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Abstract. We consider a number of semantics for plans with parallel operator
application. The standard semantics used most often in earlier work requires that
parallel operators are independent and can therefore be executed in any order. We
consider a more relaxed definition of parallel plans, first proposed by Dimopoulos
et al., as well as normal forms for parallel plans that require every operator to
be executed as early as possible. We formalize the semantics of parallel plans
emerging in this setting, and propose effective translations of these semantics
into the propositional logic. And finally we show that one of the semantics yields
an approach to classical planning that is sometimes much more efficient than the
existing SAT-based planners.

1 Introduction

Satisfiability planning [6] is a leading approach to solving difficult planning problems.
An important factor in its efficiency is the notion of parallel plans [6, 2]. The standard
parallel encoding, thestate-based encoding[6], allows the simultaneous execution of
a set of operators as long as the operators are mutually non-interfering. This condition
guarantees that any total ordering on the simultaneous operators is a valid execution
and in all cases leads to the same state. We call this semantics of parallelismthe step
semantics. Two benefits of this form of parallelism in planning as satisfiability are that,
first, it is unnecessary to consider all possible orderings of a set of non-interfering op-
erators, and second, less clauses and propositional variables are needed as the values of
the state variables in the intermediate states need not be represented.

In this paper we formalize two more refined parallel semantics for AI planning and
present efficient encodings of them in the propositional logic. Both of the semantics are
known from earlier research but the first,process semantics, has not been considered
in connection with planning, and the second,1-linearization semantics, has not been
given efficient encodings in SAT/CSP before. With our new encoding this semantics
dramatically outperforms the other semantics and encodings given earlier. Our main
innovations here are the definition ofdisabling graphsand the use of the strong compo-
nents (or strongly connected components SCCs) of these graphs to derive very efficient
encodings.



The two semantics considered in this paper are orthogonal refinements of the step
semantics. The process semantics is stricter than the step semantics in that it requires all
actions to be taken as early as possible. Process semantics was first introduced for Petri
nets; for an overview see [1]. Heljanko [5] has applied this semantics to the deadlock
detection of 1-safe Petri nets and has shown that it leads to big efficiency gains on many
types of problems in bounded model-checking.

The idea of the 1-linearization semantics was proposed by Dimopoulos et al. [4].
They pointed out that it is not necessary to require that all parallel operators are non-
interfering as long as the parallel operators can be executed in at least one order. They
also showed how blocks worlds problems can be modified to satisfy this condition and
that the reduction in the number of time points improves runtimes. Until now the ap-
plication of 1-linearization in satisfiability planning had been hampered by the cubic
size of the obvious encodings. We give more compact encodings for this semantics and
show that this often leads to dramatic improvements in planning efficiency. Before the
developments reported in this paper, this semantics had never been used in an automated
planner that is based on a declarative language like the propositional logic.

The structure of this paper is as follows. In Section 4 we discuss the standard step
semantics of parallel plans and its encoding in the propositional logic. Section 5 intro-
duces the underlying ideas of the process semantics and discusses its representation in
the propositional logic. In Section 6 we present the 1-linearization refinement to step se-
mantics and its encoding. Section 7 evaluates the advantages of the different semantics
in terms of some planning problems. Section 8 discusses related work.

2 Notation

We consider planning in a setting where the states of the world are represented in terms
of a setP of Boolean state variables that take the valuetrue or false. Eachstateis a
valuation ofP , that is, an assignments : P → {T, F}. We useoperatorsfor expressing
how the state of the world can be changed.

Definition 1. Anoperatoron a set of state variablesP is a triple 〈p, e, c〉 where

1. p is a propositional formula onP (the precondition),
2. e is a set of literals onP (unconditional effects), and
3. c is a set of pairsf B d (conditional effects) wheref is a propositional formula on

P andd is a set of literals onP .

For an operator〈p, e, c〉 its active effectsin states are

e ∪
⋃
{d|f B d ∈ c, s |= f}.

