Improvements to the Evaluation of Quantified Boolean Formulae

Jussi Rintanen
Universitat Ulm, Fakultat fiir Informatik
Albert-Einstein-Allee, 89069 Ulm
Germany

Abstract

We present a theorem-prover for quantified
Boolean formulae and evaluate it on random
quantified formulae and formulae that repre-
sent problems from automated planning. Even
though the notion of quantified Boolean for-
mula is theoretically important, automated rea-
soning with QBF has not been thoroughly in-
vestigated. Universal quantifiers are needed
in representing many computational problems
that cannot be easily translated to the propo-
sitional logic and solved by satisfiability algo-
rithms. Therefore efficient reasoning with QBF
is important. The Davis-Putnam procedure
can be extended to evaluate quantified Boolean
formulae. A straightforward algorithm of this
kind is not very efficient. We identify univer-
sal quantifiers as the main area where improve-
ments to the basic algorithm can be made. We
present a number of techniques for reducing the
amount of search that is needed, and evaluate
their effectiveness by running the algorithm on
a collection of formulae obtained from planning
and generated randomly. For the structured
problems we consider, the techniques lead to a
dramatic speed-up.

1 Introduction

Many computational problems can be conveniently for-
mulated in classical propositional logic. Examples of
such are many constraint satisfaction problems, forms of
planning, and many problems in graph-theory. A com-
mon property of these problems is that they belong to
the complexity class NP and that there are therefore
polynomial-time translations from them to the satisfia-
bility of formulae in the classical propositional logic.
However, there are many important problems that are
(under plausible complexity-theoretic assumptions) out-
side the complexity class NP, and therefore cannot be in
general efficiently translated to the problem of satisfia-
bility of propositional formulae. Many such problems are
PSPACE-hard or harder and can be forced to NP only by
making restrictions that make the problems lose most of

their practically interesting aspects. There are, however,
a number of problems that belong to the classes in the
polynomial hierarchy, many of them to its lower levels.
These include determining the truth-value of quantified
Boolean formulae [Meyer and Stockmeyer, 1972, com-
puting the radius of a covering code [McLoughlin, 1984],
many decision problems in nonmonotonic logics [Gott-
lob, 1992], some forms of abduction [Eiter and Gottlob,
1995], and determining the Vapnik-Cervonenkis dimen-
sion in probability theory [Schafer, 1996].

Like satisfiability algorithms can be used for solving
problems in NP, a similar approach is applicable to prob-
lems higher in the polynomial hierarchy: implement an
efficient decision procedure for one problem, and give
good polynomial-time translations from other problems
to that problem. The use of QBF this way has not been
investigated partly because there have been no efficient
decision procedures. Translation to QBF has recently
been proposed as a solution method for conditional plan-
ning [Rintanen, 1999].

In this work we present an algorithm for determining
the truth of quantified Boolean formulae, and evaluate
it with randomly generated quantified Boolean formulae
and formulae from conditional planning.

2 Preliminaries

Quantified Boolean formulae are of the form
Q1 T1 - qnTp® Wwhere ¢ is a propositional formula
and the prefix consists of universal V and existential
d quantifiers ¢; and the propositional variables =x;
occurring in ¢. Define ¢[v)/x] as the formula obtained
from ¢ by replacing occurrences® of the propositional
variable x by the formula . The truth of formulae is
defined recursively as follows. The truth of a formula
that does not contain variables, that is, that consists
of connectives and the constants true T and false L, is
defined by the truth-tables for the connectives. A for-
mula Jx¢ is true if and only if @[T /x] or ¢[L/x] is true.
A formula Va¢ is true if and only if ¢[T /2] and ¢[L/z]
are true. Examples of true formulae are VrIy(x < y)
and JzIy(z A y). The formulae JzVy(x < y) and
VaVy(x V y) are false.

We assume that nested quantifiers do not quantify the
same variable.



