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Abstract

We investigate satisfiability planning with restrictions on the
number of actions in a plan. Earlier work has considered en-
codings of sequential plans for which a plan with the minimal
number of time steps also has the minimum number of ac-
tions, and parallel (partially ordered) plans in which the num-
ber of actions may be much higher than the number of time
steps. For a given problem instance finding a parallel plan
may be much faster than finding a corresponding sequential
plan but there is also the possibility that the parallel plan con-
tains unnecessary actions.
Our work attempts to combine the advantages of parallel and
sequential plans by efficiently finding parallel plans with as
few actions as possible. We propose techniques for encoding
parallel plans with constraints on the number of actions. Then
we give algorithms for finding a plan that is optimal with re-
spect to a given number of steps and an anytime algorithm
for successively finding better and better plans. We show that
as long as guaranteed optimality is not required, our encod-
ings for parallel plans are often much more efficient in finding
plans of good quality than a sequential encoding.

Introduction
We investigate the encoding of parallel plans in the proposi-
tional logic with an upper bound on the number of actions.
The main application of this work is the improvement of par-
allel plans which may contain more actions than necessary.

The basic idea of planning as satisfiability is simple. For
a given numbern of steps a propositional formulaΦn is
produced. This formulaΦn is satisfiable if and only if a
plan with n steps exists. From a satisfying assignment for
Φn a solution plan ofn steps can be easily generated.

Efficiency of satisfiability planning can be improved by
allowing parallelism in plans. This means that under cer-
tain conditions several actions may be taken at the same
step (Kautz & Selman 1996; Rintanen, Heljanko, & Niemelä
2005). For many planning problems this gives a great speed-
up since parallelism reduces the number of steps needed and
hence also the size of the propositional formulae. On the
other hand, the price for the speed-up is the loss of optimal-
ity. A parallel plan with the minimum number of steps may
have many more actions than an optimal plan. As an exam-
ple consider a logistics problem where a truck can be moved
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Figure 1: Numbers of steps and actions in sequential and
parallel plans

between locations A and B. In a parallel plan the truck might
be pointlessly moved between the two locations while other
useful actions are taken in parallel. The fundamental reason
for the unnecessary actions is that satisfiability algorithms
do not attempt to find satisfying assignments with few true
propositions and might for example arbitrarily assign value
true to propositions that are irrelevant for the satisfiability of
the formula in question.

If we want to find an optimal plan we are in general forced
to consider sequential plans instead of parallel plans. Know-
ing that there are no plans with less thann steps and no plans
with n steps and less thanm actions does not mean that there
are no plans with more thann steps and less thanm actions.
Ultimately, to show that no plans with less thanm actions
exist we must show that no sequential plans withm−1 steps
(and hence alsom− 1 actions) exist.

To illustrate the difference between sequential and paral-
lel plans consider Figure 1. Formulae for sequential plan-
ning are parameterized withn that denotes both the number
of steps and the number of actions in a plan, as only one
action is allowed at each step. This corresponds to the di-
agonal line in Figure 1. Formulae for parallel planning are
parameterized with the numbern of non-empty steps. Be-
cause each step contains one or more actions, there is no
explicit upper bound on the number of actions in a plan with
n steps, and each plan withn steps has at leastn actions.
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Figure 2: Restrictions on both the number of steps and the
number of actions

The possible plans for parametern therefore correspond to
the shaded region in Figure 1.

Our objective in this work is to develop techniques for im-
proving the quality of parallel plans without having to con-
sider sequential plans. The work is based on setting an up-
per bound both on the number of steps and the number of
actions in plans. The formulae we produce correspond to
the question: Does a plan with at mostn steps and at most
m actions exist? Possible solutions havex ≤ n nonempty
steps andy ≤ m actions, corresponding to the shaded region
in Figure 2. The difference to earlier works on satisfiability
planning is that our formulae are also parameterized by the
number of actionsm.

