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Abstract

In default reasoning, usually not all possible ways of resolving conflicts between default
rules are acceptable. Criteria expressing acceptable ways of resolving the conflicts may
be hardwired in the inference mechanism, for example specificity in inheritance reasoning
can be handled this way, or they may be given abstractly as an ordering on the default
rules. In this article we investigate formalizations of the latter approach in Reiter’s default
logic. Our goal is to analyze and compare the computational properties of three such
formalizations in terms of their computational complexity: the prioritized default logics
of Baader and Hollunder, and Brewka, and a prioritized default logic that is based on
lexicographic comparison. The analysis locates the propositional variants of these logics on
the second and third levels of the polynomial hierarchy, and identifies the boundary between
tractable and intractable inference for restricted classes of prioritized default theories.

1. Introduction

Nonmonotonic logics and related systems for nonmonotonic and default reasoning (Reiter,
1980; Moore, 1985; McCarthy, 1980) were developed for representing knowledge and forms
of reasoning that are not conveniently expressible in monotonic logics, like the first-order
predicate logic or propositional logics. In nonmonotonic logics inferences can be made on
the basis of what cannot be inferred from a set of facts. When extending this set, some of the
inferences may become invalid, and hence the set of inferable facts does not monotonically
increase. For example, in the kind of reasoning expressed as inheritance networks (Horty,
1994), one network link may say that priests imbibe non-alcoholic beverages only. This is,
in the absence of contrary information, a sufficient reason to conclude that a certain priest
will not drink vodka. Without contradiction, information stating that the priest does drink
vodka can be added, which retracts the previous conclusion.

The need to incorporate priority information to nonmonotonic logics (Lifschitz, 1985;
Brewka, 1989; Geffner & Pearl, 1992; Ryan, 1992; Brewka, 1994; Baader & Hollunder,
1995) stems from the possibility that two default rules are in conflict. One source of such
priority information is the specificity of defaults. When one rule says that priests usually do
not drink and another says that men usually do, inferences concerning male priests should
be based on the first one because it is more specific, as male priests are a small subset of
men. Specificity as a basis for resolving conflicts between defaults has been investigated
in the framework of path-based inheritance theories (Horty, 1994). In general, however,
priorities may come from different sources, and therefore it is justified to investigate non-
monotonic reasoning with an abstract notion of priorities as orderings on defaults. In this
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setting the problem is to define what are the correct inferences in the presence of priorities.
There have been many proposals of differing generality. Preferred subtheories (Brewka,
1989) and ordered theory presentations (Ryan, 1992) do not have as general a notion of
defaults as Reiter’s default logic, and they can both be translated to prerequisite-free nor-
mal default theories of a prioritized default logic (Rintanen, 1998). Also the definitions of
model minimization in conditional entailment (Geffner & Pearl, 1992) and in prioritized
circumscription (Lifschitz, 1985) do not directly support defaults with prerequisites.

In this work we concentrate on Brewka’s (1994) and Baader and Hollunder’s (1995)
proposals for incorporating priorities to default logic, as well as a proposal that uses lexico-
graphic comparison (Rintanen, 1998). These three proposals address default reasoning with
defaults that have prerequisites. Like earlier work on complexity of nonmonotonic logics
(Kautz & Selman, 1991; Stillman, 1990; Gottlob, 1992), the purpose of our investigation is
to point out fundamental differences and similarities between these logics, characterized by
polynomial time translatability between their decision problems, and to identify restricted
classes of default theories where reasoning is tractable. The first kind of results are useful
for example when developing theorem-proving techniques for the logics in question. The in-
existence of polynomial time translations between two decision problems indicates that the
techniques needed are likely to be different: it is not feasible to solve one decision problem
by simply translating it to the other. Also, if polynomial time translations exist and they
turn out to be simple, there is often no reason to treat the decision problems separately.
The second kind of results, identification of tractable cases, directly give efficient, that is
polynomial time, decision procedures for prioritized reasoning in special cases. The utility
of these algorithms depends on the application at hand. In many cases the restrictions
that lead to polynomial time decision procedures are too severe to make the procedures
practically useful. Even though nonmonotonic reasoning usually cannot be performed in
polynomial time, new developments in implementation techniques have made it possible to
solve problems that previously were too difficult (Niemelä & Simons, 1996). Hence there
are some prospects of making nonmonotonic reasoning practically useful, which makes the
problem of introducing priority information in nonmonotonic reasoning more acute. This
paper can be seen as giving guidelines in that direction.

The decision problems of propositional default logic are located on the second level of
the polynomial hierarchy (Gottlob, 1992), and hence they do not belong to the classes NP
or co-NP unless the polynomial hierarchy collapses to its first level. The proof of this result
suggests that reasoning in default logic cannot be performed in polynomial time simply by
restricting the formulae in default theories to a tractable subclass of propositional logic like
2-literal clauses (Even, Itai, & Shamir, 1976) or Horn clauses (Dowling & Gallier, 1984).
This fact can be seen as a consequence of the possibility of conflicting defaults. A conflict
between defaults gives rise to multiple extensions because a case analysis on alternative
ways of resolving the conflict is required. For a default theory of size n, the number of
conflicts may be proportional to n, and each conflict may double the number of extensions.
Hence the number of extensions can be proportional to 2n. Priorities in many cases uniquely
determine how a conflict between defaults is resolved, and hence the case analyses that lead
to an exponential number of extensions can be avoided. This gives rise to the question
whether priorities would in some cases produce a computational advantage in the sense
that the decision problems could be solved more efficiently than in the unprioritized case.
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To investigate these questions we consider three definitions of priorities in the framework
of Reiter’s default logic.

First we analyze the computational complexity of two closely related prioritized default
logics (Brewka, 1994; Baader & Hollunder, 1995). These logics are based on the semicon-
structive definition of extensions of default logic (Reiter, 1980): the priorities control the
construction of extensions, ruling out those that do not respect the priorities. In the general
case the complexity of the decision problems of these logics equals the complexity of those
of Reiter’s default logic, being complete for the second level of the polynomial hierarchy.
When the priorities are a total ordering on the defaults, the complexity decreases by one
level, leading to many tractable cases when the propositional reasoning involved is tractable,
for example with Horn clauses or 2-literal clauses. With arbitrary strict partial orders there
is no similar decrease.

We continue by analyzing a prioritized default logic that is based on comparing the
Reiter extensions of a default theory by lexicographic comparison (Rintanen, 1998). The
decision problem of this logic is harder than the decision problems of Reiter’s default logic,
assuming that the polynomial hierarchy does not collapse. For default theories with a
total priority relation some syntactically restricted classes are easier than the corresponding
unprioritized ones, but in general even total priorities do not reduce the complexity of the
decision problems. For partial priorities tractability can be achieved only with extreme
syntactic restrictions, the complexity being the same as with the prioritized default logics
by Brewka and by Baader and Hollunder.

2. Preliminaries on Computational Complexity

In this section we introduce some basic concepts in computational complexity. For details
see (Balcázar, Dı́az, & Gabarró, 1988). The complexity class P consists of decision problems
that are solvable in polynomial time by a deterministic Turing machine. NP is the class
of decision problems that are solvable in polynomial time by a nondeterministic Turing
machine. The class co-NP consists of problems the complements of which are in NP. In
general, the class co-C consists of problems the complements of which are in the class C.
The polynomial hierarchy PH is an infinite hierarchy of complexity classes Σp

i , Πp
i and ∆p

i

for all i ≥ 0 that is defined by using oracle Turing machines as follows.

Σp
0 = P Πp

0 = P ∆p
0 = P

Σp
i+1 = NPΣp

i Πp
i+1 = co-Σp

i+1 ∆p
i+1 = PΣp

i

CC2
1 denotes the class of problems that is defined like the class C1 except that oracle Turing

machines that use an oracle for a problem in C2 are used instead of Turing machines without
such an oracle. Oracle Turing machines with an oracle for a problem B are like ordinary
Turing machines except that they may perform tests for membership in B with constant
cost. A problem L is Turing reducible to a problem L′ if there is an oracle Turing machine
with an oracle for L′ that solves L. The problem is Turing reducible in polynomial time if
the oracle Turing machine solves L with a polynomial number of execution steps. A problem
L is C-hard for a complexity class C if all problems in C are polynomial time many-one
reducible to it; that is, for all problems L′ ∈ C there is a function fL′ that can be computed
in polynomial time on the size of its input and fL′(x) ∈ L if and only if x ∈ L′. We say
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that the function fL′ is a translation from L′ to L. A problem is C-complete if it belongs
to the class C and is C-hard.

3. Preliminaries on Default Logic

Default logic is one of the main formalizations of nonmonotonic reasoning (Reiter, 1980).
A default theory ∆ = 〈D,W 〉 consists of a set of default rules α:β1, . . . , βn/γ where α (the
precondition), γ (the conclusion) and βi, i ∈ {1, . . . , n} (the justifications) are formulae of
the classical propositional logic, and a set W of objective facts that also are formulae of
the classical propositional logic. A default rule α:β1, . . . , βn/γ can be used for inferring the
fact γ if α has been derived, and none of the formulae ¬β1, . . . ,¬βn can be derived. As
derivability and underivability are mutually dependent, there is circularity in the definition
of what is derivable in default logic. Unlike in monotonic logics, where the consequences of
a set of formulae is defined as the formulae that can be derived by using the axioms of the
logic and the inference rules, the conclusions of a default theory ∆ = 〈D,W 〉 are defined
as fixpoints of a nonmonotonic operator. The operator may have several fixpoints, none
of which is the least fixpoint, and different fixpoints can be seen as a result of applying
different mutually incompatible sets of default rules. The fixpoints of the operator for a
default theory are the extensions of the default theory.

Informally, the construction of each extension of a default theory starts from the ob-
jective facts W , and proceeds by adding conclusions of default rules the preconditions of
which have already been derived, and the justifications of which have not been and will not
later be contradicted. The construction ends when no more defaults can be applied.

Example 3.1 Define ∆ = 〈D,W 〉 by

D =

{
priest : ¬drinks-vodka

¬drinks-vodka
,

man : drinks-vodka

drinks-vodka
,

priest : man

man

}
, and

W = {priest}.

A default α:β/β can be interpreted as saying that an individual who has property α, can
be assumed to also have the property β if this is consistent with what else is known.
The default theory ∆ has two extensions, E = Cn({priest,man,¬drinks-vodka}) and E′ =
Cn({priest,man, drinks-vodka}), that represent the two possibilities of resolving the conflict
between the first two defaults in D. The extension E corresponds to the choice to apply
the first default, and the extension E′ to the choice to apply the second. �

The fixpoint definition of extensions is given next. The language of the propositional
logic is denoted by L. The closure of a set of formulae S under logical consequence is
Cn(S) = {φ ∈ L|S |= φ}. The set {α:β1, . . . , βn/γ|n ≥ 0, {α, β1, . . . , βn, γ} ⊆ L} of default
rules is denoted by D. The size of a default theory 〈D,W 〉 is the sum of the lengths of the
formulae in W and in defaults in D. A default theory is finite if D and W are finite.

Definition 3.1 (Reiter, 1980) Let ∆ = 〈D,W 〉 be a default theory. For any set of for-
mulae S ⊆ L, let Γ(S) be the smallest set such that W ⊆ Γ(S), Cn(Γ(S)) = Γ(S), and if
α:β1, . . . , βn/γ ∈ D and α ∈ Γ(S) and {¬β1, . . . ,¬βn} ∩ S = ∅, then γ ∈ Γ(S). A set of
formulae E ⊆ L is an extension for ∆ if and only if Γ(E) = E.
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More procedural is the semiconstructive definition, so called because it suggests a non-
deterministic procedure for computing extensions.

Theorem 3.2 (Reiter, 1980) Let E ⊆ L be a set of formulae, and let ∆ = 〈D,W 〉 be
a default theory. Define E0 = W and for all i ≥ 0, Ei+1 = Cn(Ei) ∪ {γ|α:β1, . . . , βn/γ ∈
D,α ∈ Ei, {¬β1, . . . ,¬βn}∩E = ∅}. Then E is an extension of ∆ if and only if E =

⋃
i≥0Ei.

The set of generating defaults of an extension identifies the extension uniquely, and is
of finite size whenever the number of defaults is finite.

Definition 3.3 (Reiter, 1980) Suppose ∆ = 〈D,W 〉 is a default theory and E is an
extension of ∆. The set of generating defaults of E with respect to ∆ is

GD(E,∆) =

{
α : β1, . . . , βn

γ
∈ D

∣∣∣∣α ∈ E and {¬β1, . . . ,¬βn} ∩ E = ∅
}
.

Theorem 3.4 (Reiter, 1980) Suppose E is an extension of a default theory ∆ = 〈D,W 〉.
Then E = Cn(W ∪ {γ|α:β1, . . . , βn/γ ∈ GD(E,∆)}).

The standard consequence relations of default logic are cautious reasoning |=c and brave
reasoning |=b.

Definition 3.5 Let ∆ = 〈D,W 〉 be a default theory and φ ∈ L a formula. Then ∆ |=c φ
if and only if φ ∈ E for all extensions E of ∆, and ∆ |=b φ if and only if φ ∈ E for some
extension E of ∆.