PROCEDURE decide(e, (M1, Ms, . ..
BEGIN
C = unit(C);
IF () € C THEN RETURN false;
IFn=0 THEN RETURN true;
remove from M all variables not in C;
IF My = () THEN
RETURN decide(not e, (Ms, ...
x := a member of Mi;
M1 = Ml\{x},
IF e THEN
IF decide(e, (My,...,M,),C U {{z}})
THEN RETURN true;
ELSE
IF not decide(e, (M, ...
THEN RETURN false;
RETURN decide(e, (M, ...
END

, M), C)

7Mn>,C);

» M), CU{{z}})
, M), CU{{~z}})

Figure 1: The algorithm

3 The Basis Algorithm

We have designed and implemented an algorithm that
determines the truth-value of quantified Boolean formu-
lae. The Davis-Putnam procedure [Davis et al., 1962] is
a special case of the algorithm. The main differences are
that instead of only or-nodes, the search tree for quanti-
fied Boolean formulae contains also and-nodes that cor-
respond to universally quantified variables, and that the
order of the variables in the prefix constrains the order
in which the variables generate a search tree.

The main procedure of the algorithm sketched in
Figure 1 takes three parameters.? The variable e is
true if the first quantifier in the prefix of the formula
is 3. The sequence (Mji,..., M,) represents the pre-
fix. For example, if the prefix is Jxq3xoVasdry, then
My = {z1,22}, Mo = {z3} and M3 = {z4}. The set C
consists of clauses {l1,...,l,} where n > 0 and [; are
literals. The empty clause () is false.

The subprocedure unit performs simplification by unit
resolution and unit subsumption; unit(S) is defined as
the fixpoint of F' under a set S of clauses.

F(O) = {\{l}ceC {l}eC,lec}
U {ceCllgcandlgcforall {I} € C}
u {hecy

So for the purposes of this paper, our definition of unit
subsumption retains unit clauses in the clause set.

4 Pruning Techniques

An important difference between the Davis-Putnam pro-
cedure and the algorithm for QBF is that the order in
which branching variables are chosen is dependent on

2The algorithm is simplified because we just want to indi-
cate what the main differences from the Davis-Putnam pro-
cedure are. For example, we do not require that the variable
x does not have a truth-value when it is branched on.

let Ay,..., A, be consistent subsets of Y U {—yly € Y};
FORi:=1TOn DO
C':=unit(CUU(4;));
R:=C'NnUX U{~z|z € X});
IF () ¢ C' THEN C := unit(C' U R);
FOR EFACHp e X DO
C" := unit(C' U {{-p}});
IF ) € C" THEN C := unit(C U {{p}});
IF ) € C THEN RETURN false;
(* Similarly for p *)
C" = unit(C' U {{p}});
IF () € C"” THEN C := unit(C U {{-p}});
IF ) € C THEN RETURN false;
END
END

Figure 2: Inversion of quantifiers

their location in the prefix. The branching variable is
always quantified by the outermost quantifier. In struc-
tured problems it is often the case that many of the first
variables occur only in clauses that also contain vari-
ables quantified by inner quantifiers, and an almost ex-
haustive search through all truth-values for the variables
may be needed because unit propagation does not yield
the truth-values. Already for a small number of vari-
ables this can be prohibitively expensive. For example
in a formula 3XVY3Z®, if | X| = 20, the variables in X
induce a search tree with 220 leaf nodes, with a poten-
tially difficult QBF to evaluate in each.

In this section we first propose two pruning techniques
that are based on reasoning with variables that are not
quantified by the current outermost quantifier. The
third technique is an extension of the use of unit propa-
gation for detecting failed literals, and the fourth reduces
the computation needed in going through all valuations
of universally quantified variables.

4.1 Inverting Quantifiers

Given dXVY ®, it is useful to look also at the formula
VY3X®.3 If for some valuation of variables in Y only
certain valuations of X are possible, these valuations are
the only possible ones also for the formula IXVY .