Also other popular approaches to solving planning prob-
lems – including heuristic search algorithms (Bonet &
Geffner 2001) – yield techniques for finding both arbitrary
plans and plans that are guaranteed to contain the minimum
possible number of actions. With heuristic search optimal
plans can be found by using systematic optimal heuristic
search algorithms like A∗ or IDA∗ together with admissi-
ble heuristics (Haslum & Geffner 2000). Plans without op-
timality guarantees can be often found more efficiently by
using local search algorithms and non-admissible heuristics
(Bonet & Geffner 2001).

The structure of this paper is as follows. We first give a
brief overview of planning as satisfiability and the notions of
parallel plans used. Then we describe encodings ofcardinal-
ity constraintsin the propositional logic, that is constraints
on the number of true propositions in satisfying assignments
of a propositional formula. This is the basis of restricting
the number of actions in parallel plans. To keep the size
of the formulae for cardinality constraints small we propose
a technique for reducing the number of propositions need
to be counted. Then we propose two planning algorithms
based on our encoding of parallel plans with constraints on
the number of actions. Finally we give results of experi-
ments that illustrate the differences in the efficiency of se-
quential and parallel encodings of planning as satisfiability
and runtime behavior of SAT solvers on different combina-
tions of restrictions on the number of steps and actions in
parallel plans.

Planning as Satisfiability
Planning as satisfiability was first proposed by Kautz and
Selman (1992). The notion of plans initially was sequen-
tial: at every step in a plan exactly one action is taken. Af-
ter the success of the GraphPlan algorithm that used parallel
plans (Blum & Furst 1997), Kautz and Selman also proposed
parallel encodings of planning (Kautz & Selman 1996). In
these works two or more actions can be taken in parallel at
the same step as long as the actions areindependent. In-
dependence is a syntactic condition that guarantees that the
parallel actions can be put to any total order and a valid plan
is obtained in every case. Recently, the possibility of more
parallelism than what is allowed by independence has been
utilized by Rintanen et al. (2004) based on ideas by Di-
mopoulos et al. (1997).

The basic idea in satisfiability planning is to encode the
question of whether a plan withn steps exists as a proposi-
tional formula of the following form.

Φn = I0 ∧

 ∧
i∈{0,...,n−1}

R(Ai, Pi, Pi+1)

 ∧Gn

The propositional variables in this formula areP0∪· · ·∪Pn∪
A0 ∪ · · · ∪ An−1 expressing the values of state variables at
time points0, . . . , n and which actions are are taken at the
steps0, . . . , n− 1.

The formulaI0 describes the unique initial state: it is a
formula over the propositional variablesP0 for time point0.
Similarly Gn is a formula describing the goal states in terms
of propositional variables for time pointn.

The transition relation formulaR(At, Pt, Pt+1) describes
how the values of the state variables change when some of
the actions are taken. The propositional variablesPt are for
the state variables at timet and the propositionalPt+1 for
time t + 1. There is one variable inAt for every action. If
an action is taken at time pointt, the corresponding propo-
sitional variable inAt is true.

If the formulaΦn is satisfiable then a plan withn steps
exists. Plan search now proceeds by generating formulaeΦn

for different values ofn ≥ 0, testing their satisfiability, and
constructing a plan from the first satisfying assignment that
is found.1 The propositional variables inA0 ∪ · · · ∪ An−1

directly indicate which actions are taken at which step.
The way the transition relation formulaeR(At, Pt, Pt+1)

are defined depends on the notion of plans used and other
encoding details. For different possibilities see (Kautz &
Selman 1996; Ernst, Millstein, & Weld 1997; Rintanen, Hel-
janko, & Niemel̈a 2005). For our purposes in this paper it
is sufficient that we can determine which actions are taken
by looking at the values of the propositional variables in
A0 ∪ · · · ∪ An−1. The basic question we want to answer
is whether a plan withn steps and at mostm actions exists.
For this purpose we use the formulaΦn together with an en-
coding of the cardinality constraint that says that at mostm
of the propositional variables inA0 ∪ · · · ∪ An−1 may be
true. How these cardinality constraints can be encoded is
described in the next section.