The following terminology is used in referring to default rules of certain syntactic forms.
Defaults of the form α:β/β, α:β∧γ/γ, >:β1, . . . , βn/γ are respectively normal, seminormal,
and prerequisite-free. The symbol > denotes a valid formula. Prerequisite-free defaults are
often written without prerequisites as :β1, . . . , βn/γ. We shall sometimes denote sequences
β1, . . . , βn of justifications by σ, σ′, σ1 and so on.

Not all seminormal default theories have extensions, but all ordered default theories do.
In some cases, a decision problem for a class of default theories is intractable, but for the
subclass in which the default theories are ordered, it is tractable (Kautz & Selman, 1991).
In later sections we analyze the complexity of decision problems both with and without the
orderedness condition.

Definition 3.6 (Etherington, 1987) Let ∆ = 〈D,W 〉 be a seminormal default theory.
Without loss of generality assume that all formulae are in clausal form. The relations �
and � are defined as follows.

1. If α ∈ W , then α = α1 ∨ · · · ∨ αn for some n ≥ 1. For all αi, αj ∈ {α1, . . . , αn} such
that αi 6= αj, let ¬αi�αj.

2. If δ ∈ D, then δ = α:β ∧ γ/β. Let A, B and G be the sets of literals of the clausal
forms of α, β and γ, respectively.

(a) If αi ∈ A and βj ∈ B, let αi�βj.
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(b) If γi ∈ G and βj ∈ B, let ¬γi � βj.

(c) Also, β = β1∧· · ·∧βm for some m ≥ 1. For each i ≤ m, βi = βi,1∨· · ·∨βi,mi where
mi ≥ 1. Thus if βi,j , βi,k ∈ {β1,1, · · · , βm,mm} and βi,j 6= βi,k, let ¬βi,j�βi,k.

3. The following transitivity relations hold for � and �.

(a) If α�β and β�γ, then α�γ.

(b) If α� β and β � γ, then α� γ.

(c) If α� β and β�γ or α�β and β � γ, then α� γ.

The default theory ∆ is ordered if and only if α� α for no α.

According to Theorem 1 in (Etherington, 1987), ordered default theories, like normal
default theories and unlike seminormal default theories in general, have at least one exten-
sion.

4. Prioritized Default Logics by Brewka and by Baader and Hollunder

Priorities in default logic have been investigated by Baader and Hollunder (1995) and
Brewka (1994). They view priorities as information that selects which defaults are ap-
plied next when constructing an extension. Priorities are strict partial orders, that is,
transitive and asymmetric relations P on the defaults. If δPδ′, then the application of δ
is more desirable than the application of δ′, and the default δ is more significant or has
a higher priority. Brewka, as well as Baader and Hollunder, give a definition of preferred
extensions by modifying the semiconstructive definition of extensions (Theorem 3.2.) The
construction of an extension starts from the set W of objective facts, and proceeds in stages
by repeatedly applying the highest priority applicable defaults. In this section we analyze
the complexity of the associated decision problems.

Definition 4.1 A default α:β/γ is active in E ⊆ L if E |= α and E 6|= ¬β and E 6|= γ.

Definition 4.2 (Baader and Hollunder, 1995) Let 〈D,W 〉 be a default theory and P
a strict partial order on D. Let E ⊆ L be a set of formulae. Define for all i ≥ 0,

E0 = W

Ei+1 = Ei ∪
{
γ

∣∣∣∣α : β

γ
∈ D,Ei |= α,E 6|= ¬β, no δPα : β

γ
is active in Ei

}
.

Then E is a P-preferredBH extension of 〈D,W 〉 if and only if E =
⋃

i≥0 Cn(Ei).

Brewka’s definition is syntactically similar. We have expressed it in a way that high-
lights the differences to Baader and Hollunder’s definition. The main difference is that the
construction of a preferred extension proceeds by applying defaults in an order specified by
some strict total order that extends the priorities. Furthermore, Brewka gives his definition
for normal default theories only, and the consistency of justifications is tested against the
sets Ei instead of the set E.
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Definition 4.3 (Brewka, 1994) Let 〈D,W 〉 be a normal default theory and P a strict
partial order on D. Then E ⊆ L is a P-preferredB extension of 〈D,W 〉 if there is a strict
total order T on D such that P ⊆ T and E =

⋃
i≥0 Cn(Ei) where for all i ≥ 0,

E0 = W

Ei+1 = Ei ∪
{
β

∣∣∣∣α : β

β
∈ D,Ei |= α,Ei 6|= ¬β, no δT α : β

β
is active in Ei

}
.

We say that E is generated by T .

The purpose of both of these definitions of preferred extensions is to introduce a mech-
anism for resolving conflicts between defaults on the basis of the priorities. Different ex-
tensions represent different ways of resolving the conflicts. The preferred extensions are a
subset of all extensions of a default theory.

Example 4.1 Let ∆ = 〈D,W 〉 be a default theory and P a strict partial order on D, where

D =

{
priest : ¬like-rock-n-roll

¬like-rock-n-roll
,

man : like-rock-n-roll

like-rock-n-roll
,

priest : man

man

}
,

W = {priest}, and

P =

{〈
priest : ¬like-rock-n-roll

¬like-rock-n-roll
,

man : like-rock-n-roll

like-rock-n-roll

〉}
.

The priorities P state that when reasoning about male priests, information specific to
priests should override information concerning men in general. Of the extensions E =
Cn({priest,man,¬like-rock-n-roll}) and E′ = Cn({priest,man, like-rock-n-roll}) only E is
P-preferredB and P-preferredBH. In the Baader and Hollunder definition it is obtained as
E =

⋃
i≥0 Cn(Ei) where E0 = {priest}, E1 = {priest,man,¬like-rock-n-roll} and Ei = E1

for all i ≥ 2. In this extension, the conflict between the first two defaults is resolved in favor
of the first one. �

The definitions are not equivalent, as demonstrated by the following example given by
Baader and Hollunder (1995). Baader and Hollunder also show that some extensions are
preferredBH but not preferredB.

Example 4.2 Let D = {:a/a, :b/b, b:c/c, a:¬c/¬c} and P = {〈b:c/c, a:¬c/¬c〉}. The exten-
sion E = Cn({a, b,¬c}) is P-preferredB but not P-preferredBH. The extension E cannot
be obtained with the Baader and Hollunder definition. For E′ = Cn({a, b, c}) the Baader
and Hollunder definition produces the sets E′0 = ∅, E′1 = {a, b}, E′2 = {a, b, c} and E′i = E′2
for all i ≥ 3, and the unique P-preferredBH extension is E′ =

⋃
i≥0E

′
i. In Brewka’s defi-

nition we can bypass the higher priority default b:c/c by using a total ordering where :b/b
follows :a/a and a:¬c/¬c. This way we obtain the sets E0 = ∅, E1 = {a}, E2 = {a,¬c},
E3 = {a,¬c, b} and Ei = E3 for all i ≥ 4. �

Consequence relations that correspond to cautious reasoning in Reiter’s default logic are
defined as follows.
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Definition 4.4 The consequence relations |=B and |=BH are defined by ∆ |=B
P φ if and

only if the formula φ is in all P-preferredB extensions of ∆, and ∆ |=BH
P φ if and only if

the formula φ is in all P-preferredBH extensions of ∆.

Lemma 4.5 Let 〈D,W 〉 be a normal default theory and T a strict total order on D. Then
for all E ⊆ L, E is a T -preferredB extension of 〈D,W 〉 if and only if E is a T -preferredBH

extension of 〈D,W 〉.

Proof: If W is inconsistent, then the inconsistent extension L is the unique T -preferredB

and T -preferredBH extension of ∆. So assume W is consistent. (⇒) Assume that E is
a T -preferredB extension of 〈D,W 〉. By definition E =

⋃
i≥0 Cn(Ei), where Ei are as in

Definition 4.3. Let E′i, i ≥ 0 be the sets Ei in Definition 4.2. We show that Ei = E′i for all
i ≥ 0, and hence E =

⋃
i≥0 Cn(E′i) is a T -preferredBH extension of ∆. Induction hypothesis:

Ei = E′i. Base case i = 0: Immediate. Inductive case i ≥ 1: Assume that for α:β/β ∈ D,
Ei−1 |= α, Ei−1 6|= ¬β and no δT α:β/β is active in Ei−1. Hence β ∈ Ei. By the induction
hypothesis E′i−1 |= α and no δT α:β/β is active in E′i−1. To show β ∈ E′i it remains to show
that E 6|= ¬β. Because E is consistent and Ei ⊆ E and β ∈ Ei, E 6|= ¬β. Hence β ∈ E′i
and Ei ⊆ E′i. Proof of E′i ⊆ Ei is similar. It suffices to point out that E 6|= ¬β implies
Ei−1 6|= ¬β simply because Ei−1 ⊆ E.

(⇐) Let E be a T -preferredBH extension of 〈D,W 〉. Hence E =
⋃

i≥0 Cn(E′i), where
E′i, i ≥ 0 are the sets in Definition 4.2. Let Ei, i ≥ 0 be the sets in Definition 4.3. We
show by induction that E =

⋃
i≥0Ei. Induction hypothesis: Ei = E′i. Base case i = 0:

Immediate. Inductive case i ≥ 1: Assume that for α:β/β ∈ D, E′i−1 |= α, E 6|= ¬β and
no δT α:β/β is active in E′i−1. Hence β ∈ E′i. By the induction hypothesis Ei−1 |= α
and no δT α:β/β is active in Ei−1. To show β ∈ Ei it remains to show that Ei−1 6|= ¬β.
Because E′i−1 ⊆ E and E 6|= ¬β, E′i−1 6|= ¬β. By the induction hypothesis Ei−1 = E′i−1.
Hence Ei−1 6|= ¬β. Therefore E′i ⊆ Ei. Proof of Ei ⊆ E′i proceeds similarly. Assume
that for α:β/β ∈ D, Ei−1 |= α, Ei−1 6|= ¬β and no δT α:β/β is active in Ei−1. By the
induction hypothesis E′i−1 |= α and no δT α:β/β is active in E′i−1. It remains to show that
E 6|= ¬β. So assume E |= ¬β. Because α:β/β is the T -least active default and E |= ¬β,
E′i = E′i−1, and further E′j = E′i−1 for all j ≥ i. Therefore E = Cn(E′i−1). This leads to
a contradiction with the assumption E |= ¬β and the fact E′i−1 66|= ¬β obtained with the
induction hypothesis. Therefore the assumption is false, and E 6|= ¬β. Therefore β ∈ E′i
and Ei ⊆ E′i. �

4.1 Complexity in the General Case

With no restrictions on the form of defaults, both the Brewka and the Baader and Hollunder
prioritized default logics are complete for the second level of the polynomial hierarchy. This
means that there are polynomial time translations between cautious reasoning in Reiter’s
default logic and the prioritized versions of cautious reasoning in both of these logics.

Theorem 4.6 Testing ∆ |=B
P φ for normal default theories ∆, strict partial orders P and

formulae φ is Πp
2-complete.

Proof: The Πp
2-hardness is because with an empty priority relation Brewka’s logic coincides

with Reiter’s default logic (Proposition 6 in (Brewka, 1994)), which is Πp
2-hard even with
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class of default theories form of defaults

1 disjunction-free a1∧···∧al:b1∧···∧bn∧c1∧···∧cm
b1∧···∧bn

2 unary p:q
q

p:q∧¬r
q

p:¬q
¬q

3 disjunction-free ordered a1∧···∧al:b1∧···∧bn∧c1∧···∧cm
b1∧···∧bn

4 ordered unary p:q
q

p:q∧¬r
q

p:¬q
¬q

5 disjunction-free normal a1∧···∧al:b1∧···∧bn
b1∧···∧bn

6 Horn p1∧···∧pn:q
q

p1∧···∧pn:¬q
¬q

7 normal unary p:q
q

p:¬q
¬q

8 prerequisite-free :b1∧···∧bn∧c1∧···∧cm
b1∧···∧bn

9 prerequisite-free ordered :b1∧···∧bn∧c1∧···∧cm
b1∧···∧bn

10 prerequisite-free unary :q
q

:q∧¬r
q

:¬q
¬q

11 prerequisite-free ordered unary :q
q

:q∧¬r
q

:¬q
¬q

12 prerequisite-free normal :b1∧···∧bn
b1∧···∧bn

13 prerequisite-free normal unary :q
q

:¬q
¬q

14 prerequisite-free positive normal unary :q
q

Table 1: Form of defaults in a number of classes of default theories

the restriction to normal defaults (Gottlob, 1992). We show that the complement of the
problem is in Σp

2, which directly implies that the problem is in Πp
2. The complementary

problem is the existence of a P-preferredB extension E such that φ 6∈ E. The guessing of
a strict total order T that generates an extension E such that φ 6∈ E can be done by a
nondeterministic Turing machine in a polynomial number of steps: guess T , and guess the
conclusions of generating defaults of E. The verification that E fulfills Brewka’s definition
takes a polynomial number of steps with an NP oracle for propositional satisfiability. �

Theorem 4.7 Testing ∆ |=BH
P φ for default theories ∆, strict partial orders P and formulae

φ is Πp
2-complete.

Proof: Like the proof of the previous theorem except that no strict total orders need to be
guessed. �

4.2 Complexity in Syntactically Restricted Cases

In this section we investigate the complexity of the prioritized default logics in syntactically
restricted cases. This subject is related to the research on the boundary between tractabil-
ity and intractability of default logic without priorities by Kautz and Selman (1991) and
Stillman (1990). First we analyze the case in which the priorities are strict total orders.
Then we complete the complexity analysis by extending the results to arbitrary strict partial
orders.