The operator isapplicablein s if s |= p and its set of active effects ins is consistent
(does not contain bothp and¬p for any p ∈ P .) If this is the case, then we define
appo(s) = s′ as the unique state that is obtained froms by making the active effects
of o true and retaining the truth-values of the state variables not occurring in the ac-
tive effects. For sequenceso1; o2; . . . ; on of operators we define appo1;o2;...;on

(s) as



appon
(· · ·appo2

(appo1
(s)) · · ·). For setsS of operators and statess we define appS(s):

the result of simultaneously applying all operatorso ∈ S. We require that appo(s) is de-
fined for everyo ∈ S and that the set of active effects of all operators inS is consistent.
Different semantics of parallelism impose further restrictions on setsS.

Let π = 〈P, I, O, G〉 be aproblem instance, consisting of a setP of state variables,
a stateI on P (the initial state), a setO of operators onP , and a formulaG on P (the
goal formula). A (sequential)plan for π is a sequenceσ = o1; . . . ; on of operators from
O such that appσ(I) |= G, that is, applying the operators in the given order starting in
the initial state is defined (precondition of every operator is true when the operator is
applied) and produces a state that satisfies the goal formula.

In the rest of this paper we also consider plans that are sequences ofsets of opera-
tors, so that at each execution step all operators in the set are simultaneously applied.
The different semantics discussed in the next sections impose further constraints on
these sets.

3 Planning as Satisfiability

Planning can be performed by propositional satisfiability testing as follows. Produce
formulaeφ0, φ1, φ2, . . . such thatφi is satisfiable if there is a plan of lengthi. The
formulae are tested for satisfiability in the order of increasing plan length, and from
the first satisfying assignment that is found a plan is constructed. Lengthi of a plan
means that there arei time points in which asetof operators is applied simultaneously.
There are alternative semantics for this kind of parallel plans and their encodings in
the propositional logic differ only in axioms restricting simultaneous application of
operators. Next we describe the part of the encodings shared by all the semantics.

The state variables in a problem instance areP = {a1, . . . , an} and the operators
areO = {o1, . . . , om}. For a state variablea we have the propositional variableat that
expresses the truth-value ofa at time pointt. Similarly, for an operatoro we haveot

for expressing whethero is applied att. For formulaeφ we denote the formula with all
propositional variables subscripted with the index to a time pointt by φt.

A formula is generated to answer the following question. Is there an execution of a
sequence of sets of operators takingl time points that reaches a state satisfyingG from
the initial stateI? The formula is conjunction ofI0 (formula describing the initial state
with propositions marked with time point 0),Gl, and the formulae described below,
instantiated with allt ∈ {0, . . . , l − 1}.

First, for everyo = 〈p, e, c〉 ∈ O there are the following axioms. The precondition
p has to be true when the operator is applied.

ot→pt (1)

If o is applied, then its (unconditional) effectse are true at the next time point.

ot→et+1 (2)

Here we view the sete of literals as a conjunction of literals. For everyf B d ∈ c the
effectsd will be true if the antecedentf is true at the preceding time point.

(ot ∧ ft)→dt+1 (3)



Second, the value of a state variable does not change if no operator that changes it is
applied. Hence for every state variablea we have two formulae, one expressing the
conditions for the change ofa to false from true, and another from true to false. The
formulae are analogous, and here we only give the one for change from true to false:

(at ∧ ¬at+1)→((o1
t ∧ φ1

t ) ∨ · · · ∨ (om
t ∧ φm

t )) (4)

whereφi expresses the condition under which operatoroi changesa from true to false.
So letoi = 〈p, e, c〉. If a is a negative effect ine then simplyφi = >. Otherwise, the
change takes place if one of the conditional effects is active. Letf1 B d1, . . . , fk B dk

be the conditional effects witha as a negative effect indj . Herek ≥ 0. Thenφi =
f1 ∨ . . . ∨ fk. The empty disjunction withk = 0 is the constant false⊥.

Finally, we need axioms for restricting the parallel application of operators: we will
describe them in the next sections for each semantics. The resulting set of formulae is
satisfiable if and only if there is an operator sequence takingl time points that reaches
a goal state from the initial state.