1See Rintanen (2004a) for other approaches.



Constraints on the Number of Actions
Let A be the set of actions in our problem instance. If we
are looking for a plan withn steps we havek = |A|n propo-
sitions that correspond to the possible actions at then steps.
We call these propositionsthe indicator propositionssince
they indicate that an action is taken, and denote them by
i1, . . . , ik. In restricting the number of actions in a plan we
have to encode the cardinality constraint that the set of true
indicator propositions in an assignment has a cardinality of
at mostm.

We have implemented two different encodings of cardi-
nality constraints. The first encoding is based on an injective
mapping of the indicator propositions to integers1, . . . ,m.
A propositionpx,y with x ∈ {1, . . . , k} andy ∈ {1, . . . ,m}
indicates thatix is mapped to the integery. Additional
formulae make sure thata) every indicator proposition is
mapped to at least one integer (this can be encoded withk
clauses withm literals in each), andb) the mapping is injec-
tive (needskm−m

2 clauses with 2 literals in each), that is, no
two indicator propositions are mapped to the same integer.
The total size of the clauses (in terms of number of literal
occurrences) iskm + km−m = 2km−m. Our initial ex-
periments with this encoding did lead to rather good results.
An interesting result was that an upper bound on actions of-
ten lead to a plan with many fewer actions than the upper
bound required or even the minimum number.

Then we implemented a variant of the encoding of car-
dinality constraints developed by Bailleux and Boufkhad
(2003). This encoding, although slightly bigger, turned out
to be even more efficient than the one based on injections.
This encoding uses a binary tree in which the leaves are the
indicator propositions. Every internal nodeN of the tree
corresponds to an integer in a range{0, . . . , rN} indicating
how many of the leaves in that subtree are true, represented
in unary byn propositionspN,1, . . . , pN,rN

. HererN is the
minimum of m + 1 and the total number of leaves in the
subtree.2 A propositionpN,i is true if the number of true
indicator propositions in the tree is≥ i. The value of an
internal node is the sum of its two child nodes. The tree is
recursively constructed as follows.

1. Each leaf node (corresponding to one indicator propo-
sition) is interpreted as an integer in{0, 1} where false
corresponds to 0 and true to 1. We denote the indicator
proposition of a leaf nodeN by pN,1.

2. An internal nodeN with two children nodesX andY has
the rangerN = [0, . . . ,min(m+1, rX +rY )]). The value
of nodeN is the sum of the value ofX andY and hence
it remains to encode this addition. This is done by formu-
lae(pX,j1 ∧ pY,j2) → pN,j1+j2 for all j1 ∈ {1, . . . , rX}
and j2 ∈ {1, . . . , rY } such thatj1 + j2 ≤ rN , and
formulae pX,j1 → pN,j1 and pY,j2 → pN,j2 for all
j1 ∈ {1, . . . , rX} andj2 ∈ {1, . . . , rY }. For this at most
mm + m + m = m2 + 2m clauses are needed.

2Bailleux and Boufkhad (2003) always count up tok, but be-
cause our cardinality constraintm is often very small in compari-
son tok, counting further thanm + 1 increases the formula sizes
unnecessarily.

From the propositions for the root nodeN0 we can de-
termine whether the number of true indicator propositions
exceedsm: the formula¬pN0,m+1 is true if and only if the
number of true indicator propositions is at mostm.

Bailleux and Boufkhad (2003) have shown that this en-
coding is more efficient that encodings that more compactly
represent counting for example by using a binary encoding.
The efficiency seems to be due to the possibility of deter-
mining violation of the cardinality constraints by means of
unit resolution already when only a subset of the indicator
propositions have been assigned a value.

Assuming thatk is a power of2, the tree hask − 1 inner
nodes and depthlog2 k. Hence an upper bound on the num-
ber of clauses for representing the cardinality constraint is
(k − 1)(m2 + 2m).