Kautz and Selman analyze the complexity of determining the existence of extensions,
cautious reasoning, and brave reasoning for default theories with defaults of the form listed
in Table 1 (excluding the prerequisite-free classes) and with objective parts that are sets
of literals. In Table 1, the letters a, b, c – possibly subscripted – denote literals, and the
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letters p, q, r denote propositional variables. Stillman considers only the problem of brave
reasoning, but considers a wider range of classes. He analyzes default theories the objective
parts of which are sets of Horn clauses or sets of 2-literal clauses, and also the case where
defaults are prerequisite-free.1 The most general tractable classes in default logic without
priorities are the following.

• If the objective part W may contain Horn clauses, none of the restrictions on the form
of default rules is sufficient for achieving tractability in brave reasoning (Stillman,
1990). Cautious reasoning has not been investigated.

• If W consists of 2-literal clauses, brave reasoning for the prerequisite-free normal class
is tractable (Stillman, 1990). Cautious reasoning has not been investigated.

• If W consists of literals, brave reasoning for the prerequisite-free normal class and the
Horn class are tractable (Kautz & Selman, 1991; Stillman, 1990). Cautious reasoning
is tractable for the normal unary class (Kautz & Selman, 1991). Cautious reasoning
for the prerequisite-free classes has not been investigated.

We present a similar analysis for the same classes of prioritized default logics starting
with the case where priorities totally order the defaults. We present for each class either a
polynomial time decision procedure, or an NP-hardness or a co-NP-hardness result.

4.2.1 Summary

Because of the constructive nature of the definitions of preferred extensions in the pri-
oritized default logics by Brewka and by Baader and Hollunder, constructing the unique
preferred extensions of default theories with total priorities is tractable whenever the log-
ical consequence tests in propositional logic are tractable (Theorem 4.8.) This is because
there is always a unique default that is applied next, and this default cannot be defeated
by any default applied later. So with total priorities, these prioritized default logics are
computationally much easier than Reiter’s default logic.

For unrestricted priorities, Table 2 summarizes the complexity of |=B and |=BH with
various syntactic restrictions. As Brewka does not consider non-normal default theories,
complexity results on seminormal classes concern the consequence relation |=BH only. In
cases where Reiter’s default logic is tractable and a prioritized default logic is not, or vice
versa, the complexity characterization is set in boldface.

Table 3 gives references to the theorems and corollaries where the results are stated. We
use the notation n ⊆ to indicate that the intractability of the class is directly implied by the
intractability of the subclass n in the same column, and the notation ⊆ n to indicate that
the tractability is implied by the tractability of the superclass n in the same column. When
the complexity is directly implied by the complexity of an unprioritized class of default
theories investigated by Kautz and Selman (1991) we indicate this by K&S.

1. Stillman’s definition of prerequisite-free unary and prerequisite-free ordered unary classes includes only
default rules of the forms :¬q/¬q and :p∧¬q/p. We, however, consider also default rules of the form :p/p
in order to have a closer correspondence with the Kautz and Selman definition of unary classes. This
change does not sacrifice generality, as the default :p/p works like :p ∧ ¬q/p whenever q does not occur
elsewhere in the default theory.
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class of default theories complexity when clauses in W are
Horn 2-literal 1-literal

1 disjunction-free co-NP-hard co-NP-hard co-NP-hard

2 unary co-NP-hard co-NP-hard co-NP-hard

3 disjunction-free ordered co-NP-hard co-NP-hard co-NP-hard

4 ordered unary co-NP-hard co-NP-hard co-NP-hard

5 disjunction-free normal co-NP-hard co-NP-hard co-NP-hard

6 Horn co-NP-hard co-NP-hard co-NP-hard

7 normal unary co-NP-hard co-NP-hard co-NP-hard

8 prerequisite-free co-NP-hard co-NP-hard co-NP-hard

9 prerequisite-free ordered co-NP-hard co-NP-hard co-NP-hard

10 prerequisite-free unary co-NP-hard co-NP-hard co-NP-hard

11 prerequisite-free ordered unary co-NP-hard co-NP-hard co-NP-hard

12 prerequisite-free normal co-NP-hard co-NP-hard co-NP-hard

13 prerequisite-free normal unary co-NP-hard co-NP-hard PTIME

14 prerequisite-free positive normal unary co-NP-hard co-NP-hard PTIME

Table 2: Complexity of the consequence relations |=B and |=BH

class of default theories reference
Horn 2-literal 1-literal

1 disjunction-free K&S K&S K&S
2 unary K&S K&S K&S
3 disjunction-free ordered K&S K&S K&S
4 ordered unary K&S K&S K&S
5 disjunction-free normal K&S K&S K&S
6 Horn K&S K&S K&S
7 normal unary 14 ⊆ 14 ⊆ T4.15
8 prerequisite-free 14 ⊆ 14 ⊆ 12 ⊆
9 prerequisite-free ordered 14 ⊆ 14 ⊆ 12 ⊆

10 prerequisite-free unary 14 ⊆ 14 ⊆ 11 ⊆
11 prerequisite-free ordered unary 14 ⊆ 14 ⊆ T4.14
12 prerequisite-free normal 14 ⊆ 14 ⊆ T4.13
13 prerequisite-free normal unary 14 ⊆ 14 ⊆ T4.11
14 prerequisite-free positive normal unary T4.12 T4.12 ⊆ 13

Table 3: References to theorems on the complexity of |=B and |=BH

When looking at Table 2 it is slightly surprising that the favorable computational prop-
erties in the totally ordered case are in no way reflected in the complexity of reasoning with
arbitrary priorities. With arbitrary priorities, for almost all classes of default theories in the
Kautz-Selman-Stillman hierarchy the complexity is the same as the complexity of Reiter’s
default logic and the lexicographic prioritized default logic that is discussed in Section 5.

433



Rintanen

4.2.2 Tractable Classes

The following theorem shows that with the restriction to priorities that totally order the
defaults, both the Baader and Hollunder and the Brewka definition of preferred extensions
yield an efficient decision procedure for the respective prioritized default logic.

Theorem 4.8 Let 〈D,W 〉 be a finite default theory and T a strict total order on D. The
unique T -preferredBH extension (if preferredBH extensions exist) of 〈D,W 〉 can be computed
in polynomial time if all the membership tests in Cn(Ei) in the definition of E are for a
polynomial time subset of the propositional logic.

Proof: Unlike the definition of preferredB extensions, the definition of preferredBH exten-
sions does not directly yield a polynomial time decision procedure for total priorities and
tractable classical reasoning. This is because the test that the justifications of defaults to
be applied do not belong to the extension being constructed cannot be performed before the
extension is fully known. However, if a simple test for justifications of defaults is added, the
algorithm that works with preferredB extensions works also with preferredBH extensions.
Compute sets E′i as follows.

E′0 = W

E′i+1 = E′i ∪
{
γ

∣∣∣∣α : β

γ
∈ D,E′i |= α,E′i 6|= ¬β, no δT α : β

γ
is active in E′i

}
If E′i |= ¬β for some α:β/γ ∈ D such that for some j < i, E′j |= α,E′j 6|= ¬β and no δT α:β/γ
is active in E′j , then the algorithm returns false. If E′i = E′i+1 for some i ≥ 0, then return
Cn(E′i) =

⋃
j∈{0,...,i}Cn(E′j) and define E′j = E′i for all j > i.

Let E be a T -preferredBH extension of 〈D,W 〉. Hence E =
⋃

i≥0 Cn(Ei), where Ei, i ≥ 0
are the sets in Definition 4.2. We show by induction that E =

⋃
i≥0E

′
i and that the value

false is not returned. Induction hypothesis: E′i = Ei. Base case i = 0: Immediate. Inductive
case i ≥ 1: We first show that Ei ⊆ E′i. Assume that for α:β/γ ∈ D, Ei−1 |= α, E 6|= ¬β
and no δT α:β/γ is active in Ei−1. Hence γ ∈ Ei. By the induction hypothesis E′i−1 |= α
and no δT α:β/γ is active in E′i−1. To show γ ∈ E′i it remains to show that E′i−1 6|= ¬β.
Because Ei−1 ⊆ E and E 6|= ¬β, Ei−1 6|= ¬β. By the induction hypothesis E′i−1 = Ei−1.
Hence E′i−1 6|= ¬β. Therefore γ ∈ E′i and Ei ⊆ E′i. Proof of E′i ⊆ Ei proceeds similarly.
Assume that for α:β/γ ∈ D, E′i−1 |= α, E′i−1 6|= ¬β and no δT α:β/γ is active in E′i−1. By
the induction hypothesis Ei−1 |= α and no δT α:β/γ is active in Ei−1. It remains to show
that E 6|= ¬β. So assume E |= ¬β. Because α:β/γ is the T -least default and E |= ¬β,
Ei = Ei−1, and further Ej = Ei−1 for all j ≥ i. Therefore E = Cn(Ei−1). This leads to
a contradiction with the assumption E |= ¬β and the fact Ei−1 66|= ¬β obtained with the
induction hypothesis. Therefore the assumption is false, and E 6|= ¬β. Therefore γ ∈ Ei

and E′i ⊆ Ei. That the algorithm does not return false goes similarly. Assume that for
some α:β/γ ∈ D, E′i |= ¬β and for some j < i, E′j |= α and no δT α:β/γ is active in E′j .
We have to show that E′j 6|= ¬β. This is implied by the fact E 6|= ¬β shown above because
E′j ⊆ E.

Assume that the algorithm yields E =
⋃

i≥0 Cn(E′i). We claim that E is a P-preferredBH

extension of 〈D,W 〉. Because the algorithm did not return false and E =
⋃

i≥0 Cn(E′i),
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PROCEDURE decide(l,D,W )
IF W |= l THEN RETURN true;
IF l ∈W THEN RETURN false;
IF :l/l 6∈ D THEN RETURN false;
IF :l/l 6∈ D THEN RETURN true;
IF :l/lP:l/l THEN RETURN true;
RETURN false

END

Figure 1: A decision procedure for prioritized prerequisite-free normal unary theories

E 6|= ¬β for all α:β/γ ∈ D such that for some j, E′j |= α,E′j 6|= ¬β and no δT α:β/γ is
active in E′j . It is straightforward to show that E′i = Ei for all i ≥ 0, where Ei are the sets

in Definition 4.2. Therefore E is a T -preferredBH extension of 〈D,W 〉. �

This theorem indicates that with a restriction to total priorities T , testing the member-
ship of a literal in all T -preferredBH extensions of default theories in all the classes of the
Kautz and Selman and Stillman hierarchy is in P.

Corollary 4.9 Testing 〈D,W 〉 |=BH
P φ for disjunction-free default theories 〈D,W 〉, where

W is a set of Horn clauses or 2-literal clauses, P is a strict total order on D, and φ is a
literal, can be done in polynomial time.

Corollary 4.10 Testing 〈D,W 〉 |=B
P φ for disjunction-free normal default theories 〈D,W 〉,

where W is a set of Horn clauses or 2-literal clauses, P is a strict total order on D, and φ
is a literal, can be done in polynomial time.

Proof: Brewka gives a definition of preferred extensions for normal default theories only.
By Lemma 4.5 the preferred extensions in this case coincide with the Baader and Hollunder
preferred extensions whenever the priorities are a strict total order. �

For unrestricted priorities the class of prerequisite-free normal unary default theories is
tractable. The remaining classes in the hierarchy are intractable.

Theorem 4.11 For literals l and prerequisite-free normal unary theories 〈D,W 〉 where W
is a set of literals, testing 〈D,W 〉 |=BH

P l and 〈D,W 〉 |=B
P l can be done in polynomial time.

Proof: The algorithm in Figure 1 tests 〈D,W 〉 |=B
P l and 〈D,W 〉 |=BH

P l. The correctness
of the algorithm for |=BH

P is as follows. For |=B
P the proof is similar. We analyze the if-

statements in sequence. In each case we may use the negations of the assumptions of the
previous cases.

1. Assume that W |= l. Now l is in all P-preferredBH extensions E of ∆ because by
definition W ⊆ E. Hence it is correct to return true. 2. Assume that l ∈ W . Because W
is consistent (as W 6|= l), all extensions are consistent, and no extension contains l. Hence
it is correct to return false. 3. Assume that :l/l 6∈ D. Because l 6∈ W and all extensions
are consistent, no extension contains l. Hence it is correct to return false. 4. Assume that
:l/l 6∈ D. Because l 6∈W , no extension contains l, and hence :l/l is applied in all extensions,
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and l is in all extensions. Hence it is correct to return true. 5. Assume that :l/lP:l/l.
Assume that there is a preferredBH extension E such that l ∈ E. Now l ∈ Ei\Ei−1 for some
i. Hence l 6∈ Ei−1 and :l/l is not active in Ei−1. Hence ¬l ∈ Ei−1, which however contradicts
the fact that l 6∈ Ei−1. Hence l in no P-preferredBH extension of ∆, and ∆ |=BH

P l. Hence
it is correct to return true. 6. In the remaining case not :l/lP:l/l. If :l/lP:l/l, then by an
argument similar to the previous case all P-preferredBH extensions – by assumption there
is at least one – contain l, and hence it is correct to return false. If neither :l/lP:l/l nor
:l/lP:l/l, then by symmetry there is an extension not containing l, and hence it is correct
to return false.