The technique we propose is based on the above idea,
and we therefore call it the inversion of the quantifiers.
We randomly assign some truth-values to variables in
Y (it may be possible and useful to try out all possible
valuations of V'), and then try to detect failed literals
with unit propagation [Li and Anbulagan, 1997]. Any
truth-values obtained for variables in X are those that
must be chosen when evaluating 3XVY ®. Inversion is
only applicable to formulae with 3 as the first quantifier.
The program code in Figure 2 outlines how quantifier
inversion is performed. This code is run before the first
call to the main procedure is made. The function U(L) =
{{l}|l € L} produces a set of unit clauses from a set of
literals.

3The formula ® may contain quantifiers.



FOR EACH p € X such that {{p},{-p}}NC =10
FORi:=1 TO numberOfSamples DO
R := random consistent subset of Y U {-yly € Y'};
C' = uit(C UU({p} UR));
IF ) e C'" THEN C := unit(C U {{-p}});
IF () € C THEN RETURN false;
(* Similarly for —p *)
R := random consistent subset of Y U {-yly € Y};
C' = wit(CUU({—-p} UR));
IF () € C" THEN C := unit(C U {{p}});
IF Q) € C THEN RETURN false;
END
END

Figure 3: Sampling

4.2 Sampling

When choosing a truth-value for a variable z € X in a
formula IXVY ®, it would be useful to check that the
choice is possible under all valuations of variables in Y.
This is, however, expensive. Nevertheless, it has turned
out that trying out at least some valuations of Y and per-
forming unit propagation helps in the detection of wrong
choices. The valuations of a small number of variables
in Y are chosen randomly. We call this sampling of Y.
This technique is similar to the first one, but because
it is performed for many variables in every node of the
search tree, valuations of Y cannot be covered very ex-
haustively.

Sampling is best combined with the use of unit prop-
agation in choosing branching variables and detecting
failed literals, but here we describe it separately. The
program code in Figure 3 outlines how sampling is per-
formed. The code is inserted right after the first call to
the function wunit in the main procedure.

4.3 Failed Literal Detection

The third technique is the use of unit propagation for
detecting failed literals [Li and Anbulagan, 1997] also for
variables quantified by inner quantifiers. This proceeds
by adding a literal to the clause set, and then performing
unit propagation. If an empty clause is obtained and the
literal is existential, the complement of the literal must
be true and it is added to the clause set. If the literal is
universal, the formula is false.

In the quantified case also the occurrence of a clause
with universal variables only may yield a failed literal.
Here the ordering of variables in the prefix has to be
observed. Consider the formula Vx3dy(x < y) which is
in clausal form Vz3y((zV-y) A (—mx Vy)). If we try to see
whether y is a failed literal by adding the literal y to the
clause set and performing unit propagation, we get the
unit clause x with a universal variable. This would seem
to indicate that y should be assigned false. However,
the value of y is a function of the value of z, and y may
assume different values for different values of x.

Lemma 1 Let F = JXVY13XoVY5---® be a QBF.
Assume ® U {l} = l1 V...V 1, such that the propo-

sititonal variables p,p1,...,pn occur respectively in lit-
erals 1, l1,...,l,. Then F is false if {p1,...,pn} C
Y; UYjp1 U--- for some j and p € Xy, for some k < j.

4.4 Splitting Clause Sets

Apart from the above techniques specific to QBF, we
maintain a graph describing the dependencies between
variables: there is an edge between two variables if they
occur in the same clause. In each node of the search
tree, for separate connected components separate recur-
sive calls to the main procedure of the algorithm are
made. This has a noticeable effect on the efficiency of
the algorithm on certain random problems as well as on
some structured problems. For example, for a true V3
QBF not all combinations of truth-values for universally
quantified variables have to be considered if the variables
occupy different connected components. This is often
the case for random QBF with a low clauses/variables
ratio. Consider a formula with n universal variables.
Normally a tree with 2™ leaves has to be traversed, but
if the clause set is split so that universal variables are
evenly in m components, m search trees with only 27/
leaves have to be traversed. For example, for n = 20 and
m = 2 this means a decrease from about 10° to 2000.