In addition to the above axioms, which are necessary to guarantee that the set of sat-
isfying assignments exactly corresponds to the set of plans withl time points, it is often
useful to add further constraints that do not affect the set of satisfying assignments but
instead help in pruning the set of incomplete solutions need to be looked at, and thereby
speed up plan search. The most important type of such constraints for many planning
problems is invariants, which are formulae that are true in all states reachable from the
initial state. Typically, one uses only a restricted class of invariants that are efficient
(polynomial time) to identify. There are efficient algorithms for finding many invariants
that are 2-literal clauses [8, 2]. In the experiments in Section 7 we use formulaelt ∨ l′t
for invariantsl ∨ l′ as produced by the algorithm by Rintanen [8].

4 Step Semantics

In this section we formally present a semantics that generalizes the semantics used in
most works on parallel plans, for example Kautz and Selman [6]. Practical implemen-
tations of satisfiability planning approximate this semantics as described in Section 4.1.

For defining parallel plans under step semantics, we need to define when operators
interfere in a way that makes their simultaneous application unwanted.

Definition 2 (Interference). Operatorso1 = 〈p1, e1, c1〉 ando2 = 〈p2, e2, c2〉 inter-
fere in states if

1. s |= p1 ∧ p2,
2. the sete1∪

⋃
{d|f B d ∈ c1, s |= f}∪e2∪

⋃
{d|f B d ∈ c2, s |= f} is consistent,

and
3. the operators are not applicable in both orders or applying them in different orders

leads to different results, that is, at least one of the following holds:
(a) appo1

(s) 6|= p2,
(b) appo2

(s) 6|= p1, or
(c) active effects ofo2 are different ins and in appo1

(s) or active effects ofo1 are
different ins and in appo2

(s).



The first two conditions are theapplicability conditionsfor parallel operators: precon-
ditions have to be satisfied and the effects may not contradict each other. The third
condition says that interference is the impossibility to interpret parallel application as
application in any order,o1 followed byo2, or o2 followed byo1, leading to the same
state in both cases: one execution order is impossible or the resulting states may be
different.

The conditions guarantee that two operators may be exchanged in any total ordering
of a set of pairwise non-interfering operators without changing the state that is reached.

Definition 3 (Step plans).For a set of operatorsO and an initial stateI, a planis a
sequenceT = S1, . . . , Sl of sets of operators such that there is a sequence of states
s0, . . . , sl (the execution ofT ) such that

1. s0 = I,
2. si−1 |= p for all i ∈ {1, . . . , l} and〈p, e, c〉 ∈ Si,
3.

⋃
〈p,e,c〉∈Si

(e ∪
⋃
{d|f B d ∈ c, si−1 |= f}) is consistent for everyi ∈ {1, . . . , l},

4. si = appSi
(si−1) for all i ∈ {1, . . . , l}, and

5. for all i ∈ {1, . . . , l} ando, o′ ∈ Si andS ⊆ Si\{o, o′}, o ando′ are applicable in
appS(si−1) and do not interfere in appS(si−1).

Example 1.ConsiderS1 = {o1, o2, o3} whereo1 = 〈p ∨ ¬p, {q}, ∅〉, o2 = 〈p ∨
¬p, ∅, {q B p}〉, ando3 = 〈p ∨ ¬p, ∅, {p B r}〉. S1 cannot be the first step of a
step plan starting from an initial stateI in which p, q andr are false because the fifth
condition of step plans is not satisfied: there isS = {o1} ⊆ S1 such thato2 ando3

interfere in appS(I), because applyingo3 in appS(I) has no effect but applyingo3 in
appo2

(appS(I)) makesr true.

Lemma 1. LetT = S1, . . . , Sk, . . . , Sl be a step plan. LetT ′ = S1, . . . , S
0
k, S1

k, . . . , Sl

be the step plan obtained fromT by splitting the stepSk into two stepsS0
k andS1

k such
thatSk = S0

k ∪ S1
k andS0

k ∩ S1
k = ∅.

If s0, . . . , sk, . . . , sl is the execution ofT thens0, . . . , s
′
k, sk, . . . , sl for somes′k is

the execution ofT ′.