Therefore the algorithm returns true if and only if l is in all P-preferredBH extensions
of ∆. The algorithm obviously runs in polynomial time. �

4.2.3 Intractable Classes

Intractability of all remaining classes except the normal unary class is directly implied by
the intractability of the same classes in Reiter’s default logic, as shown by Kautz and Selman
(1991) and Theorems 4.12, 4.13 and 4.14.

Stillman (1990) analyzes the complexity of prerequisite-free default theories, and claims
that brave reasoning for the prerequisite-free normal class with 2-literal clauses is solvable
in polynomial time. However, he does not analyze the complexity of cautious reasoning. It
turns out that even with the restriction to prerequisite-free normal defaults with proposi-
tional variables in justifications and conclusions, reasoning is intractable.

Theorem 4.12 Testing 〈D,W 〉 |=c l for literals l and prerequisite-free positive normal
unary default theories with objective parts that consist of 2-literal Horn clauses, is co-NP-
hard.

Proof: We give a many-one reduction from propositional satisfiability to the complement of
the problem. Let C be a set of clauses and P the set of propositional variables that occur in
C. Let N be an injective function that maps each clause c ∈ C to a propositional variable
n = N(c) such that n 6∈ P . Let

D =

{
: p′

p′

∣∣∣∣ p ∈ P} ∪{ : p′′

p′′

∣∣∣∣ p ∈ P} ∪ { : n

n

∣∣∣ c ∈ C, n = N(c)
}
, and

W = {p′→p|p ∈ P} ∪ {p′′→¬p|p ∈ P}
∪{p→¬n|p ∈ c ∈ C, n = N(c)} ∪ {¬p→¬n|¬p ∈ c ∈ C, n = N(c)}
∪{n→ false|c ∈ C, n = N(c)}.

We claim that 〈D,W 〉 6|=c false if and only if C is satisfiable.
Assume that C is satisfiable; that is, there is a model M such that M |= C. We show

that there is an extension of 〈D,W 〉 that does not contain false. Let E = Cn({p′|p ∈
P,M |= p}∪{p′′|p ∈ P,M 6|= p}∪W ). To show that E is an extension of 〈D,W 〉, it suffices
to show that E is consistent and for all :φ/φ ∈ D, ¬φ ∈ E if and only if φ 6∈ E. Let M ′

be a model such that for all p ∈ P , M ′ |= p iff M |= p, M ′ |= p′ iff M |= p, and M ′ |= p′′

iff M 6|= p, and M ′ 6|= n for all n such that n = N(c) for some c ∈ C. It is straightforward
to show that M ′ |= E, and E is therefore consistent. Take any :φ/φ ∈ D. Assume that
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¬φ ∈ E. Because E is consistent, φ 6∈ E. Assume that φ 6∈ E. If φ = p′, then by definition
p′′ ∈ E, and as {p′′→¬p, p′→ p} ⊆ E, ¬p′ ∈ E. Similarly for φ = p′′. If φ = n such that
n = N(c) for some c ∈ C, then because M |= c, there is disjunct l ∈ {p,¬p} of c such that
M |= l, and hence by definition l ∈ E, and as l→¬n ∈ E, ¬n ∈ E. Therefore E is an
extension of 〈D,W 〉.

Assume that 〈D,W 〉 6|=c false; that is, there is an extension E of 〈D,W 〉 such that
false 6∈ E. Let M be a model such that for all p ∈ P , M |= p iff p ∈ E. We show that
M |= C, and hence C is satisfiable. Because false 6∈ E and n→ false ∈ E for all n such that
n = N(c) for some c ∈ C, n ∈ E for no n such that n = N(c) for some c ∈ C. Because
:n/n ∈ D for all such n, ¬n ∈ E for all such n, which means that for every clause in C, one
of its disjuncts is in E. By definition this disjunct is true in M . Hence every clause in C is
true in M . �

An alternative way of obtaining the intractability of cautious reasoning for all classes
with a Horn objective part is to apply Theorem 8.2 in (Kautz & Selman, 1991) – that reduces
brave reasoning to cautious reasoning by adding a default :l/l – and the intractability result
for brave reasoning in Horn classes (Stillman, 1990). This is not applicable to the 2-literal
case because in it brave reasoning is tractable.

Theorem 4.13 Testing 〈D, ∅〉 |=c l for literals l and sets D of prerequisite-free normal
defaults with conclusions that are conjunctions of literals, is co-NP-hard.

Proof: Let C be a set of clauses. We show that there is a default theory 〈D, ∅〉 such that
〈D, ∅〉 6|=c false if and only if C is satisfiable. Let P be the set of propositional variables that
occur in C. Let N be an injective function that maps each clause c ∈ C to a propositional
variable n = N(c) such that n 6∈ P . Define the set of defaults D as follows.

D =

{
: l ∧ n
l ∧ n

∣∣∣∣ c ∈ C, l ∈ c, n = N(c)

}
∪
{

: ¬n ∧ false

¬n ∧ false

∣∣∣∣ c ∈ C, n = N(c)

}
Assume that C is satisfiable. Let M be a model such that M |= C. Let

E′ = Cn({l ∧ n|c ∈ C, l ∈ c, n = N(c),M |= l}).

Obviously E′ is consistent and it does not contain false.2 Clearly E′ is an extension of
〈{:l ∧ n/l ∧ n ∈ D|c ∈ C, l ∈ c, n = N(c), l ∧ n ∈ E′}, ∅〉. By Theorem 3.2 in (Reiter, 1980)
there is an extension E of 〈D, ∅〉 such that E′ ⊆ E. Because n ∈ E′ ⊆ E for all n = N(c)
with c ∈ C, false 6∈ E.

Assume that there is an extension E of 〈D, ∅〉 such that false 6∈ E. Let M be a model
such that for all propositional variables p, M |= p if and only if p ∈ E. Because false 6∈ E,
:¬n ∧ false/¬n ∧ false ∈ GD(E, 〈D, ∅〉) for no n = N(c), c ∈ C. Take any c ∈ C. Now
n = N(c) ∈ E and hence :l ∧ n/l ∧ n ∈ GD(E, 〈D, ∅〉) for some l ∈ c. Hence l ∧ n ∈ E and
M |= c. Because this holds for all c ∈ C, finally M |= C. �

2. E′ is not necessarily an extension of 〈D, ∅〉. Consider the satisfiable formula a ∨ b the clausal form of
which is C = {{a, b}}, and the model M that assigns true to a and false to b. Now E′ = Cn({a ∧ n}).
However, there is the set E = Cn({a ∧ n, b ∧ n}) that extends E′ and is an extension of 〈D, ∅〉.
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Theorem 4.14 Testing 〈D, ∅〉 |=c l for literals l and sets D of prerequisite-free ordered
unary defaults is co-NP-hard.

Proof: Proof is by many-one reduction from propositional satisfiability to testing 〈D, ∅〉 6|=c l.
Let C be any set of clauses, and let P be the set of propositional variables occurring in
C. Let N be an injective function that maps each clause c ∈ C to a propositional variable
n = N(c) such that n 6∈ P . Let

D =

{
: p

p

∣∣∣∣ p ∈ P} ∪{ : ¬p
¬p

∣∣∣∣ p ∈ P} ∪{ : p′ ∧ ¬p
p′

∣∣∣∣ p ∈ P}
∪
{ : n ∧ ¬p

n

∣∣∣ c ∈ C, n = N(c),¬p ∈ c
}

∪
{

: n ∧ ¬p′

n

∣∣∣∣ c ∈ C, n = N(c), p ∈ c
}
∪
{

: false ∧ ¬n
false

∣∣∣∣ c ∈ C, n = N(c)

}
.

The orderedness condition is fulfilled because the relation�⊆ (P×{N(c)|c ∈ C})∪({p′|p ∈
P} × {N(c)|c ∈ C}) ∪ ({N(c)|c ∈ C} × {false}) ∪ (P × {p′|p ∈ P}) is irreflexive.

We claim that C is satisfiable if and only if 〈D, ∅〉 6|=c false. Assume that C is satisfiable;
that is, there is a model M such that M |= C. We construct an extension E of 〈D, ∅〉 such
that false 6∈ E. Let

A =

{
: p

p

∣∣∣∣ p ∈ P,M |= p

}
∪
{

: ¬p
¬p

∣∣∣∣ p ∈ P,M 6|= p

}
∪
{

: p′ ∧ ¬p
p′

∣∣∣∣ p ∈ P,M 6|= p

}
∪
{ : n ∧ ¬p

n

∣∣∣ c ∈ C, n = N(c),¬p ∈ c,M 6|= p
}

∪
{

: n ∧ ¬p′

n

∣∣∣∣ c ∈ C, n = N(c), p ∈ c,M |= p

}
.

Define E = Cn({φ|:ψ/φ ∈ A}). To verify that E is an extension of 〈D, ∅〉 it suffices to
check that for every :φ/ψ ∈ A, ¬φ 6∈ E, and for every :φ/ψ ∈ D\A, ¬φ ∈ E, and this is
straightforward. Hence 〈D, ∅〉 6|=c false.

Assume that 〈D, ∅〉 6|=c false; that is, there is an extension E of 〈D, ∅〉 such that false 6∈ E.
Let M be a model such that for all propositional variables p, M |= p if and only if p ∈ E.
We show that M |= C. Because false 6∈ E, :false ∧ ¬n/false 6∈ GD(E,∆) for all n such
that n = N(c) for some c ∈ C. Hence n ∈ E for all such n. Hence for every n, there is
:n ∧ ¬p/n ∈ GD(E,∆) or :n ∧ ¬p′/n ∈ GD(E,∆). Hence for every clause l1 ∨ · · · ∨ ln ∈ C,
p 6∈ E for some ¬p ∈ {l1, . . . , ln}, or p′ 6∈ E for some p ∈ {l1, . . . , ln}. In the first case by
definition M |= ¬p. In the second case p ∈ E and hence by definition M |= p. Hence every
clause in C is true in M , and C is satisfiable. �

Ben-Eliyahu and Dechter (1996) show that testing |=c for a class of default theories that
subsumes all classes in the Kautz and Selman and Stillman hierarchy that have a 2-literal
objective part is co-NP-complete. Hence the problems in Theorems 4.12, 4.13 and 4.14 are
in co-NP, and consequently co-NP-complete. The Ben-Eliyahu and Dechter result, however,
has no direct implications on the complexity of the prioritized versions of these problems.
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Theorem 4.15 Both testing ∆ |=B
P l and ∆ |=BH

P l for normal unary default theories ∆,
strict partial orders P and literals l, is co-NP-hard.

Proof: We give the proof for preferredB extensions only. The proof for preferredBH exten-
sions is similar. The proof is by reduction from propositional satisfiability to the complement
of the problem. Let C = {c1, . . . , cm} be a set of propositional clauses and P the set of
propositional variables occurring in C. Let N be an injective function that maps each clause
c ∈ C to a propositional variable n = N(c) such that n 6∈ P . Define the default theory
∆ = 〈D, ∅〉 and priorities P on D as follows.

D1 =

{
: p

p

∣∣∣∣ p ∈ P} ∪{ : ¬p
¬p

∣∣∣∣ p ∈ P}
D2 =

{
: p′

p′

∣∣∣∣ p ∈ P} ∪{ p : ¬p′

¬p′

∣∣∣∣ p ∈ P}
D3 =

{ p : n

n

∣∣∣ p ∈ c ∈ C, n = N(c)
}
∪
{
p′ : n

n

∣∣∣∣¬p ∈ c ∈ C, n = N(c)

}
∪
{

: n′

n′

∣∣∣∣ c ∈ C, n = N(c)

}
∪
{
n : ¬n′

¬n′

∣∣∣∣ c ∈ C, n = N(c)

}
∪
{
n′ : false

false

∣∣∣∣ c ∈ C, n = N(c)

}
D = D1 ∪D2 ∪D3

P =

{〈
p : ¬p′

¬p′
,
: p′

p′

〉∣∣∣∣ p ∈ P} ∪ (D1 × (D2 ∪D3))

Priorities are needed to guarantee that p ∈ E if and only if p′ 6∈ E, and total priorities
cannot be used because we cannot restrict to those models that correspond to preferred
extensions (with respect to some ordering on the variables), as they are not necessarily
models of C even if C is satisfiable. The default theory is depicted in Figure 2. Defaults
p:q/q are shown as arrows p→ q, and defaults p:¬q/¬q as broken arrows p 6→ q. Only some
of defaults p:n/n and p′:n/n for propositions p ∈ P and n, n = N(c) for c ∈ C, are in D,
and therefore they are shown as dashed arrows. We claim that C is satisfiable if and only
if there is a P-preferredB extension of ∆ that does not contain false.

Assume that C is satisfiable; that is, there is a model M such that M |= C. We show
that there is a P-preferredB extension E of ∆ such that false 6∈ E. Let E = Cn({p ∈
P |M |= p} ∪ {p′|p ∈ P,M 6|= p} ∪ {¬p|p ∈ P,M 6|= p} ∪ {¬p′|p ∈ P,M |= p} ∪ {n|c ∈ C, n =
N(c)} ∪ {¬n′|c ∈ C, n = N(c)}). Let T be a strict total order on D such that P ⊆ T and
for all p ∈ P , :p/pT :¬p/¬p if M |= p and :¬p/¬pT :p/p otherwise, and n:¬n′/¬n′T :n/n for
all c ∈ C, n = N(c). It is straightforward to verify that E is a P-preferredB extension of ∆
generated by T . Clearly false 6∈ E.