Cardinality constraints have many applications. Bailleux
and Boufkhad (2003) discuss the discrete tomography prob-
lem, a simplified variant of the tomography problems having
applications in medicine. The computation of medians of se-
quences of binary numbers in digital signal processing also
involves cardinality constraints and further encodings have
been developed for that purpose (Valmari 1996).

Unparallelizable Sets of Actions
To reduce the sizes of the formulae encoding the cardinality
constraints we consider possibilities of counting a smaller
number of indicator propositions thank = |A|n for plans
with n steps. A smaller number of indicator propositions is
often possible because there are dependencies between ac-
tions, making it impossible to take some actions in parallel.

Our idea is the following. We first partition the set of all
actions intox subsets so that taking one action from any set
makes it impossible to take the remaining actions in the set
in parallel. Then we introduce a new indicator proposition
for each of these sets. This proposition indicates whether an
action of this subset is taken. Now we need to count only
xn indicator propositions instead of|A|n. In some casesx
is much smaller than|A|.

Assume that we have a setS = {a1, a2, . . . , aq} of ac-
tions of which at most one can be taken at one step. In
the following formulae we will use the symbolsax, x ∈
{1, . . . , q} to denote that actionax is taken. Then we intro-
duce a new propositioniS and the following formulae.

a1 → iS , a2 → iS , . . . , aq → iS

Obviously, if one of the actionsa1 to aq is taken,iS is
true. SinceiS indicates that one action of the setS is taken,
we calliS the indicator proposition of the setS.

It remains now to partition the set of all actions into as
few sets of actions as possible. The identification of sets of
actions of which at most one can be taken at a time is equiv-
alent to the graph-theoretic problem of findingcliquesof a
graph, that is, complete subgraphs in which there is an edge
between every two nodes. In the graph〈N,E〉 the setN of
nodes consists of the actions and there is an edge(a, a′) ∈ E
between two nodes if the actions cannot be taken at the same
time.

Identification of big cliques may be very expensive. Test-
ing whether there is a clique of sizen is NP-complete (Karp



function PartitionToCliques(A,E)
if (A×A) ∩ E = ∅ then return {{a}|a ∈ A};
Divide A into three setsA+, A− andA0

so that(A+ ×A−) ⊆ E
and|A+| > 0 and|A−| > 0;

P+ := PartitionToCliques(A+, E);
P− := PartitionToCliques(A−, E);
P0 := PartitionToCliques(A0, E);
Let P+ = {p+

1 , . . . , p+
i };

Let P− = {p−1 , . . . , p−j };
Without loss of generality assume thati ≥ j;
P := {p+

1 ∪ p−1 , . . . , p+
j ∪ p−j } ∪ P0 ∪ {p+

j+1, . . . p
+
i };

return P;

Figure 3: An algorithm for partitioning the set of actions

1972; Garey & Johnson 1979). Hence we cannot expect to
have a polynomial-time algorithm that is guaranteed to find
the biggest cliques of a graph. Approximation algorithms
for locating cliques exist (Hochbaum 1998).

We have used a simple polynomial-time algorithm for
identifying sets of actions that cannot be taken in parallel.
We construct a graph where the nodes are the actions. Two
nodesa anda′ are connected by an edge if it is not possible
to take the actiona anda′ in parallel. The problem is to find
a partition of the graph into as few cliques as possible. The
recursive algorithm given in Figure 3 takes as input the set
A of actions and returns a partition ofA into cliques.

In the base case of recursion the actions inA have no
dependencies and therefore form an independent set ((A ×
A) ∩ E = ∅) of the graph. Each member ofA now forms a
trivial 1-element clique, and these cliques are returned.

In the recursive case a complete bipartite subgraph
A+, A− is identified (heuristically, see below for details),
and the both partitionsA+ andA− as well as the remaining
nodesA0 are recursively partitioned to cliques. As a final
step cliquesp+ andp− respectively corresponding toA+

and A− can be pairwise unioned to obtain bigger cliques
p+ ∪ p− (becauseA+×A− ⊆ E) that are returned together
with the cliques obtained fromA0.