Proof. So s′k = appS0
k
(sk−1) and sk = appSk

(sk−1) and we have to prove that

appS1
k
(s′k) = sk and operators inS1

k are applicable ins′k. For the first we will show

that the active effects of every operator inS1
k are the same insk−1 and ins′k, and hence

the changes fromsk−1 to sk are the same in both plans. Leto1, . . . , oz be the operators
in S0

k and letTi = {o1, . . . , oi} for everyi ∈ {0, . . . , z}. We show by induction that
the active effects of every operator inS1

k are the same insk−1 and appTi
(sk−1) and

that every operator inS1
k is applicable in appTi

(sk−1), from which the claim follows as
s′k = appTz

(sk−1).
Base casei = 0: Immediate becauseT0 = ∅.
Inductive casei ≥ 1: By the induction hypothesis the active effects of every operator

o ∈ S1
k are the same insk−1 and in appTi−1

(sk−1) ando is applicable in appTi−1
(sk−1).

In appTi
(sk−1) additionally the operatoroi has been applied. We have to show that this

operator application does not affect the set of active effects ofo nor does it disableo. By
the definition of step plans, the operatorso andoi do not interfere in appTi−1

(sk−1), and



hence the active effects ofo are the same in appTi−1
(sk−1) and in appTi−1∪{oi}(sk−1)

andoi does not disableo. This completes the induction and the proof.

Theorem 1. LetT = S1, . . . , Sk, . . . , Sl be a step plan. Then anyσ = o1
1; . . . ; o

1
n1

; o2
2;

. . . ; o2
n2

; . . . ; ol
1; . . . ; o

l
nl

such that for everyi ∈ {1, . . . , l} the sequenceoi
1; . . . ; o

i
ni

is
a total ordering ofSi, is a plan, and its execution leads to the same final state as that of
T .

Proof. First all empty steps are removed from the step plan. By Lemma 1 non-singleton
steps can be split repeatedly to smaller non-empty steps until every step is singleton and
the desired ordering is obtained. The resulting plan is a sequential plan.

4.1 Encoding in the Propositional Logic

Definition 3 provides a notion of step plans that attempts to maximize parallelism. Most
works on satisfiability planning [6] use a simple syntactic condition for guaranteeing
non-interference, approximating Condition 3 in Definition 2. For example, the simulta-
neous application of two operators is forbidden always when a state variable affected
by one operator occurs in the precondition or in the antecedents of conditional effects
of the other. In our experiments in Section 7 we include the formula¬ot ∨ ¬o′t for any
such pair of operatorso ando′ with mutually non-contradicting effects and mutually
non-contradicting preconditions to guarantee that we get step plans. There areO(m2)
such constraints form operators.

5 Process Semantics

The idea of process semantics is that we only consider those step plans that fulfill the
following condition. There is no operatoro applied at timet + 1 with t ≥ 0 such that
the sequence of sets of operators obtained by movingo from timet + 1 to timet would
be a step plan according to Definition 3.

The important property of process semantics is that even though the additional con-
dition reduces the number of acceptable plans, whenever there is a plan witht time
steps under step semantics, there is also a plan witht time steps under process seman-
tics. A plan satisfying the process condition is obtained from a step plan by repeatedly
moving operators violating the condition one time point earlier. As a result of this pro-
cedure a step plan satisfying the process condition is obtained which is greedy in the
sense that it applies each operator of the original step plan as early as possible.

As an example consider a setS in which no two operators interfere nor have con-
tradicting effects and are applicable in states. If we have time points 0 and 1, we can
apply each operator alternatively at 0 or at 1. The resulting state at time point 2 will be
the same in all cases. So, under step semantics the number of equivalent plans on two
time points is2|S|. Process semantics says that no operator that is applicable at 0 may
be applied later than at 0. Under process semantics there is only one plan instead of
2|S|.



5.1 Encoding in the Propositional Logic

The encoding of process semantics extends the encoding of step semantics, so we take
all axioms for the latter and have further axioms specific to process semantics.

