
we ran LAMA, Maidu, and BFWS in four different cases. In
the first case, we fed the planner with the original problems
in the domains. In the second and third cases, we use Areces
et al. approach (2014) with the hyperparameter γ = 0 and
γ = 0.8, respectively, and in the last case, we use our ap-
proach. To complete our experiment, we also evaluated the
performance of Powerlifted, as a state-of-the-art planner for
solving hard-to-ground problems. Table 2 shows the number
of solved instances of each case in this experiment.

According to the results, the Areces et al. approach (2014)
with γ = 0 improves the performance of LAMA and Maidu
for hard-to-ground problems. However, it has a considerable
overhead on other domains, and also on the performance of
the BFWS planner, even for hard-to-ground domains. On the
other hand, with hyperparameter γ = 0.8 this approach has
little overhead on the IPC benchmarks, but it is not as ef-
fective as γ = 0 for the hard-to-ground problems. Analyz-
ing the results, we realize that not only does our approach
effectively improve the performance of planners in hard-to-
ground domains, but it also has a minimal additional cost on
the IPC domains. Interestingly, it also improved the perfor-
mance of planners in a few domains, including the 2023 IPC
domain Slitherlink, for LAMA and Maidu. Moreover, the
results show our approach is quite competitive with Pow-
erlifted, the state-of-the-art planner, in hard-to-ground do-
mains. This experiment confirms that we have met our goals
to a great extent.

Conclusion
We have addressed three different aspects of the action-
splitting approach of Areces et al. (2014) that addresses
planning problems in which straightforward grounding of
schematic actions produces impractically many ground ac-
tions. First, we have proposed an improvement on the depen-
dency graph by encoding problem invariants into it and elim-
inating some superfluous edges. Also, we have suggested an
additional criterion to choose a more effective topological
ordering of the dependency graph. Then, we have provided a
more meaningful and accurate objective function described
by a priority list of features. Finally, we have proposed to
utilize a variant of the Monte Carlo search algorithm, which
is more suitable for our specific problem.

Our results demonstrate that the resulting action-splitting
method clearly improves on Powerlifted on hard-to-ground
domains, but also generally avoids performance deteriora-
tion on other domains. Overall, combining our method with
state-of-the-art planners clearly outperforms existing plan-
ners on a mix of hard-to-ground and standard domains. This
is important when it is not known a priori whether domains
to be solved are hard-to-ground or not.
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Milidiú, R. L.; dos Santos Liporace, F.; and de Lucena,
C. 2003. Pipesworld: planning pipeline transportation of
petroleum derivatives. ICAPS’03 - Workshop on the com-
petition: Impact, organization, evaluation, benchmarks.
Penberthy, J. S.; and Weld, D. S. 1992. UCPOP: a sound,
complete, partial order planner for ADL. In Principles of
Knowledge Representation and Reasoning: Proceedings of
the Third International Conference (KR ’92), 103–114. Mor-
gan Kaufmann Publishers.

Richter, S.; and Westphal, M. 2010. The LAMA planner:
guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research, 39: 127–177.
Ridder, B.; and Fox, M. 2014. Heuristic evaluation based
on lifted relaxed planning graphs. In ICAPS 2014. Proceed-
ings of the Twenty-Fourth International Conference on Au-
tomated Planning and Scheduling, volume 24, 244–252.
Rintanen, J. 2017. Schematic Invariants by reduction to
ground invariants. In Proceedings of the 31st AAAI Confer-
ence on Artificial Intelligence (AAAI-17), 3644–3650. AAAI
Press.
Robinson, N.; Gretton, C.; Pham, D.-N.; and Sattar, A. 2008.
A compact and efficient SAT encoding for planning. In
ICAPS 2008. Proceedings of the Eighteenth International
Conference on Automated Planning and Scheduling. AAAI
Press.
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