5 Experiments

We have tested the implementation of our algorithm and
the new techniques on a number of problems from con-
ditional planning and on a number of random quantified
Boolean formulae. Our Davis-Putnam implementation
that we have extended to handle QBF and on top of
which all the new techniques have been implemented, is
closest to Li and Anbulagan’s [1997] Sat0, but slower.
The basis of the generation of random quantified
Boolean formulae is the fixed clause length model
[Mitchell et al., 1992] for generation of random propo-
sitional formulae, in which 3-literal clauses are gener-
ated by randomly choosing three variables from a set
of N variables and negating each with probability 0.5.
The presence of clauses with less than two existential
variables asymptotically causes all formulae to be false
when the number of variables increases [Gent and Walsh,
1998]. This is because the probability of a clause with
universal literals only or two clauses with complementary
existential literals and both with two universal literals
becomes very high. Hence for the generation of random
quantified formulae we use model A of Gent and Walsh
[1998] in which no clauses with less than two existential
literals are generated. In our test runs N = 50 and the
QBF have the prefix 3V3. Effect of the techniques on
formulae with prefixes V3 and V3V3 is similar. We ran
our program by varying two parameters, the proportion
of universal variables in the prefix and the number of
clauses. The proportion of universal variables was in-
creased by 3 per cent steps and the clauses/variables
ratio by steps of 0.2. If we have 100 variables and 50 per
cent of them are universal, the first quantifier quantifies
the variables 1-25, the second quantifier the variables
26-75, and the third quantifier the variables 76-100. We



100

80

e
Y
=

(X
&
@
o

(X
Y

)

60

0
()
(0
f

40

"
!
o

ok
i
"
0
i

,,
0
!
)
i
s

20

VXY
00
e
i
o

K
!
Q‘Q
it
i
)

o

w
i
e
o
i
0y

“‘Q:‘:‘:Q

Yo
(i
(0
.:.“

20

o
:::,o
o
o
i

h
!
|

o
R
N
()

N ‘Q‘
(X

;
7
o
)
‘0

. . CIP ratio
% of universal variables

Figure 4: Truth of random 3V3 formulae

0.018

o
o
2
o

0.014

runtime in seconds

0.012

CIP ratio

% of universal variables

Figure 5: Runtimes on random formulae

have observed that (in the presence of the other tech-
niques) both inversion and sampling — the techniques
that turn out to be most effective for the structured prob-
lems we consider — affect very little the number of nodes
in search trees. Therefore the test runs were with these
techniques disabled.

The results from the test runs are depicted in Figures
4,5, 6, 7 and 8. The runtime for every combination
of parameter values is the average of runtimes for 60000
formulae. All the runs were on a Sun Ultra IT worksta-
tion with a 296 MHz processor. The execution times
are not very accurate because the smallest measurable
unit of CPU time was 10 milliseconds. Figure 4 depicts
the proportion of true formulae for all parameter values
considered. When increasing the proportion of universal
variables, the region of formulae that are more difficult to
evaluate shifts to the direction of lower clauses/variables
ratios. The phase transition region from true to false
shifts similarly. Figure 5 shows the runtimes with full