The axioms for process semantics deny the application of an operatoro at timet+1
if it can be shown that movingo to timet would also be a valid step plan according to
Definition 3. The idea is that if an operatoro is delayed to be applied at timet + 1 then
there must be some operatoro′ applied at timet which is the reason whyo cannot be
moved to timet. More precisely, (i)o′ may have enabledo, (ii) o′ may have conflicting
effects witho, or (iii) moving o to time t might make it interfere witho′ according to
Condition 5 of Definition 3.

We cautiously approximate the process semantics using simple syntactic conditions
to compute for each operatoro the set of operators{o1, . . . , on} which are the potential
reasons whyo cannot be moved one time point earlier. Then we have the following
axioms guaranteeing that the application ofo is delayed only when there is a reason for
this.

ot+1→(o1
t ∨ o2

t ∨ · · · ∨ on
t )

These disjunctions may be long and it may be useful to use only the shortest of these
constraints, as they are most likely to help speed up plan search. In the experiments
reported later, we used only constraints with 6 literals or less. We tried the full set of
process axioms, but the high number of long disjunctions led to poor performance.

6 1-Linearization Semantics

Dimopoulos et al. [4] adapted the idea of satisfiability planning to answer set program-
ming and presented an interesting idea. The requirement that parallel operators are exe-
cutable in any order can be relaxed, only requiring thatoneordering is executable. They
called this ideapost-serializabilityand showed how to transform operators for blocks
world problems to make them post-serializable. The resulting nonmonotonic logic pro-
grams were shown to be more efficient due to a shorter parallel plan length. Rintanen
[8] implemented this idea in a constraint-based planner and Cayrol et al. [3] in the
GraphPlan framework.

We will present a semantics and general-purpose domain-independent translations
of this more relaxed semantics into the propositional logic. Our approach does not re-
quire transforming the problem. Instead, we synthesize constraints that guarantee that
the operators applied simultaneously can be ordered to an executable plan.

Definition 4 (1-linearization plans).For a set of operatorsO and an initial stateI, a
1-linearization planis a sequenceT = S1, . . . , Sl of sets of operators such that there is
a sequence of statess0, . . . , sl (the execution ofT ) such that

1. s0 = I,
2. si−1 |= p for all i ∈ {1, . . . , l} and〈p, e, c〉 ∈ Si,
3. the set

⋃
〈p,e,c〉∈Si

(e ∪
⋃
{d|f B d ∈ c, si−1 |= f}) is consistent for everyi ∈

{1, . . . , l},
4. si = appSi

(si−1) for all i ∈ {1, . . . , l}, and



5. for everyi ∈ {1, . . . , l} there is a total orderingo1 < o2 < . . . < on of Si such
that for all operatorsoj = 〈pj , ej , cj〉 ∈ Si

(a) appo1;o2;...;oj−1
(si−1) |= pj , and

(b) for all f B d ∈ cj , si−1 |= f if and only if appo1;o2;...;oj−1
(si−1) |= f .

The difference to step semantics is that we have replaced the non-interference con-
dition with a weaker condition. From an implementations point of view, the main diffi-
culty here is finding appropriate total orderings<.

Theorem 2. (i) Each step plan is a 1-linearization plan and (ii) for every 1-linearization
planT there is a step plan whose execution leads to the same final state as that ofT .

Proof. (Sketch) (i) Consider a step planT = S1, . . . , Sl. By Theorem 1 for every
i ∈ {1, . . . , l} any total ordering of the operators inSi can be used to satisfy Condi-
tion 5 in Definition 4. Hence,T is a 1-linearization plan. (ii) For a 1-linearization plan
T = S1, . . . , Sl, a step plan whose execution leads to the same final state as that of
T can be obtained as follows:{o1

1}, . . . , {o1
n1
}, . . . , {ol

1}, . . . , {ol
nl
} where for every

i ∈ {1, . . . , l}, the sequence{oi
1}, . . . , {oi

ni
} is a total ordering ofSi given by Condi-

tion 5 of Definition 4.