The partitioning of the setA into the setsA+, A− andA0

is done as follows. We choose a state variableX and define
the following sets.

1. A+ consists of all actionsa for which X is necessarily
be true when actiona is taken. This means thatX is a
logical consequence of the precondition ofa or there is
an invariantl ∨X (we use the invariants computed by the
algorithm of Rintanen (1998)) and the precondition ofa
entails the complementl of the literall.

2. A− consists of all actionsa for whichX is necessarily be
false whena is taken.

3. A0 = A− (A+ ∪A−).

Now there is an edge between any two nodes respectively
from A+ and A−. For commonly used benchmark prob-
lems this algorithm works well and returns many non-trivial
cliques, reducing the number of indicator propositions.

procedureAlgorithm1(int n)
P := any parallel plan withn steps;
repeat

m := the number of actions inP ;
Pbest := P ;
try to find a planP with n steps and≤ m− 1 actions;

until no plan found;
return Pbest;

Figure 4: Algorithm 1

The algorithm runs in polynomial time with respect to the
number of actions|A|. All components of the function are
polynomial and the number of recursive calls is polynomial.

Lemma 1. Given a set of|A| > 0 actions the function
PartitionToCliques(A,E) makes at most3(|A| − 1) recur-
sive calls. For|A| = 0 it makes no recursive calls.

Proof. We prove the statement by induction over the size
|A| of the input set.

Base case: If the input setA is empty or has only one
member the function returns without recursive calls. The
statement is hence true for|A| = 1 and|A| = 0.

Inductive case: If|A| > 1 the function makes at most
3 + 3(|A+| − 1) + 3(|A−| − 1) + max{0, 3(|A0| − 1)}
recursive calls. Note that the setsA+ andA− are non-empty
and|A| = |A+| + |A−| + |A0|. It follows that the function
makes at most3(|A| − 1) recursive calls.

Planning Algorithms
The restriction on the number of actions in a plan can be
used in planning algorithms in several ways. We consider
the computation of plans of a given number of steps and a
minimum number of actions, as well as an anytime algo-
rithm that is eventually guaranteed to find a plan with the
smallest possible number of actions.

Optimal Plans of a Given Length

For this application we first find any parallel plan of lengthn
without any restrictions on the number of actions. Letm be
the number of actions in this plan. To find a plan withn steps
and the the smallest possible number of actions we simply
compute a plan for lengthn with the cardinality constraint
that restricts the number of actions to at mostm− 1. If such
a plan does not exist thenm is already the minimum number
of actions a plan of lengthn can have. Otherwise we get a
better plan with some numberm1 ≤ m− 1 of actions. This
is repeated until no plans with a smaller number of actions
is found. Finally we get a plan with the smallest number of
actions with respect to the plan lengthn. The algorithm is
given in Figure 4.

Since proving the optimality, that is, performing the last
unsatisfiability test, may be much more expensive than the
previous tests, if we are just interested in finding a good plan
without guaranteed optimality we suggest terminating the
computation after some fixed amount of time.



procedureAlgorithm2()
P := any parallel plan with a minimal number of steps;
m := the number of actions inP ;
n := the number of steps inP ;
while m < n do
begin

if planP with n steps and≤ m− 1 actions exists
then

begin
Pbest := P ;
m := the number of actions inPbest;

end
elsen := n + 1;

end
return Pbest;

Figure 5: Algorithm 2

Anytime Algorithm for Finding Good Plans
When we have to find a plan with the smallest possible num-
ber of actions the use of an encoding for sequential plans is
unavoidable. Assume we have found a plan withn steps and
m actions. We could now show that there are no plans with
n steps and less thanm actions for somen < m. However,
there might still be plans that have less thanm actions and
more thann steps. So we are always ultimately forced to
test for the existence of plans withm − 1 steps andm − 1
actions. Hence the problem of optimal planning always re-
duces to sequential planning and parallel plans are of no use.

However, finding plans with guaranteed optimality may
be too expensive and our interest might be simply to find
plans of good quality without guarantees for optimality. For
this purpose the use of parallel plans is more promising be-
cause they can often be found much more efficiently than
corresponding sequential plans.