0.035

o
Q
@

0.025

untime in seconds
o
[=]
N

< 0.015

C/P ratio

% of universal variables

Figure 6: Runtimes on random formulae without S4.3

runtime in seconds

20

LSS
LSSOSSSS
SZENNOISSOSSISSS
L SSEESOUSSQUSISSCSOSSS
SSSESCSIUSSINSSSOSSISISSS
SIS s
OSSO | PSS IS oS55I
TOSOSISINSST | SsSSSS5osos o0
TESSISISN | [BSS55sssossess
TSI | [ BESSSSSSS s s s s
CSSSSSOSSST | BSSSSSSISos oS OSSISIS o>
SOOI | | ISSSSSSOSOSSSSISSos oSS
SISO | | EESSS s eSSs s os oS
SSSSSSSISS | || Sses S essss
SoSo< [ SSSSISISSS
’0‘04‘ Y/ :‘:‘:‘:0‘“‘ 4
</ S
40 \‘::“ 3

60

80 0

C/P ratio

% of universal variables

Figure 7: Runtimes on random formulae without S4.4

0.022

o
Q
]

°o o 9
o 9 9
==
5 o ®

runtime in seconds

0.012

0.01

A
/. %\\\\\\\\\\\

A

\\\\\\\

e
f;?if‘\\\\\

AAANSSY
77 ‘ \\\\\\\\\‘
I‘:‘:\‘\\\ =

C/P ratio

% of universal variables

Figure 8: Runtimes on random formulae without S4.4



detection of failed literals (Section 4.3) and partitioning
of clause sets (Section 4.4.) Figure 6 shows runtimes
without full detection of failed literals and Figures 7 and
8 runtimes without partitioning. The peak in Figure 7
is due to a very small number of difficult formulae. As
is obvious from a comparison between Figures 5 and 8,
the effect of partitioning on formulae with few universal
variables is small.

The diagrams show that detection of failed literals for
all variables is useful, although the effect is not dramatic.
Partitioning of clause sets reduces the amount of compu-
tation dramatically for a small number of formulae with
many universal variables and a small clauses/variables
ratio. This is because partitioning produces several small
clause sets with disjoint variables, and hence considering
all 2™ valuations of n universal variables takes much less
than O(2") time.

The structured problems we consider are translations
from conditional planning to QBF [Rintanen, 1999]. The
most basic form of planning is the identification of se-
quences of operations that reach a goal state from a
given initial state. That problem has been success-
fully solved by algorithms that test propositional sat-
isfiability [Kautz and Selman, 1996]. In conditional
planning, plans that work under several different cir-
cumstances are constructed. A conditional plan is es-
sentially a program in a simple programming language
with conditional statements that chooses at execution
time which operations to apply. When there is only
one initial state, planning can be represented by formu-
lae dpy - -ppder - - - €, @ that say that there is a plan
(represented by the variables p;) such that its execution
(represented by the variables e;) produces a goal state.
Conditional planning can be represented by formulae
dp1---ppVer - -cpder - - - e, @ where variables ¢; repre-
sent the different circumstances the plan has to work in.

Runtimes for formulae from conditional planning are
given in Table 1. These formulae encode the problem
of existence of conditional plans for taking three or four
blocks from all possible initial configurations to a unique
goal configuration. We have evaluated the effect of each
technique separately. The first column identifies the for-
mulae in question. The second column gives the number
of propositional variables in each QBF, and the third the
number of clauses. The fourth column gives the truth-
value of the formula. The fifth gives the runtime of our
theorem-prover with all techniques enabled. The sixth
gives the runtime with inversion disabled. The seventh
with sampling disabled. The eighth with detection of
failed literals for inner quantifiers disabled. The ninth
without partitioning of clause sets. For sampling the
number of samples was 10 with at most 16 variables in
each sample (the formulae all have less than 16 univer-
sal variables), and for inversion the number of valuations
considered was at most 100.

In some cases disabling one of the pruning techniques
leads to a better runtime, but these are the easier for-
mulae and the differences are relatively small. The only
technique that in most cases does not have any effect is

the partitioning of clause sets. Only for three formulae
there is a significant decrease in the runtimes, from 14.6
to 1.7, from 165.1 to 76.1 and from 13802.7 to 192.5.
We would expect that on many structured problems the
decrease is small. When none of the techniques is used,
none of the runs end in 4 hours. Sampling and inversion
are the most effective techniques: without them four of
the formulae could not be evaluated in 4 hours.