6.1 Encoding in the Propositional Logic

Given the precondition and effect axioms (1), (2) and (3), we have to guarantee that
there is a total ordering of the operators so that no operator application disables the op-
erators that will be applied later, and no operator application changes the set of active
(conditional) effects of later operators. The encodings we give are stricter than our for-
mal definition of 1-linearization semantics and do not always allow all the parallelism
that is possible. Next we define the notion ofdisabling graphsin order to provide com-
pact and effective encodings of 1-linearization semantics in the propositional logic.

The motivation for using disabling graphs is the following. Define acircularly dis-
abled setas a set of operators that is applicable in some state without the effects con-
tradicting each other and that cannot be totally ordered into a sequential plan so that no
operator disables or changes the active effects of a later operator. Now any set-inclusion
minimal circularly disabled set is a subset of an SCC of the disabling graph. We may
allow the simultaneous application of a set of operators from the same SCC if the sub-
graph of the disabling graph induced by those operators does not contain a cycle.3

Definition 5 (Disabling graph). A graph〈O,E〉 is a disabling graphof a set of op-
eratorsO whereE ⊆ O × O is the set of directed edges so that〈o1, o2〉 ∈ E if for
o1 = 〈p1, e1, c1〉 ando2 = 〈p2, e2, c2〉 there is a states 4 such that

1. s |= p1 ∧ p2, and

3 In step semantics simultaneous application is allowed if the subgraph does not haveanyedges.
4 Clearly, this could be restricted to states that are reachable from the initial state, but testing

reachability is PSPACE-hard. Instead, one can use some subclass of invariants computable in
polynomial time to ignore some of the unreachable states, like we have done in our implemen-
tation of disabling graphs.



2. F1 ∪ F2 is consistent whereF1 = e1 ∪
⋃
{d|f B d ∈ c1, s |= f} and F2 =

e2 ∪
⋃
{d|f B d ∈ c2, s |= f}, and

3. applyingo1 may makeo2 inapplicable or may change the active effects ofo2:
(a) appo1

(s) 6|= p2, or
(b) there isf B d ∈ c2 such that eithers |= f and appo1

(s) 6|= f , or s 6|= f and
appo1

(s) |= f .

For a given set of operators there are typically several disabling graphs because the
graph obtained by adding an edge to a disabling graph is also a disabling graph. In the
experiments in Section 7 we use disabling graphs that are not necessarily minimal but
can be computed in polynomial time. For STRIPS operators they are minimal.

Our disabling graphs are related to the definition of preconditions-effects graphs of
Dimopoulos et al. [4], but they often have many less edges and much smaller SCCs.
For example, in the well-known logistics problems all the strong components have 1
or n + 1 operators, wheren is the number of airplanes5. This means that encoding the
constraints that guarantee that simultaneous operators indeed can be linearized will be
rather efficient, as only cycles of rather small length have to be considered. Notice that
operators in different strong components cannot be part of the same cycle; therefore
constraints on their simultaneous application are not needed. Hence when every strong
component has cardinality 1, no constraints whatsoever are needed.

Next we discuss two ways of synthesizing constraints that guarantee that simulta-
neous operators can be ordered to a valid totally ordered plan.

6.2 GeneralO(n3) Encoding

We can exactly test that the intersection of one SCC and a set of simultaneous operators
do not form a cycle. The next encoding allows the maximum parallelism with respect
to a given disabling graph, but it is expensive in terms of formula size.

Letoi andoi′ belong to the same SCC of the disabling graph and let there be an edge
from oi to oi′ . We use auxiliary propositionsci,j for all operators with indicesi andj,
indicating that there is a set of applied operatorsoi, o1, o2, . . . , on, oj such that every
operator disables or changes the effects of its immediate successor in the sequence.
Then we have the formulae(oi

t ∧ ci′,j
t )→ci,j

t for all i, i′ andj such thati 6= i′ 6= j 6= i.

Further we have formulae¬(oi
t ∧ ci′,i

t ) for preventing the completion of a cycle.
The size of the encoding is cubic and the number of new propositional variables is

quadratic in the number of operators in an SCC. Some problems have SCCs of dozens
or hundreds of operators, and thisO(n3) means that there are thousands or millions of
formulae, which often makes this encoding impractical.