We extend Algorithm 1 to repeatedly find plans with
fewer and fewer actions, increasing the number of steps
when necessary. Algorithm 2 is given in Figure 5.

This algorithm first minimizes the number of actions for a
given number of steps. If a plan with the smallest numberm
of actions has been found the number of stepsn is increased
and an attempt to find a plan withm − 1 actions or less is
repeated. This decreasing of the number of actions and in-
creasing the number of steps is alternated until the algorithm
has proved that no further reduction in the number of actions
is possible. On the last iteration the algorithm has to prove
that no plans ofm− 1 actions andm− 1 steps exist, which
is a question answered by sequential planning.

As our initial motivation was to avoid using an encoding
for sequential plans, this algorithm should be used with re-
strictions on its runtime so that the limit case is not reached.
Essentially, this is an anytime algorithm that yields the better
plans the longer it is run.

Experiments
In this section we present results from some experiments
which were run on a 3.6 GHz Intel Xeon processor with
512 KB internal cache using the satisfiability program Siege

problem steps actions min
Logistics40 6 26 20
Logistics50 6 29 27
Logistics60 6 32 25
Logistics70 7 44 38
Logistics80 7 39 31
Logistics90 7 43 36
Logistics100 9 79 46
Driverlog2 8 24 19
Driverlog3 5 14 12
Driverlog4 5 22 18
Driverlog5 5 22 18
Driverlog6 5 21 11
Driverlog7 5 19 13
Driverlog8 6 29 25
Driverlog9 9 28 22
Zenotravel4 4 11 8
Zenotravel5 4 12 11
Zenotravel6 3 13 12
Depots4 14 56 30
Depots5 18 66 49
Depots6 22 90 64
Satellite7 4 33 27
Satellite10 5 55 34
OpticalTelegraph1 13 36 35
Mystery9 4 11 8
Movie6 2 61 7
Movie10 2 84 7
Mprime2 4 25 9
Mprime3 3 17 4

Table 1: Number of actions found by a satisfiability planner
without restrictions on number of actions versus the smallest
number of actions for the given number of steps

(version 4). Siege runtimes vary because of randomization,
and the runtimes we give are averages of 20 runs. The prob-
lem instances are from the AIPS planning competitions. The
logistic problems are from the year 2000. A dash in the run-
time tables means a missing upper bound for the runtime
when a satisfiability test did not finish in 10 minutes. All
runtimes are in seconds.

The parallel plans were found by the most efficient 1-
linearization encoding considered by Rintanen et al. (2004)
and the sequential plans by an encoding that differs from the
parallel one only with respect to the constraints on parallel
actions: at each step only one action may be taken.

Unnecessary Actions in Plans
The motivation for our work was that parallel plans may
have many unnecessary actions. Table 1 shows the number
of actions in parallel plans found by a satisfiability planner
without restrictions on the number of actions and the small-
est number of actions in any parallel plan of the same mini-
mal length.3 Note that the latter number in general is not the

3In few cases we were not able to establish the lower bound
with certainty.



number of steps
actions 7 8 9

30 * 0.75 *142.73 -
31 0.04 0.22 0.09
33 0.06 0.13 0.18
35 0.06 0.26 0.37
37 0.06 0.08 0.32

Table 2: Comparison of runtimes for different plan lengths
and numbers of actions for Logistics80

number of steps
actions 6 7 8 9

21 * 0.12 *42.2 - -
22 * 0.15 1.85 13.07 40.92
23 * 0.23 0.44 2.81 22.66
24 * 0.43 0.06 1.63 8.45
25 0.04 0.16 1.27 1.09

Table 3: Comparison of runtimes for different plan lengths
and numbers of actions for Driverlog8

minimum number of actions in any plan for that problem
instance.