6 Related work

Automated reasoning with quantified Boolean formulae
has been investigated by Kleine Biining et al. [1995] who
define a resolution rule for quantified Boolean formulae
and a polynomial time decision procedure for quantified
Horn clauses. Aspvall et al. [1979] give a polynomial
time decision procedure for quantified 2-literal clauses.

Cadoli et al. [1998] extend the Davis-Putnam pro-
cedure to handle quantified Boolean formulae. Their
algorithm is similar to the one in Section 3. Cadoli
et al. generalize techniques familiar from the Davis-
Putnam procedure to QBF. For example, they introduce
the pure literal rule for universal variables and a rule
that concludes that formulae with clauses without exis-
tential variables are false. A technique not employed by
us is testing whether the set of clauses with all univer-
sal literals deleted is satisfiable. If it is, the formula is
true. Cadoli et al. perform this test in every node of the
search tree. It seems to us that on random problems with
many universal variables and a low clauses/variables ra-
tio it may be beneficial like the technique we present in
Section 4.4. The algorithm by Cadoli et al. does not
evaluate any of the formulae in Table 1 in 16 hours. We
also ran an experiment on a small set of random 3V3 for-
mulae with 150 variables and parameters varying like in
the experiments reported in this paper. A small number
of the formulae were much more difficult for the program
by Cadoli et al. and some of the very easy formulae were
evaluated faster. The sum of the runtimes for our pro-
gram was 85.7 seconds versus 4965.28 seconds for the
Cadoli et al. program. For a bigger set of random for-
mulae with 100 variables the runtimes were 25.36 seconds
versus 410.79 seconds.

7 Conclusions and Future Work

Future work includes a systematic study of computa-
tional properties of QBF arising from applications, in-
cluding AI planning, automated theorem-proving and
computer-aided verification, and then improving the
QBF algorithm accordingly. There are several degrees
of freedom in the use of the new techniques, and only
by analyzing a wider range of problems it is possible to
determine what is the best way of using them.

As an important research topic we see the reduction of
exhaustive search needed in handling universal quanti-
fiers. The technique presented in this paper is applicable
only in relatively simple cases.



formula vars clauses value all noS4.1 1noS4.2 noS4.3 no S4.4
BLOCKS31.4.4 288 2928 F 0.6 0.7 0.2 1.3 0.6
BLOCKS3i.5.3 286 2892 F 334.2 > 14400 > 14400 1045.6 331.9
BLOCKS3i.5.4 328 3852 T 76.1 > 14400 > 14400 302.3 165.1
BLOCKS3ii.4.3 | 247 2533 F 0.3 0.3 0.2 0.5 0.3
BLOCKS3ii.5.2 | 282 2707 F 1.0 1.2 0.6 1.1 1.0
BLOCKS3ii.5.3 304 3402 T 3.1 35.1 11.7 8.5 5.0
BLOCKS3iii.4 202 1433 F 0.2 0.2 0.1 0.2 0.2
BLOCKS3iii.5 256 1835 T 1.7 4.7 7.1 2.4 14.6
BLOCKS4i.6.3 779 15872 F 68.3 56.1 37.4 135.1 67.7
BLOCKS4i.7.2 783 15219 ?7 | > 14400 > 14400 > 14400 > 14400 > 14400
BLOCKS4i.7.3 863 18768 ? | > 14400 > 14400 > 14400 > 14400 > 14400
BLOCKS4ii.6.3 838 15061 F 13.6 14.0 42.3 106.5 14.1
BLOCKS4ii.7.2 | 915 15047 F 85.5 111.6 80.8 174.7 85.5
BLOCKS4ii.7.3 | 969 17944 T 241.3 > 14400 > 14400 596.9 353.2
BLOCKS4iii.6 727 9661 F 8.8 8.9 21.3 80.7 8.9
BLOCKS4iii.7 855 11303 T 192.5 > 14400 > 14400 346.6  13802.7

Table 1: Runtimes of our program on formulae from planning (in seconds)

Acknowledgements

This research was funded by the Deutsche Forschungsge-
meinschaft through the SFB 527. We thank the referees
for comments on the generation of random QBF and
Marco Cadoli et al. for access to their program.