6.3 Fixed Ordering

The simplest and possibly the most effective encoding does not allow all the paral-
lelism that allowed by the preceding encoding, but it leads to small formulae. With this

5 The refinement to disabling graphs involving invariants in the preceding footnote makes all
SCCs for Logistics singleton sets.



encoding the number of constraints on parallel applicationis smallerthan with the less
permissive step semantics, as the set of constraints on parallelism is a subset of the con-
straints for step semantics. One therefore receives two benefits simultaneously: possibly
much shorter parallel plans and formulae with a smaller size / time points ratio.

The idea is to impose beforehand an (arbitrary) ordering on the operatorso1, . . . , on

in an SCC and to disallow parallel application of two operatorsoi andoj such thatoi

may disable or change the effects ofoj only if i < j. Hence, in comparison to step
semantics, part of the parallelism axioms on operators within one SCC are left out. In
comparison to step semantics, the total reduction in the number of constraints can be
significant because none of the inter-SCC parallelism constraints are needed.

This is the encoding we have very successfully applied to a wide range of planning
problems, as discussed in the next section. Selecting the ordering carefully may increase
parallelism. In our experiments we order the operators in the order they happen to come
out of our PDDL front-end. Better orderings could be produced by heuristic methods.

7 Experiments

We evaluate the different semantics on a number of benchmarks from the AIPS plan-
ning competitions. In addition to the Logistics, Depots and Satellite benchmarks re-
ported here, we also test Driver, Zeno, Freecell, Schedule and Mystery, but do not report
runtimes because of lack of space. On Freecell and Schedule 1-linearization does not
decrease plan length and runtimes are comparable to step semantics. Process seman-
tics fares worse than step semantics on Schedule. Mystery is trivial for 1-linearization
semantics. Runtime differences with Driver and Zeno are like with Logistics.

In Tables 1 and 2 we present the name of the problem instance and the runtimes
for the formulae corresponding to the highest number(s) of time points without a plan
(truth value F) and the first satisfiable formula corresponding to a plan (truth value
T). Runtimes for 1-linearization semantics are reported on their own lines because its
shortest plan lengths differ from the other semantics.

For the experiments we use a 3.6 GHz Intel Xeon processor with 512 KB inter-
nal cache and the Siege SAT solver version 3 by Ryan of the Simon Fraser University.
Because Siege uses randomization, the runtimes for a given formula vary across execu-
tions. We run Siege 40 times on each formula and report the average. When only some
of the runs finish within a time limit of 3 to 4 minutes (we terminate every 60 seconds
those processes that have consumed over 180 seconds of CPU) we report the average
timet of the finished runs as> n. This roughly means that the average runtime on Siege
exceedsn seconds. A dash− indicates that none of the runs finished.

The best runtimes are usually obtained with the 1-linearization semantics. It is often
one or two orders of magnitude faster. This usually goes back to the shorter plan length:
formulae are smaller and easier to evaluate.

Contrary to our expectations, process semantics usually does not provide an advan-
tage over step semantics although there are often far fewer potential plans to consider.
When showing the inexistence of plans of certain length, the additional constraints
could provide a big advantage, similarly to symmetry-breaking constraints. In a few



instance len val1-lin step proc

satell-15 4 F 8.86
satell-15 5 T 1.65
satell-15 7 F 24.15 21.91
satell-15 8 T 3.61 3.50

satell-16 3 F 2.27
satell-16 4 T 3.91
satell-16 5 F 9.17 8.24
satell-16 6 ? - -
satell-16 7 T 6.57 6.85

satell-17 3 F 0.22
satell-17 4 T 2.48
satell-17 5 F 1.12 1.31
satell-17 6 T 1.86 1.96

satell-18 4 F 0.06
satell-18 5 T 0.23
satell-18 7 F 0.24 0.27
satell-18 8 T 0.48 0.57