Impact of Parameters on Runtimes
We give the runtimes for evaluating formulae for different
numbers of steps and actions for three easy problem in-
stances in Tables 2, 3 and 4. Unsatisfiable formulae are
marked with *. Evaluating formulae corresponding to a
higher number of steps generally takes longer. Showing that
a formula for given parameter values is unsatisfiable, that is,
no plans of a given number of steps and actions exist, takes
in general much more time than finding an satisfying assign-
ment for one of the satisfiable formulae.

Comparison to Sequential Planning
We make a small comparison between the runtimes of par-
allel and sequential planning. With an encoding of cardinal-
ity constraints we can check whether a parallel plan with a
given number of actionsm and stepsn exists. The compu-
tational cost of doing this can be compared to an encoding
of sequential plans that restricts the number of actions and
steps simultaneously tom.

Table 5 shows the results of the comparison. We deter-
mined the minimum number of steps needed in a parallel
plan, and then measured the runtimes of finding a parallel
plan with this number of steps and different numbers of ac-
tions as well as the runtimes of finding sequential plans with
the same numbers of actions. The first column shows the
name of the problem instance. The second column shows
the number of steps in the parallel plans. The third column
shows the number of actions allowed in the parallel and the
sequential plans (and hence also the number of steps in the
sequential plans.) The fourth column shows the SAT solver
runtime for finding a satisfying assignment of the formula
encoding sequential plans. The last column shows the SAT

number of steps
actions 22 23 24

58 *10.50 *563.21 -
59 *14.43 *775.01 -
60 *19.03 *1064.88 -
61 *26.69 269.98 -
62 *39.66 109.70 326.04
63 *72.60 95.95 226.96
64 19.54 61.24 165.80
65 11.92 48.30 140.71
67 5.74 30.93 66.28
69 4.43 21.32 47.85
71 3.26 14.59 39.93
73 2.59 11.74 32.70
75 2.51 9.59 25.27
77 2.17 7.79 21.92

Table 4: Comparison of runtimes for different plan lengths
and numbers of actions for Depots6

solver runtime for finding a satisfying assignment of the for-
mula encoding parallel plans.

Overall we can summarize our observations as follows.

• It is more efficient to improve a parallel plan than a se-
quential one.

• The effectiveness of our techniques depends much on the
type of the problem. On Logistics, Driverlog, Depots,
Mystery and Satellite the plans could be greatly improved.
For Philosophers or Optical Telegraph there was less im-
provement possible. For problem domains with no paral-
lelism, like the sequential formalization of Blocksworld,
parallel planning and the techniques presented in this
work do not help of course.

• In most problems finding the plan with a given number
of steps and the minimum number of actions (with Algo-
rithm 1) yielded the optimal plan and it was not necessary
to increase the number of steps (as with Algorithm 2).

Runtimes of Algorithm 2

We now illustrate the functioning of Algorithm 2. We first
compute a parallel plan with the minimum number of steps
and no constraints on the number of actions. Then we apply
Algorithm 2 to find a plan with a smaller number of actions.
In Table 6 thetotal timecolumn shows the computation time
(including initialization and previous steps) until a plan with
the number of actions in columnactionsand the number of
steps in columnstepshas been found. Unlike the results
on previous tables these runtimes were not averaged over
several runs because on different runs different sequences of
plan lengths are encountered, skipping different plan lengths
on different runs. For one of the four problems the algorithm
was quickly able to prove the optimality of the last plan, in
the other cases no better plans or optimality proofs could be
found in several minutes.