References

[Aspvall et al., 1979] Bengt Aspvall, Michael F. Plass,
and Robert Endre Tarjan. A linear time algorithm
for testing the truth of certain quantified Boolean for-
mulas. Information Processing Letters, 8(3):121-123,
1979. Erratum in 14(4):195, June 1982.

[Cadoli et al., 1998] M. Cadoli, A. Giovanardi, and
M. Schaerf. An algorithm to evaluate quantified
Boolean formulae. In Proceedings of the 15th National
Conference on Artificial Intelligence (AAAI-98) and
the 10th Conference on Innovative Applications of Ar-
tificial Intelligence (IAAI-98), pages 262-267. AAAT
Press, July 1998.

[Davis et al., 1962] M. Davis, G. Logemann, and
D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5:394-397, 1962.

[Eiter and Gottlob, 1995] Thomas Eiter and Georg Got-
tlob. The complexity of logic-based abduction. Jour-
nal of the ACM, 42(1):3-42, 1995.

[Gent and Walsh, 1998] Ian Gent and Toby Walsh. Be-
yond NP: the QSAT phase transition. Technical Re-
port APES-05-1998, University of Strathclyde, De-
partment of Computer Science, July 1998.

[Gottlob, 1992] Georg Gottlob. Complexity results for
nonmonotonic logics. Journal of Logic and Computa-
tion, 2(3):397-425, June 1992.

[Kautz and Selman, 1996] Henry Kautz and Bart Sel-
man. Pushing the envelope: planning, propositional
logic, and stochastic search. In Proceedings of the 13th
National Conference on Artificial Intelligence and the

8th Innovative Applications of Artificial Intelligence
Conference, pages 1194-1201. AAAI Press, August
1996.

[Kleine Biining et al., 1995] Hans Kleine Biining, Marek
Karpinski, and Andreas Flogel. Resolution for quanti-
fied Boolean formulas. Information and Computation,
117:12-18, 1995.

[Li and Anbulagan, 1997] Chu Min Li and Anbulagan.
Heuristics based on unit propagation for satisfiability
problems. In Martha Pollack, editor, Proceedings of
the 15th International Joint Conference on Artificial
Intelligence, pages 366—-371. Morgan Kaufmann Pub-
lishers, August 1997.

[McLoughlin, 1984] A. McLoughlin. Complexity of com-
puting the covering radius of a code. IEEE Transac-
tions on Information Theory, 30(6):300-804, 1984.

[Meyer and Stockmeyer, 1972] A. R. Meyer and L. J.
Stockmeyer. The equivalence problem for regular ex-
pressions with squaring requires exponential time. In
Proceedings of the 13th Annual Symposium on Switch-
ing and Automata Theory, pages 125-129. IEEE Com-
puter Society, 1972.

[Mitchell et al., 1992] David Mitchell, Bart Selman, and
Hector Levesque. Hard and easy distributions of SAT
problems. In William Swartout, editor, Proceedings
of the 10th National Conference on Artificial Intelli-
gence, pages 459-465, San Jose, California, July 1992.
The MIT Press.

[Rintanen, 1999] Jussi Rintanen. Constructing condi-
tional plans by a theorem-prover. Journal of Artificial
Intelligence Research, 10:323-352, 1999.

[Schéfer, 1996] Marcus Schifer. Deciding the Vapnik-
Cervonenkis dimension is ¥’ -complete. In Proceedings
of the 11th Conference on Computational Complexity,
pages 77-80, 1996.