Assume that E is a P-preferredB extension such that false 6∈ E. Let M be a model such
that for all p ∈ P , M |= p if and only if p ∈ E. Because false 6∈ E, no default n′:false/false
is applied in E, where n = N(c) for some c ∈ C. Therefore n′ 6∈ E for all n = N(c) such
that c ∈ C. Therefore ¬n′ ∈ E and n ∈ E for all such n. Hence a disjunct p is in E or
p′ is in E for a disjunct ¬p for every c ∈ C. In the first case by definition of M , M |= c.
In the second case p 6∈ E, because otherwise ¬p′ would be in E as p:¬p′/¬p′P:p′/p′. Hence
M |= ¬p and M |= c. Because this holds for all c ∈ C, finally M |= C. �
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Figure 2: A translation from satisfiability to prioritized default logic

5. Lexicographic Prioritized Default Logic

A definition of prioritized default logic is used by Rintanen (1998). This definition is based
on an earlier one for autoepistemic logic (Rintanen, 1994). The priority mechanism uses
lexicographic comparison and the preferred extensions in this approach do not in general
coincide with the preferred extensions in the prioritized default logics discussed in Section 4.
Lexicographic comparison has earlier been used in the context of nonmonotonic reasoning
by several researchers (Lifschitz, 1985; Geffner & Pearl, 1992; Ryan, 1992). Comparing two
extensions is based on whether the defaults are generating defaults of the extensions, that
is, whether their prerequisites belong to the extension and the negations of the justifications
do not belong to the extension. We say that a generating default of an extension is applied
in the extension.

Definition 5.1 (Application) A default α:β1, . . . , βn/γ is applied in E ⊆ L if E |= α
and {¬β1, . . . ,¬βn} ∩ Cn(E) = ∅. This is denoted by appl(α:β1, . . . , βn/γ,E).

We abbreviate appl(δ, E) and not appl(δ, E′) by the notation appl(δ, E,E′).

Definition 5.2 (Preferredness) Let ∆ = 〈D,W 〉 be a default theory and P a strict par-
tial order on D. Let E be an extension of ∆. Then E is a P-preferredL extension of ∆ if
there is a strict total order T on D such that P ⊆ T and for all extensions E′ of ∆ and
δ ∈ D,

appl(δ, E′, E) implies that for some ε ∈ D, εT δ and appl(ε, E,E′).

Such a strict total order is a ∆,P-ordering for E.

Our investigation on lexicographic prioritization in default reasoning was motivated by
earlier work on the topic (Tan & Treur, 1992; Baader & Hollunder, 1995). These definitions
of priorities for default logic are procedural, as they are given as extensions of (nondeter-
ministic) decision procedures for default logic. This procedural nature of prioritization is

440



Complexity of Prioritized Default Logics

sensitive to the lengths of sequences of defaults involved in deriving certain facts: among
two conflicting defaults the one with the lower priority may become applied solely because
the sequence of defaults needed for deriving its prerequisite is shorter (Brewka & Eiter,
1998). Approaches to prioritizing defaults that are based on lexicographic comparison (Lif-
schitz, 1985; Brewka, 1989; Geffner & Pearl, 1992; Ryan, 1992) do not exhibit that kind of
behavior.

Lexicographic comparison has properties that are favorable from the point of view of
knowledge representation. Extensions of a default theory are possible interpretations of
the default theory, representing different ways of resolving the conflicts between default
rules. Priorities express the plausibility of different ways of resolving the conflicts, and
consequently act as an implicit representation of preferences between the extensions. One
useful property of lexicographic comparison is that every finite default theory has at least one
preferred extension whenever it has at least one Reiter extension. It does not seem plausible
that the priorities could contain information that indicates that none of the extensions is a
plausible meaning of the default theory. Another useful property is that every extension of
a default theory is a P-preferredL extension for a suitably chosen P. In other words, the
way priorities are used in ranking the extensions should not per se rule out the possibility
that a certain extension is preferred or that it is the unique preferred extension.

A distinguishing difference between the lexicographic prioritized default logic and other
work on priorities in default logic is that the highest priority default – if there is one – is
applied in all preferredL extensions if there is an extension where it is applied. PreferredB

and preferredBH extensions do not always apply the applicable highest priority defaults.

Example 5.1 (Brewka, 1994) Consider the default theory ∆ = 〈D,W 〉 where W = {a}
and D = {b:c/c, a:¬c/¬c, a:b/b}. Define the relation

P =

{〈
b : c

c
,
a : ¬c
¬c

〉
,

〈
a : ¬c
¬c

,
a : b

b

〉
,

〈
b : c

c
,
a : b

b

〉}
.

According to Definitions 4.2 and 4.3 the sets Ei are as follows, and the unique P-preferredB

and P-preferredBH extension of ∆ is E =
⋃

i≥1 Cn(Ei).

E0 = {a}
E1 = {a,¬c}
E2 = {a,¬c, b}
Ei = E2 for all i ≥ 3

In other words, initially the highest priority default b:c/c is not applicable, and hence the
second default a:¬c/¬c is applied, and ¬c is obtained. The highest priority default is still
not applicable, and hence the third default a:b/b is applied, and b is obtained. Now b:c/c
were applicable if the contradicting default a:¬c/¬c would not have been applied first. �

The application of the highest priority default – whenever possible – would seem a
useful declarative property for nonmonotonic reasoning with priorities. The satisfaction
of this property leads to lexicographic prioritization. Also, the behavior of lexicographic
prioritized default logic is more consistent for default theories with normal defaults α:β/β
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and closely related default theories with prerequisite-free normal defaults :α→ β/α→ β.
The latter defaults allow reasoning by contraposition with the implications, and the former
do not, but otherwise they represent related patterns of reasoning. The logics by Brewka
and by Baader and Hollunder order extensions lexicographically for the latter kind of default
theories, but not for the former.

Definition 5.3 The consequence relation |=L is defined by ∆ |=L
P φ if and only if the

formula φ is in all P-preferredL extensions of ∆.

Example 5.2 Let 〈D,W 〉 be a default theory where D = {p:q/q, p:¬r/¬r, q:r/r} and W =
{p}. Let P = {〈p:¬r/¬r, q:r/r〉} be a strict partial order on D. The default theory has
two extensions, E1 = Cn({p, q,¬r}) where the defaults p:¬r/¬r and p:q/q are applied, and
E2 = Cn({p, q, r}) where p:q/q and q:r/r are applied. These extensions and all strict total
orders T on D such that P ⊆ T are depicted below. The most significant defaults are the
lowest. The symbol • signifies that the default is applied and ◦ that it is not applied.

E1E2p : q

q
• •

q : r

r
◦ •

p : ¬r
¬r

• ◦

E1E2q : r

r
◦ •

p : q

q
• •

p : ¬r
¬r

• ◦

E1E2q : r

r
◦ •

p : ¬r
¬r

• ◦
p : q

q
• •

The extension E1 is a P-preferredL extension because the leftmost strict total order
T1 is a ∆,P-ordering for E1: q:r/r is the only default δ such that appl(δ, E2, E1), and
appl(p:¬r/¬r, E1, E2) and p:¬r/¬rT1q:r/r. The extension E2 is not a P-preferredL exten-
sion because none of the three strict total orders T1, T2, T3 is a ∆,P-ordering for E2: for all
i ∈ {1, 2, 3}, there is the default p:¬r/¬r such that appl(p:¬r/¬r, E1, E2) and there is no
default δ such that δTip:¬r/¬r and appl(δ, E2, E1). �

Lemma 5.4 Let ∆ = 〈D,W 〉 be a default theory where D is finite, and let P be a strict
total order on D. Let ∆ have at least one extension. Then there is exactly one P-preferredL

extension of ∆.

Proof: We show that there is an extension E of ∆ such that P is the ∆,P-ordering for E.
Let δ1, . . . , δn be the ordering P of D. Define Di = {δ1, . . . , δi} for all i ∈ {0, . . . , n}. Define
for all i ∈ {1, . . . , n− 1},

X0 = {E ⊆ L|E is an extension of ∆}, and

Xi+1 =

{
{E ∈ Xi|appl(δi+1, E)} if appl(δi+1, E) for some E ∈ Xi,
Xi otherwise.

Induction hypothesis: For j ∈ {0, . . . , i}, (1) the set Xj is non-empty, (2) for all E ∈ Xj and
E′ ∈ Xj and δ ∈ Dj , appl(δ, E) iff appl(δ, E′), and (3) for all E ∈ Xj and E′ ∈ X0\Xj there
is δ ∈ Dj such that appl(δ, E,E′) and there is no δ′ ∈ D such that δ′Pδ and appl(δ′, E′, E).

The proofs of both the base case and the inductive case are straightforward.
The claim of the lemma is obtained from the facts established in the induction proof as

follows. By (1) the set Xn is non-empty. By (2) and Theorems 2.4 and 2.5 in (Reiter, 1980)
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PROCEDURE extension(D,W,E);
E′ := W ;
REPEAT
E′′ := E′;
FOR EACH α:β1, . . . , βn/γ ∈ D DO

IF 〈E′, α〉 ∈ CN and 〈E,¬β〉 6∈ CN for all β ∈ {β1, . . . , βn}
THEN E′ := E′ ∪ {γ}

END
UNTIL E′ = E′′;
IF 〈E, φ〉 ∈ CN for all φ ∈ E′ and 〈E′, φ〉 ∈ CN for all φ ∈ E
THEN RETURN true ELSE RETURN false

END

Figure 3: A procedure for recognizing extensions

|Xn| ≤ 1. Hence Xn is a singleton {E}. Let E′ be any extension of ∆. Assume that there
is δ′ ∈ D such that appl(δ′, E′, E). Hence E′ 6= E and E′ ∈ X0\Xn. Now by (3) there is
δ ∈ Dn = D such that appl(δ, E,E′) and there is no δ′′ such that δ′′Pδ and appl(δ′′, E′, E).
Therefore not δ′Pδ, and because P is a strict total order, it is the case that δPδ′. Because
this holds for all δ′ ∈ D and all extensions E′ of ∆, P is a ∆,P-ordering for E. Therefore E
is a P-preferredL extension of ∆. Let E′ be any extension such that E 6= E′. Now E ∈ Xn

and E′ 6∈ Xn, and therefore by (3) there is δ ∈ D such that appl(δ, E,E′) and there is no
δ′ ∈ D such that δ′Pδ and appl(δ′, E′, E). Hence E is the only P-preferredL extension of
∆. �

5.1 Complexity in the General Case

The language that corresponds to the consequence relation |= of the classical propositional
logic is denoted by CN and is defined as the set of pairs 〈Σ, φ〉 ∈ 2L × L such that Σ |= φ.
Some of the complexity results use the procedure in Figure 3 that is directly based on the
semiconstructive definition of extensions given in Theorem 3.2.

Lemma 5.5 For the procedure in Figure 3, the call extension(D,W,E) returns true if
and only if Cn(E) is an extension of the default theory 〈D,W 〉. Excluding the tests of
membership in CN the procedure runs in polynomial time on the size of 〈D,W 〉.

Our decision procedure for the lexicographic prioritized default logic is based on a reduc-
tion to the language ENC, which in turn is reducible to CN in nondeterministic polynomial
time. There are three kinds of questions ENC can answer: is the logical closure of a set
of formulae an extension of a default theory, is a strict total order a ∆,P-ordering for
an extension, and is a formula a logical consequence of a set of formulae. The language
ENC⊆ {0, 1, 2} × 2D × 2L × 2L × (2D×D ∪ L) is defined as the set of quintuples

• 〈0, D,W,E, T 〉 where D is a set of defaults, W ⊆ L is a set of formulae, and Cn(E)
is an extension of 〈D,W 〉,
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PROCEDURE ENC(n,D,W,E, T );
CASE n OF
0: IF extension(D,W,E) THEN accept ELSE reject
1: guess nondeterministically a subset E′ of conclusions of D;
E′ := E′ ∪W ;
IF not extension(D,W,E′) or not extension(D,W,E)

THEN reject
ELSE IF compare(E,E′, T ) = true THEN reject

ELSE accept
2: IF 〈E, T 〉 ∈ CN THEN accept ELSE reject
otherwise: reject

END

PROCEDURE applied(α:β1, . . . , βn/γ,E);
IF 〈E,α〉 ∈ CN and 〈E,¬β〉 6∈ CN for all β ∈ {β1, . . . , βn}
THEN RETURN true ELSE RETURN false

END

PROCEDURE compare(E,E′, T );
let T be the ordering δ0T δ1T · · · T δn;
FOR i := 0 TO n DO

IF not applied(δi, E) and applied(δi, E
′) THEN RETURN false;

IF applied(δi, E) and not applied(δi, E
′) THEN RETURN true

END
RETURN true

END

Figure 4: A decision procedure for ENC

• 〈1, D,W,E, T 〉 where D is a set of defaults, W ⊆ L is a set of formulae, E is a set of
formulae, T is a strict total order on D, and T is not a 〈D,W 〉, T -ordering for Cn(E),
and

• 〈2, D,W,E, φ〉 where 〈E, φ〉 ∈ CN.

Lemma 5.6 ENC is Turing reducible to CN in nondeterministic polynomial time.