problem steps actions seq par
Logistics40 6 26 0.11 0.01

22 0.20 0.02
20 0.41 0.01

Logistics50 6 29 129.09 0.02
27 - 0.02

Logistics60 6 32 1.28 0.02
28 43.26 0.01
26 144.23 0.02

Logistics70 7 44 - 0.08
40 - 0.08

Depots4 14 50 - 0.16
40 - 0.21
32 - 0.28

Depots5 18 71 - 0.39
61 - 0.33
56 - 0.87

Depots6 22 84 - 0.49
70 - 0.50

Driverlog4 5 19 48.52 0.01
18 46.11 0.01

Driverlog5 5 20 34.99 0.01
18 53.48 0.01

Driverlog6 5 19 2.00 0.02
14 1.32 0.02
11 2.66 0.02

Driverlog7 5 20 76.58 0.03
15 192.51 0.03
13 123.01 0.03

Driverlog8 6 28 - 0.04
25 - 0.04

Rover5 5 28 1.54 0.06
22 114.61 0.13

Rover8 4 32 - 0.08
26 - 0.08

Satellite5 4 28 45.10 0.06
21 86.57 0.08

Satellite8 4 39 - 0.06
31 - 0.81

Mprime4 6 35 10.36 7.81
10 0.30 7.87

Mprime5 5 18 53.29 1.38

Table 5: Runtimes for evaluating formulae

problem total time steps actions
Logistics80 0.08 7 41

0.12 7 37
0.19 7 34
0.24 7 32
0.30 7 31

timeout
Depot5 3.96 18 66

4.38 18 63
4.74 18 54
6.06 18 53
7.24 18 52

12.68 18 51
18.12 18 49

timeout
Mprime3 7.92 3 18

8.45 3 4
optimal

Driverlog8 0.14 6 31
0.18 6 25
0.63 7 24
1.12 7 23
2.52 7 22

timeout

Table 6: Runtimes of Algorithm 2 on some problems

Comparison to Other Approaches
We can compare our framework to algorithms based on
heuristic local search, for example the planners HSP and FF.
A related comparison has been made in previous work (Rin-
tanen 2004b). Two measures are of practical importance, the
runtimes and the number of actions in the plans. For some
problems like Logistics or Satellite HSP and FF very quickly
find a good plan and therefore perform better than our sat-
isfiability planner, no matter whether we have the plans im-
proved or not. With other problems like Mystery or Depots,
or more complicated problem instances in general, heuris-
tic planners have great problems and often did not find any
plan at all. In contrast, our satisfiability planner finds one
plan relatively quickly and with a small further investment
in CPU time improves the plan further. Overall we can say
that as long as the heuristics work well planners based on
heuristic local search seem to be a good choice. If this is not
the case these planners either compute a bad plan with lots
of actions after a lot of computation or are not able to find
any plan at all in reasonable time.

Conclusions
We have investigated satisfiability in the framework of prob-
lem encodings that allow constraining both the number of
steps and the number of actions in a plan. For this purpose
we used encodings of cardinality constraints in the proposi-
tional logic and considered further techniques for reducing
the sizes of these encodings further. Then we proposed plan-
ning algorithms that attempt to reduce the number of actions
in a plan by repeatedly making the constraints on the number



of actions stricter. Our experiments show that the algorithms
can quickly improve the quality of plans found by a satisfia-
bility planner, and that the approach is much more practical
than the use of sequential plans.

Many of the benchmarks used in the experiments of this
work have a rather simple structure and the unnecessary ac-
tions in the parallel plans may often be eliminated efficiently
by a simple postprocessor that identifies irrelevant actions
not needed for reaching the goals as well as pairs of actions
of which the latter undoes the changes performed by the for-
mer. There are polynomial-time algorithms doing such sim-
plifications (Lin 1998). For these benchmarks such postpro-
cessors may be more efficient than the techniques we pro-
pose but for more challenging problems plan quality has to
be addressed during plan search and cannot be postponed to
a post-processing phase.

Some open questions remain. Rintanen (2004a) has con-
sidered parallelized algorithms for controlling a satisfiabil-
ity planner in finding suboptimal plans and shown that par-
allelized strategies may dramatically improve the efficiency
of planning. The results of our experiments in this paper
suggest that after an initial plan has been found, improving
the plan by successively changing the two parameters, num-
ber of steps and number of actions, would not benefit from
a similar parallelized strategy. The question arises whether
the use of cardinality constraints could speed up finding the
initial plan – inside a parallelized algorithm that tests the
satisfiability of formulae with several parameter values con-
currently – by making some of the satisfiable formulae more
constrained and therefore more efficient to solve.
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