satell-19 6 F46.26
satell-19 7 T25.78
satell-19 10 F > 225.50 -
satell-19 11 ? - -
satell-19 12 T > 170.69 -

instance len val1-lin step proc

log-23-0 8 F0.56
log-23-0 9 T 2.93
log-23-0 14 F 37.69 27.86
log-23-0 15 ? - -
log-23-0 16 T > 139.10> 132.64

log-23-1 8 F1.70
log-23-1 9 T 0.57
log-23-1 14 F 48.34 44.12
log-23-1 15 T > 66.07 > 76.50

log-24-0 8 F0.40
log-24-0 9 T 3.33
log-24-0 14 F 35.93 13.77
log-24-0 15 ? - -
log-24-0 16 T > 108.92 > 99.44

log-24-1 9 F9.66
log-24-1 10 T2.61
log-24-1 15 F > 101.29> 112.07
log-24-1 16 ? - -
log-24-1 17 T > 131.52> 119.01

Table 1.Runtimes of Satellite and Logistics problems in seconds

cases, like the last or second to last unsatisfiable formula for log-24-0, process con-
straints do halve the runtimes. The reason for the ineffectiveness of process semantics
may lie in these benchmarks: many operators may prevent earlier application of an op-
erator, and this results in long clauses that figure only very late in the search.

8 Related Work

The BLACKBOX planner of Kautz and Selman [7] is the best-known planner that im-
plements the satisfiability planning paradigm. Its GraphPlan-based encoding is simi-
lar to our step semantics encoding, but less compact for example because of its use
of GraphPlan’s NO-OPs. Comparison of sizes and evaluation times (Siege V3) be-
tween our step semantics encoding and BLACKBOX’s encoding is given in Table 3.
Corresponding 1-linearization encodings are, per time point, between 94 per cent (depot-
11) and 69 per cent (logistics-23-1) of the step encoding sizes.

The above data suggest that the efficiency of BLACKBOX encodings is either
roughly comparable or lower than our basic encoding for step semantics, and hence
sometimes much lower than our 1-linearization encoding.



instance len val 1-lin step proc

depot-10 7 F 0.01
depot-10 8 T 0.02
depot-10 9 F 0.28 0.30
depot-10 10 T 0.29 0.34

depot-11 13 F 0.04
depot-11 14 T 0.44
depot-11 17 F 69.56 70.29
depot-11 18 ? - -
depot-11 19 ? - -
depot-11 20 T > 154.43> 157.28

depot-12 19 F 0.24
depot-12 20 T> 143.73
depot-12 21 F 142.12> 140.75
depot-12 22 ? - -

depot-13 7 F 0.01
depot-13 8 T 0.01
depot-13 8 F 0.01 0.01
depot-13 9 T 0.04 0.05

depot-14 9 F 0.05
depot-14 10 T 0.11
depot-14 11 F 1.25 1.28
depot-14 12 T 2.97 2.89

Table 2.Runtimes of Depot problems in seconds

9 Conclusions

We have given translations of semantics for parallel planning into SAT and shown that
one of them, for 1-linearization semantics, is very efficient, often being one or two or-
ders of magnitude faster than previous encodings. This semantics is superior because
with our encoding the number of time steps and parallelism constraints is small. Inter-
estingly, the process semantics, a refinement of the standard step semantics that imposes
a further condition on plans, usually did not improve planning efficiency in our tests.

The 1-linearization encoding combined with novel strategies for finding satisfiable
formulae that correspond to plans [9] sometimes lead to a substantial improvement in
efficiency for satisfiability planning.
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size in MB runtime in secs
instance len valstep BB step BB

depot-11-8765 17 F6.9 57.0 69.56 331.60
depot-11-8765 20 T8.3 85.6207.88> 1200
logistics-23-1 14 F4.8 20.9 48.34 71.97
logistics-23-1 15 T 5.2 25.6 99.31 115.16
driver-4-4-8 10 F 5.5 35.0 1.26 0.53
driver-4-4-8 11 T 6.1 53.2 5.56 21.00

Table 3.Sizes and runtimes of our step encoding and BLACKBOX’s GraphPlan-based encoding
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