Proof: The language ENC is accepted by a nondeterministic Turing machine given as the
procedure in Figure 4. The executions of the procedure have a polynomial length. �

Theorem 5.7 The complement of the problem of testing whether a formula belongs to all
preferredL extensions of a default theory is Turing reducible to ENC in nondeterministic
polynomial time.
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PROCEDURE co-cautious(D,W,P, φ);
guess nondeterministically a subset E of conclusions of D;
guess nondeterministically a strict total order T on D;
IF P 6⊆ T THEN reject;
IF 〈0, D,W,E ∪W, ∅〉 ∈ ENC

AND 〈1, D,W,E ∪W, T 〉 6∈ ENC
AND 〈2, ∅, ∅, E ∪W,φ〉 6∈ ENC

THEN accept
ELSE reject

END

Figure 5: A decision procedure for prioritized cautious reasoning

Proof: The question is answered by a Turing machine described by the procedure in Figure
5. The Turing machine uses an oracle for the language ENC. First the machine guesses a
candidate extension Cn(E ∪W ) of 〈D,W 〉 and a strict total order T on D that extends
the relation P. Then the machine verifies that Cn(E ∪ W ) is in fact an extension (the
first consultation of the oracle for ENC), that T is a 〈D,W 〉,P-ordering for Cn(E ∪W )
(the second consultation), and that φ 6∈ Cn(E ∪W ) (the third consultation.) If all these
verifications succeed, the Turing machine accepts. Because the guesses of E and T are
nondeterministic, the machine accepts whenever there is an extension that contains φ and
has a 〈D,W 〉,P-ordering.

The only parts of the procedure that do not run in constant time are the nondeterministic
guessing of the set E, guessing of a strict total order T , and verifying that it extends P.
Because the sizes of E and T are polynomial in 〈D,W 〉, the number of steps needed to
guess them is polynomial in 〈D,W 〉. Verification of P ⊆ T takes polynomial time. �

We give an upper and a lower bound for the location of the decision problem in the poly-
nomial hierarchy. Because ENC is Turing reducible to CN in nondeterministic polynomial
time, the following lemma is immediate.

Lemma 5.8 The language ENC is in Σp
2.

By Theorem 5.7 we get an upper bound for the location of the decision problem in the
polynomial hierarchy. The result is immediate by the definition of the polynomial hierarchy.

Theorem 5.9 The problem of whether a formula belongs to all preferredL extensions of a
default theory is in Πp

3.

Next we show that the decision problem is ∆p
3-hard, thereby obtaining a lower bound on

the location in the polynomial hierarchy. This result is based on a theorem by Krentel (1992)
that identifies ∆p

k-complete problems for k ≥ 1. The theorem concerns lexicographically
maximal valuations of quantified Boolean formulae, and for the prefix ∃∀ it is as follows.

Theorem 5.10 (Krentel, 1992) The problem of computing a given component of X1 is
∆p

3-complete, where X1 is defined as follows.
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Maximum 2-quantified formula
Instance: Boolean formula C[X1, X2] where Xi is an abbreviation for an n-tuple
of Boolean variables that corresponds to a valuation of xi1, . . . , x

i
n.

Output: Lexicographically maximal X1 ∈ {0, 1}n that satisfies

∃X1∀X2(C[X1, X2] = 1).

The following lemma points out a connection between quantified Boolean formulae with
a universal quantifier as the outermost quantifier and the logical consequence relation in
propositional logic.

Lemma 5.11 Let X be a set containing exactly one of x and ¬x for every x ∈ {x1
1, . . . , x

1
n}.

Let X1 = 〈x′11 , . . . , x′1n 〉 where x′1i = 1 if x1
i ∈ X and x′1i = 0 otherwise. Then X1 satisfies

∀X2(C[X1, X2]) if and only if X |= C[X1, X2].

Proof: Assume that X1 satisfies ∀X2(C[X1, X2]). Hence for the choice of truth values for
x1

1, . . . , x
1
n indicated by X1 and any choice of truth values for x2

1, . . . , x
2
n, C[X1, X2] is true.

Now let M be any model such that M |= X. Hence M assigns the same truth values
to x1

1, . . . , x
1
n as X1. Now M |= C[X1, X2], and by the definition of logical consequence

X |= C[X1, X2].
Assume that X |= C[X1, X2]. Hence for all models M such that M |= X and M assigns

any truth-values to x2
1, . . . , x

2
n, M |= C[X1, X2]. By definition of quantified Boolean formu-

lae, for X1 and any X2 the formula C[X1, X2] is true, that is, X1 satisfies ∀X2(C[X1, X2]).
�

The proof of the next lemma uses the same translation of quantified Boolean formulae to
default theories as Gottlob’s proof of Πp

2-hardness of cautious reasoning in Reiter’s default
logic (Gottlob, 1992).

Lemma 5.12 Computing a given component of X1 in Maximum 2-quantified formula
is polynomial time many-one reducible to the problem of testing whether a formula belongs
to all T -preferredL extensions of a default theory for strict total orders T .

Proof: We construct a default theory ∆ = 〈D, ∅〉 and define a strict partial order P on D so
that the kth component of X1 is 1 if and only if ∆ |=L

P x
1
k. The value of a given component of

X1 in Maximum 2-quantified formula is defined only if ∃X1∀X2(C[X1, X2]) is satisfi-
able, so assume it is. Let a be a propositional variable that is not in {x1

1, . . . , x
1
n, x

2
1, . . . , x

2
n}.

Define

D =

{
: x1

1

x1
1

,
: ¬x1

1

¬x1
1

, . . . ,
: x1

n

x1
n

,
: ¬x1

n

¬x1
n

,
C[X1, X2] : a

a

}
, and

P =

{
C[X1, X2] : a

a

}
×
(
D\
{
C[X1, X2] : a

a

})
∪

{〈
: x1

i

x1
i

,
: x1

j

x1
j

〉∣∣∣∣∣ 1 ≤ i < j ≤ n

}

∪
{

: x1
1

x1
1

, . . . ,
: x1

n

x1
n

}
×
{

: ¬x1
1

¬x1
1

, . . . ,
: ¬x1

n

¬x1
n

}
.
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Let T be any strict total order on D that extends P. The sizes of the default theory 〈D, ∅〉
and the strict total order T are linearly proportional to the size of C[X1, X2], and they can
be constructed in polynomial time.

First we show that for each extension E of 〈D, ∅〉 that contains a there is X1 such that
X1 satisfies ∀X2(C[X1, X2]) and for all i ∈ {1, . . . , n}, pi(X1) = 1 iff x1

i ∈ E (the function
pi selects the ith element of an n-tuple.) Let E be an extension of 〈D, ∅〉 and a ∈ E.
Because defaults in D are normal, E is consistent. Hence appl(C[X1, X2]:a/a,E) because
the only default where a occurs in the conclusion is C[X1, X2]:a/a. Hence C[X1, X2] ∈ E;
that is, C[X1, X2] is a logical consequence of the conclusions of generating defaults of E.
Because a does not occur in C[X1, X2], X |= C[X1, X2] for X = E∩{x1

1,¬x1
1, . . . , x

1
n,¬x1

n}.
By Lemma 5.11 X1, defined as pi(X

1) = 1 if x1
i ∈ X and pi(X

1) = 0 otherwise, satisfies
∀X2(C[X1, X2]).

Then we show that for each X1 that satisfies ∀X2(C[X1, X2]), there is an extension
E of 〈D, ∅〉 such that a ∈ E and pi(X

1) = 1 iff x1
i ∈ E. Assume that X1 satisfies

∀X2(C[X1, X2]). Let X = {x1
i |pi(X1) = 1, 1 ≤ i ≤ n} ∪ {¬x1

i |pi(X1) = 0, 1 ≤ i ≤ n}.
It is straightforward to verify that E is an extension of 〈D, ∅〉. Because the extension E is
consistent, appl(C[X1, X2]:a/a,E). Because C[X1, X2]:a/a is the P-least default in D, all
T -preferredL extensions apply C[X1, X2]:a/a.

The counterpart of the T -preferredL extension is the lexicographically maximal X1,
and vice versa. This is by the construction of T , where the defaults :x1

1/x
1
1, . . . , :x

1
n/x

1
n

are ordered as :x1
i /x

1
i T :x1

j/x
1
j whenever i < j. Therefore pi(X

1) = 1 for the maximal X1

satisfying ∀X2(C[X1, X2]) iff x1
i belongs to the T -preferredL extension of 〈D, ∅〉. �

Notice that Lemma 5.12 cannot be reconstructed in the prioritized default logics by
Brewka and by Baader and Hollunder because the construction is based on a highest priority
default that becomes applicable only after a number of lower priority defaults have been
applied, and in these cases those logics do not work like the lexicographic prioritized default
logic. While testing |=L

T for strict total orders T is higher in the polynomial hierarchy than
cautious reasoning in unprioritized default logic, testing |=B

T and |=BH
T is one level lower.

Theorem 5.13 For default theories ∆ = 〈D,W 〉, strict total orders T on D, and formulae
φ, the problem of testing ∆ |=L

T φ is ∆p
3-hard.

Proof: All problems in ∆p
3 are polynomial time many-one reducible to Maximum 2-

quantified formula, which by Lemma 5.12 is polynomial time many-one reducible to
our problem. �

Testing |=L
T for strict total orders T is in ∆p

3. The proof of this fact is based on computing
the unique preferred extensions step by step, at each step determining whether there is an
extension in which one of the defaults is applied in addition to those defaults which we have
already committed to.

Lemma 5.14 For the procedure in Figure 6, the call exists(D,W,A) returns true if and
only if there is an extension E of 〈D,W 〉 such that appl(δ, E) for all δ ∈ A. The procedure
runs in nondeterministic polynomial time given an NP oracle for CN.

Proof: First the procedure guesses a set of conclusions G that possibly are the conclusions of
the generating defaults of the possible extension Cn(G∪W ). The call to extension(D,W,E)
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PROCEDURE exists(D,W ,A);
guess a subset G of conclusions of defaults in D;
E := G ∪W ;
IF not extension(D,W,E) THEN RETURN false;
FOR EACH α:β1, . . . , βn/γ ∈ A DO

IF 〈E,α〉 6∈ CN or 〈E,¬β〉 ∈ CN for some β ∈ {β1, . . . , βn}
THEN RETURN false

END;
RETURN true

END

Figure 6: A procedure that tests for the existence of extensions

PROCEDURE decide(D,W ,T ,φ);
IF not exists(D,W, ∅) THEN RETURN true;
A := ∅;
let δ1, . . . , δn be the ordering T ;
FOR i := 1 TO n DO

IF exists(D,W,A ∪ {δi}) THEN A := A ∪ {δi}
END
E := W ∪ {γ|α:σ/γ ∈ A};
IF E |= φ THEN RETURN true ELSE RETURN false

END

Figure 7: A decision procedure for total priorities

with E = G ∪W tests if this is indeed the case (Lemma 5.5.) Next the procedure tests
whether defaults in A are applied in Cn(G ∪W ), and returns true if and only if this is the
case. Because the procedure represents a nondeterministic Turing machine, the procedure
returns true if and only if it is possible to guess G so that Cn(G ∪ W ) is an extension
where members of A is applied. Hence exists(D,W,A) returns true if and only if there is
an extension E of 〈D,W 〉 such that appl(δ, E) for all δ ∈ A.

The procedure runs in non-deterministic polynomial time and uses an NP oracle for
propositional satisfiability. Hence the problem solved by it is in Σp

2. �

Theorem 5.15 For default theories ∆ = 〈D,W 〉, formulae φ, and strict total orders T on
D, the problem of testing ∆ |=L

T φ is in ∆p
3.

Proof: We give a decision procedure for the problem that runs in deterministic polynomial
time and uses an oracle for a problem that belongs to Σp

2. This demonstrates that the
problem is in ∆p

3. The procedure decide is given in Figure 7 and the Σp
2 oracle procedure

exists is given in Figure 6 and its correctness is stated in Lemma 5.14. The correctness of the
procedure decide is as follows. Let 〈D,W 〉 be a finite default theory with |D| = n, T a strict
total order on D, and φ a formula. Assume that 〈D,W 〉 has no extensions. In this case
the first statement in the procedure decide returns true which is correct because φ trivially
belongs to all extensions of 〈D,W 〉. Assume that 〈D,W 〉 has at least one extension. The
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correctness proof in this case proceeds by induction on i ∈ {1, . . . , n}. The value of the
program variable A after the ith iteration is denoted by Ai. Let δ1, . . . , δn be the ordering
T . Because T is a strict total order on D, by Lemma 5.4 there is exactly one T -preferredL

extension E of 〈D,W 〉.
Induction hypothesis: for all j ∈ {1, . . . , i}, appl(δj , E) if and only if δj ∈ Ai.
Base case i = 0: Now A0 = ∅ and {1, . . . , i} = ∅. Hence the hypothesis is true.
Inductive case i ≥ 1: We analyze the value b returned by exists(D,W,Ai−1 ∪ {δi}) by

cases. Assume that b = true. Hence Ai = Ai−1 ∪ {δi}. By the correctness of the procedure
exists, there is an extension E′ such that appl(δ, E′) for all δ ∈ Ai−1 ∪ {δi}. Assume that
E is not such an extension. Hence appl(δi, E

′, E). By induction hypothesis appl(δj , E)
iff δj ∈ Ai−1 for all j ∈ {1, . . . , i − 1}. Now because appl(δ, E) implies appl(δ, E′) for all
δT δi there are no δ′′T δi such that appl(δ′′, E,E′). Hence E could not be T -preferredL,
and the assumption that not appl(δi, E) was wrong. Assume that b = false. As there is no
extension E′ such that appl(δ, E′) for all δ ∈ Ai−1 ∪ {δi}, and appl(δ, E) for all δ ∈ Ai−1,
not appl(δi, E). Now Ai = Ai−1, and the induction hypothesis is fulfilled. This finishes the
induction proof.

Now An is the set of generating defaults of the unique T -preferredL extension E of
〈D,W 〉. The execution of the program continues at the last statement of the procedure. By
Theorem 3.4 E = Cn(W ∪ {γ|α:σ/γ ∈ An}). Hence φ ∈ E if and only if W ∪ {γ|α:σ/γ ∈
An} |= φ. �

Corollary 5.16 For default theories ∆ = 〈D,W 〉, strict total orders P on D, and formulae
φ, the problem of testing ∆ |=L

P φ is ∆p
3-complete.

Proof: Directly by Theorems 5.13 and 5.15. �

For the problem of membership of formulae all preferred extensions of a default theory
without the restriction to total priorities, the membership in ∆p

3 as well as its Πp
3-hardness

remain open.

5.2 Complexity in Syntactically Restricted Cases

As in Section 4.2, we analyze the complexity of the consequence relation of the lexicographic
prioritized default logic under syntactic restrictions.

5.2.1 Summary

The results on the boundary between tractability and intractability for |=L
P with strict total

orders P are summarized in Table 4. In cases where the complexity of the lexicographic
prioritized default logic differs from Reiter’s default logic, the complexity is set in boldface.
Table 5 indicates where the proofs of the complexity results can be found. The impact of
priorities on the complexity of the decision problems is strongest in the prerequisite-free
normal classes. When the default rules in these classes are totally ordered, the unique
preferred extensions can be easily found by applying the default rules in the given order. A
more complicated polynomial time decision procedure exists for Horn defaults with 1-literal
objective facts (Theorem 5.22). For this class, the existence of an extension that applies
a given set of defaults can be determined in polynomial time, and this together with the
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class of default theories complexity when clauses in W are
Horn 2-literal 1-literal

1 disjunction-free NP-hard NP-hard NP-hard

2 unary NP-hard NP-hard NP-hard

3 disjunction-free ordered NP-hard NP-hard NP-hard

4 ordered unary NP-hard NP-hard NP-hard

5 disjunction-free normal NP-hard NP-hard NP-hard

6 Horn NP-hard NP-hard PTIME

7 normal unary NP-hard NP-hard PTIME

8 prerequisite-free NP-hard NP-hard NP-hard

9 prerequisite-free ordered NP-hard NP-hard NP-hard

10 prerequisite-free unary NP-hard NP-hard NP-hard

11 prerequisite-free ordered unary NP-hard NP-hard NP-hard

12 prerequisite-free normal PTIME PTIME PTIME

13 prerequisite-free normal unary PTIME PTIME PTIME

14 prerequisite-free positive normal unary PTIME PTIME PTIME

Table 4: Complexity of the consequence relation |=L with total priorities

class of default theories reference
Horn 2-literal 1-literal

1 disjunction-free 4 ⊆ 4 ⊆ 4 ⊆
2 unary 4 ⊆ 4 ⊆ 4 ⊆
3 disjunction-free ordered 5 ⊆ 5 ⊆ 5 ⊆
4 ordered unary C5.20 C5.20 C5.20
5 disjunction-free normal C5.18 C5.18 C5.18
6 Horn 7 ⊆ 7 ⊆ T5.22
7 normal unary C5.20 C5.20 ⊆ 6
8 prerequisite-free 11 ⊆ 11 ⊆ 11 ⊆
9 prerequisite-free ordered 11 ⊆ 11 ⊆ 11 ⊆

10 prerequisite-free unary 11 ⊆ 11 ⊆ 11 ⊆
11 prerequisite-free ordered unary C5.20 C5.20 C5.20
12 prerequisite-free normal T5.21 T5.21 T5.21
13 prerequisite-free normal unary ⊆ 12 ⊆ 12 ⊆ 12
14 prerequisite-free positive normal unary ⊆ 12 ⊆ 12 ⊆ 12

Table 5: References to theorems on the complexity of |=L with total priorities

stepwise construction of preferred extensions given as the procedure in Figure 7 yields a
fast decision procedure.
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5.2.2 Intractable Classes with Total Priorities

The next theorems are based on reductions from intractable problems of brave reasoning in
Reiter’s default logic to prioritized default logic with total priorities.

Theorem 5.17 Let F be a class of formulae and C a class of finite default theories such
that

• if 〈D,W 〉 ∈ C, then 〈D ∪ {φ:p/p},W 〉 ∈ C where φ ∈ F and p is a propositional
variable that does not occur in D or W , and

• each member of C has at least one extension.

The problem of testing ∆ |=b φ for ∆ ∈ C and φ ∈ F is polynomial time many-one reducible
to the problem of testing ∆′ |=L

P p where ∆′ ∈ C, p is a propositional variable, and P is a
strict total order on defaults in ∆′.

Proof: Let 〈D,W 〉 ∈ C be a default theory, φ ∈ F a formula, and k a propositional variable
that does not occur in 〈D,W 〉 or φ. Let P be any strict partial order on D ∪ {φ:k/k}
such that φ:k/k is the P-least element. We claim that 〈D,W 〉 |=b φ if and only if 〈D ∪
{φ:k/k},W 〉 |=L

P k. This is directly because the highest priority default is applied in all
preferredL extensions if it is possible to apply it, and k belongs to those extensions if and
only if φ belongs to them. �

As a corollary, together with a theorem that shows the intractability of brave reasoning
of the class in Reiter’s default logic (Kautz & Selman, 1991), we obtain the following result.

Corollary 5.18 Testing 〈D,W 〉 |=L
P l for strict total orders P, literals l, and disjunction-

free normal default theories 〈D,W 〉 where W is a set of literals, is NP-hard.

Theorem 5.19 Let C be a class of finite default theories such that the conclusion of each
default is a literal and each member of C has at least one extension. The problem of testing
∆ |=b l for ∆ ∈ C and literals l is polynomial time many-one reducible to the problem of
testing ∆ |=L

T l where T is a strict total order on defaults in ∆.

Proof: Let ∆ = 〈D,W 〉 be a default theory in C. We reduce testing ∆ |=b l to ∆ |=L
T l as

follows. Let D′ be the set of defaults with l as the conclusion. Let T be a strict total order
on D such that D′ × (D\D′) ⊆ T . We claim that ∆ |=b l if and only if ∆ |=L

T l.
Assume that ∆ 6|=b l. Because by assumption there is at least one extension of ∆, by

Lemma 5.4 there is exactly one T -preferredL extension E of ∆. Clearly l 6∈ E. Therefore
∆ 6|=L

T l.
Assume that ∆ |=b l. Then there is an extension E of ∆ such that l ∈ E. If W |= l,

then clearly ∆ |=L
T l. Assume that W 6|= l. Now appl(δ, E) for some δ ∈ D′. Assume that

E′ is an extension of ∆ such that l 6∈ E. Now appl(δ, E,E′). As δ′ ∈ D′ for all δ′T δ and
not appl(δ′, E′) for all δ′ ∈ D′, there is no δ′T δ such that appl(δ′, E′, E). Hence E′ is not
T -preferredL. Therefore l belongs to all T -preferredL extensions of ∆ and ∆ |=L

T l. �

The following corollary is obtained with the intractability results of brave reasoning by
Kautz and Selman (1991) and Stillman (1990) for the classes mentioned.
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Corollary 5.20 Testing 〈D,W 〉 |=L
P l for strict total orders P and literals l in any of the

classes of default theories below is NP-hard.
D W

normal unary Horn clauses
normal unary 2-literal clauses
ordered unary literals
prerequisite-free ordered unary literals

5.2.3 Tractable Classes

Next we give a restricted tractable class of prioritized default theories for which the unique
P-preferredL extensions can be computed by using P as the order in which the application
of defaults is attempted. Exhaustive search is avoided because there is no need to retract a
decision to apply a default. The theorem is given in a general form for any tractable subset
of classical propositional logic, like Horn clauses, 2-literal clauses, or 1-literal clauses. The
theorem and the algorithm are part of the folklore of nonmonotonic reasoning.

Theorem 5.21 Let F be a class of formulae such that satisfiability testing for S ⊆ F takes
polynomial time in the size of S. Let C be a class of default theories 〈D,W 〉 such that
D = {:φ/φ|φ ∈ F} for some finite set F ⊆ F and W ⊆ F is finite. Then for ∆ ∈ C, φ ∈ F ,
and strict total orders P on the defaults in ∆, the problem of testing ∆ |=L

P ¬φ is solvable
in polynomial time on the size of D ∪W ∪ {¬φ}.

Proof: By Lemma 5.4 there is at most one P-preferredL extension for each member of C,
and because the defaults in members of C are normal, there is at least one extension for each
member of C by Theorem 3.1 in (Reiter, 1980). Therefore there is exactly one P-preferredL

extension for each member of C. A decision procedure for the class of default theories stated
in the theorem is given in Figure 8. The procedure computes a set E that consists of W and
the conclusions of the generating defaults of the extension Cn(E) of 〈D,W 〉, and returns
true if and only if E |= φ.

Let :φ1/φ1, . . . , :φn/φn be the ordering P of defaults in D. If W is inconsistent the
procedure returns true. In this case Cn(W ) = L is the only extension of 〈D,W 〉 which agrees
with the statement of the lemma. Otherwise extensions of 〈D,W 〉 are consistent. Define
Di = {:φ1/φ1, . . . , :φi/φi} and Πi = {φ1, . . . , φi} for all i ∈ {0, . . . , n}. The correctness
proof is by induction on i and we obtain the P-preferrednessL of Cn(E) as the case i = n.

Induction hypothesis: for all j ∈ {0, . . . , i}, if W is consistent, Ej is a maximal consistent
subset of Πj ∪W such that W ⊆ Ej , and Cn(Ei) is a P ∩ (Di ×Di)-preferredL extension
of 〈Di,W 〉.

The induction proof is straightforward. That the procedure runs in polynomial time
on the size of 〈D,W 〉 is also obvious. Thus any polynomial time subset C of classical
propositional logic produces a tractable class of default theories. �

Without priorities reasoning with prerequisite-free normal default rules and Horn clauses
is NP-complete (Stillman, 1990). For normal defaults, tractability can be obtained also for
defaults with prerequisites if suitable restrictions are imposed on the prerequisites, conclu-
sions, and the objective parts of the default theories. Next we present such a class that is
neither subsumed by nor subsumes the tractable prerequisite-free classes. The idea behind
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PROCEDURE decide(D,W,P, φ)
LET :φ1/φ1, :φ2/φ2, . . . , :φn/φn be the ordering P on D;
E0 := W ;
FOR i := 1 TO n DO

IF Ei−1 ∪ {φi} is consistent (equivalently, Ei−1 6|= ¬φi)
THEN Ei := Ei−1 ∪ {φi}

END;
E := En;
IF E |= φ
THEN RETURN true ELSE RETURN false

END

Figure 8: A decision procedure for a class of prerequisite-free normal default theories

the result is the same as the one used in the proof of Theorem 5.15. Corollary 5.18 indicates
that the result cannot be generalized (assuming P 6=NP) to any of the classes higher in the
Kautz and Selman hierarchy.

Theorem 5.22 Let C be the class of Horn default theories 〈D,W 〉 where W is a finite set
of literals and defaults in D are of the form p1∧· · ·∧pn:l/l where l is a literal and p1, . . . , pn
are propositional variables. For ∆ ∈ C, negated Horn clauses φ, and strict total orders P
on the defaults in ∆, the problem of testing ∆ |=L

P ¬φ is solvable in polynomial time on the
size of D ∪W ∪ {¬φ}.

Proof: The body of the decision procedure is given in Figure 7 and its correctness proof
is included in the proof of Theorem 5.15. Here we use the subprocedure exists in Figure
9. The procedure exists runs in polynomial time on the size of D ∪W ∪ A because the
number of iterations in the repeat-until loop is at most |D′| ≤ |D| and logical consequence
tests with propositional Horn clauses can be performed in polynomial time. Next we prove
that the procedure exists called with arguments (D,W,A) returns true if and only if there
is an extension E of ∆ = 〈D,W 〉 such that A ⊆ GD(E,∆). The correctness proof and the
algorithm are based on the idea that to derive the prerequisites of defaults in A, defaults
in D\A with a negative conclusion are not needed.

First we show that exists returns true if and only if there is an extension E′ of ∆′ =
〈D′,W 〉 such that A ⊆ GD(E′,∆′), where D′ = A ∪ {α:p/p ∈ D|¬p 6∈ W,α′:¬p/¬p 6∈
A, p is atomic}. If W ∪ {π|α:π/π ∈ A} is inconsistent and A 6= ∅, then there are no
extensions that apply A, and hence it is correct to return false. So assume W ∪{π|α:π/π ∈
A} is consistent. Now the set U = W ∪ {π|α:π/π ∈ D′} is consistent by definition of D′.
Any extension E′ of ∆′ satisfies E′ ⊆ Cn(U), and because all defaults in D′ are normal, no
negation of a justification of a default in D′ is in Cn(U). Therefore exactly those defaults
are applied in extensions of ∆′ for which the prerequisite is derivable. It is straightforward
to show that the procedure computes the union E of W and the set of conclusions of the
unique such set of defaults, and hence Cn(E) is the unique extension of ∆′. Finally, the
procedure returns false if and only if α 6∈ E for some α:π/π ∈ A. This is equivalent to the
fact that δ 6∈ GD(E,∆′) for some δ ∈ A, and hence A 6⊆ GD(E,∆′).

453



Rintanen

PROCEDURE exists(D,W,A)
IF A 6= ∅ and W ∪ {π|α:π/π ∈ A} |= ⊥ THEN RETURN false;
D′ := A ∪ {α:p/p ∈ D|¬p 6∈W,α′:¬p/¬p 6∈ A, p is atomic};
E := W ;
REPEAT
E′ := E;
FOR EACH α:π/π ∈ D′ DO

IF E′ |= α THEN E := E ∪ {π}
END

UNTIL E = E′;
IF E 6|= α for some α:π/π ∈ A THEN RETURN false
ELSE RETURN true

END

Figure 9: A subprocedure of a decision procedure

Then we show that there is an extension E′ of ∆′ such that A ⊆ GD(E′,∆′) if and only
if there is an extension E of ∆ such that A ⊆ GD(E,∆). The “only if” direction directly
follows from Theorem 3.2 in (Reiter, 1980) because D′ ⊆ D and D is normal. Assume that
there is an extension E of ∆ such that A ⊆ GD(E,∆). It is straightforward to show that
E is an extension of 〈GD(E,∆),W 〉. Next we remove defaults with negative conclusions
that are in D but not in A: an induction proof with Theorem 3.2 and the induction
hypothesis E′′i = Cn(Ei∩ ({π|α:π/π ∈ A}∪{p|α:p/p ∈ GD(E,∆), p is atomic}∪W )) shows
that E′′ = Cn({π|α:π/π ∈ A} ∪ {p ∈ E|α:p/p ∈ D, p is atomic} ∪W ) is an extension of
〈GD(E,∆) ∩ D′,W 〉 and A ⊆ GD(E′′, 〈GD(E,∆) ∩ D′,W 〉). By Theorem 3.2 in (Reiter,
1980), there is an extension E′ of ∆′ such that A ⊆ GD(E′,∆′).

Therefore the procedure returns true if and only if there is an extension E of 〈D,W 〉
such that A ⊆ GD(E,∆). �

The tractability result is related to the tractability of brave reasoning of the same class
as shown by Lemma 6.4 in (Kautz & Selman, 1991).

5.2.4 Results for Arbitrary Priorities

The previous section restricts to the special case where priorities are a strict total or-
dering on the defaults. However, for instance in representing inheritance networks, two
defaults sometimes need to have an equal (or incomparable) priority. Hence the possibility
of tractable inference with less restricted priorities is of interest. The complexity results
for unrestricted priorities are summarized in Table 6. Like in earlier sections, references to
theorems are given in Table 7. The results in the previous sections as well as results on the
complexity of cautious reasoning (Kautz & Selman, 1991) directly imply the intractability
of many classes of reasoning with arbitrary priorities, because the former two are a special
case of the latter. Classes of default theories for which the tractability question remains
open are the prerequisite-free normal classes and the normal unary class with literals. For
prerequisite-free normal unary theories with 1-literal clauses reasoning is tractable, but
the remaining classes are sufficiently expressive to encode propositional satisfiability. It
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class of default theories complexity when clauses in W are
Horn 2-literal 1-literal

1 disjunction-free co-NP-hard co-NP-hard co-NP-hard

2 unary co-NP-hard co-NP-hard co-NP-hard

3 disjunction-free ordered co-NP-hard co-NP-hard co-NP-hard

4 ordered unary co-NP-hard co-NP-hard co-NP-hard

5 disjunction-free normal co-NP-hard co-NP-hard co-NP-hard

6 Horn co-NP-hard co-NP-hard co-NP-hard

7 normal unary co-NP-hard co-NP-hard co-NP-hard

8 prerequisite-free co-NP-hard co-NP-hard co-NP-hard

9 prerequisite-free ordered co-NP-hard co-NP-hard co-NP-hard

10 prerequisite-free unary co-NP-hard co-NP-hard co-NP-hard

11 prerequisite-free ordered unary co-NP-hard co-NP-hard co-NP-hard

12 prerequisite-free normal co-NP-hard co-NP-hard co-NP-hard

13 prerequisite-free normal unary co-NP-hard co-NP-hard PTIME

14 prerequisite-free positive normal unary co-NP-hard co-NP-hard PTIME

Table 6: Complexity of the consequence relation |=L with arbitrary priorities

class of default theories reference
Horn 2-literal 1-literal

1 disjunction-free K&S K&S K&S
2 unary K&S K&S K&S
3 disjunction-free ordered K&S K&S K&S
4 ordered unary K&S K&S K&S
5 disjunction-free normal K&S K&S K&S
6 Horn K&S K&S K&S
7 normal unary 14 ⊆ 14 ⊆ T5.24
8 prerequisite-free 14 ⊆ 14 ⊆ 11 ⊆
9 prerequisite-free ordered 14 ⊆ 14 ⊆ 11 ⊆

10 prerequisite-free unary 14 ⊆ 14 ⊆ 11 ⊆
11 prerequisite-free ordered unary 14 ⊆ 14 ⊆ T4.14
12 prerequisite-free normal 14 ⊆ 14 ⊆ T4.13
13 prerequisite-free normal unary 14 ⊆ 14 ⊆ T5.23
14 prerequisite-free positive normal unary T4.12 T4.12 ⊆ 13

Table 7: References to theorems on the complexity of |=L with arbitrary priorities

turns out that the tractability of lexicographic prioritized default logic coincides with the
tractability of Reiter’s default logic for all but one class. There may still be differences
in the complexity of the intractable classes, for example Reiter’s default logic could be in
co-NP and lexicographic prioritized default logic could be ∆p

2-hard. We have not analyzed
the intractable classes in more detail.
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Theorem 5.23 Let C be the class of default theories ∆ = 〈D,W 〉 where W is a set of
literals and D consists of defaults of the form :l/l where l is a literal. Let P be a strict
partial order on D and let l be a literal. Testing ∆ |=L

P l can be done in polynomial time on
the size of ∆ and P and l.

Proof: The algorithm in Figure 1 tests 〈D,W 〉 |=L
P l. The correctness of the algorithm is as

follows. We analyze the if-statements in sequence. In each case we may use the negations
of the assumptions of the previous cases. For the first four statements the proof is like the
proof of Theorem 4.11 as no priorities are involved. 5. Assume that :l/lP:l/l. Now :l/lT :l/l
for all strict total orders T such that P ⊆ T . We obtain the unique extension with the
∆,P-ordering T by the algorithm given in Figure 8 and proven correct in Theorem 5.21.
Obviously, l is in that extension, and consequently in all P-preferredL extensions. Hence
it is correct to return true. 6. In the remaining case not :l/lP:l/l. Hence there is a strict
total ordering on D such that P ⊆ T and :l/lT :l/l. An argument similar to the one in the
previous case shows that there is a P-preferredL extension with the ∆,P-ordering T that
contains l and therefore does not contain l. Hence it is correct to return false.

Therefore the algorithm returns true if and only if l is in all P-preferredL extensions of
∆. Clearly, the algorithm runs in polynomial time. �

Without priorities, cautious and brave reasoning for normal unary theories and 1-literal
clauses is tractable (Kautz & Selman, 1991). We show that priorities increase the expres-
sivity sufficiently to make this class intractable.

Theorem 5.24 The problem of testing whether a literal l belongs to all P-preferredL ex-
tensions of ∆, where ∆ is a normal unary default theory and P is a strict partial order on
defaults in ∆, is co-NP-hard.

Proof: The proof is by reduction from propositional satisfiability to the complement of
the problem. Let C = {c1, . . . , cm} be a set of propositional clauses and P the set of
propositional variables occurring in C. Let N be an injective function that maps each
clause c ∈ C to a propositional variable n = N(c) such that n 6∈ P . Define the default
theory ∆ = 〈D, ∅〉 and priorities on D as in the proof of Theorem 4.15. We claim that
the set of clauses C is satisfiable if and only if ∆ 6|=L

P false; that is, there is a P-preferredL

extension of ∆ that does not contain false. In the proof we refer to the consistency of
extensions of 〈D,W 〉 which is by the consistency of W and the fact that defaults in D have
justifications (Corollary 2.2 by Reiter (1980)).

(⇒) Assume that there is a model M such that M |= C. We show that there is a
P-preferredL extension E of ∆ such that false 6∈ E. Let E = Cn({p ∈ P |M |= p} ∪ {p′|p ∈
P,M 6|= p} ∪ {¬p|p ∈ P,M 6|= p} ∪ {¬p′|p ∈ P,M |= p} ∪ {n|c ∈ C, n = N(c)} ∪ {¬n′|c ∈
C, n = N(c)}). It is straightforward to verify that E is an extension of 〈D, ∅〉. Let T be
any strict total order on D such that P ⊆ T and for all {δ, δ′} ⊆ D1 and all {δ, δ′} ⊆ D3,
δT δ′ if appl(δ, E) and not appl(δ′, E). We show that T is a 〈D, ∅〉,P-ordering for E. Let
E′ be any extension of 〈D, ∅〉 such that there is δ ∈ D such that appl(δ, E′, E). We show
that there is δ′ ∈ D such that appl(δ′, E,E′).

Assume that δ ∈ D1. Now δ = :l/l for some literal l and l ∈ E′ and l ∈ E. Because E′

is consistent, l 6∈ E′. Hence appl(:l/l, E,E′). By definition :l/lT :l/l.
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Assume that δ ∈ D2 and δ = :p′/p′ for some p ∈ P . Now by definition p ∈ E and
appl(p:¬p′/¬p′, E). Because E′ is consistent, ¬p′ 6∈ E′ and hence appl(p:¬p′/¬p′, E,E′).
By definition p:¬p′/¬p′P:p′/p′.

Assume that δ ∈ D2 and δ = p:¬p′/¬p′ for some p ∈ P . Because p ∈ E′, appl(:p/p,E′).
Because not appl(p:¬p′/¬p′, E) by definition p 6∈ E, and hence not appl(:p/p,E). Hence
¬p ∈ E and appl(:¬p/¬p,E). Because E is consistent, ¬p 6∈ E and appl(:¬p/¬p,E,E′).
By definition :¬p/¬pPp:¬p′/¬p′.

Assume that δ = p:n/n. Clearly p 6∈ E, appl(:¬p/¬p,E,E′) and :¬p/¬pT p:n/n. Proof
for δ = p′:n/n is similar.

Assume that δ = :n′/n′. Hence appl(n:¬n′/¬n′, E,E′). By definition n:¬n′/¬n′T :n′/n′.
Proof for δ = n:¬n′/¬n′ is similar.

Assume that δ = n′:false/false. Hence appl(:n′/n′, E′, E) and appl(:¬n′/¬n′, E,E′). By
definition :¬n′/¬n′T n:false/false.

This exhausts all δ ∈ D. Therefore T is a 〈D, ∅〉,P-ordering for E and E is a P-
preferredL extension of 〈D, ∅〉.

(⇐) Assume that E is a P-preferredL extension of ∆ such that false 6∈ E. We show
that there is a model M such that M |= C. Define the model as M |= p iff p ∈ E, for
all p ∈ P . Let c = {l1, . . . , ln} be any clause in C. We show that M |= c. Let n = N(c).
Because false 6∈ E, not appl(n′:false/false, E). Because ¬false is not in any conclusion of
a default in D, n′ 6∈ E. Because not appl(:n′/n′, E), ¬n′ ∈ E. Hence appl(n:¬n′/¬n′, E).
Hence n ∈ E. Because E is consistent, appl(q:n/n,E) for some q ∈ {p, p′} where p ∈ c or
¬p ∈ c. If q = p, then p′ 6∈ E because of the following. Assume that p′ ∈ E. Let E12 =
Cn(E ∩ (P ∪ {¬p|p ∈ P} ∪ {p′|p ∈ P} ∪ {¬p′|p ∈ P})\{p′} ∪ {¬p′}). It is easy to show that
E12 is an extension of 〈D1 ∪D2, ∅〉. By Theorem 3.2 in (Reiter, 1980) there is an extension
E′ of 〈D, ∅〉 such that GD(E12, 〈D1 ∪D2, ∅〉) ⊆ GD(E′, 〈D, ∅〉). Now appl(p:¬p′/¬p′, E′, E)
and there is no δ ∈ D such that appl(δ, E,E′) and δT p:¬p′/¬p′ for some strict total order
T such that P ⊆ T . This contradicts the P-preferrednessL of E, and hence it must be the
case that p′ 6∈ E. Hence by definition M |= p. If q = p′, then clearly p′ ∈ E. Hence by
definition M |= ¬p. Therefore M |= c. Because this holds for any clause c ∈ C, M |= C. �

6. Related Work on Prioritized Default Reasoning

Marek and Truszczyński (1993) introduce a prioritized default logic that is similar to
Brewka’s (1994) logic. The existence of preferred extensions is not guaranteed in general,
but for normal defaults it is. We believe that for normal default theories, the complex-
ity of the Marek and Truszczyński logic coincides with the complexity of Brewka’s logic.
Delgrande and Schaub (1997) present a translation from prioritized default theories to unpri-
oritized default theories, so that the extensions of the resulting theories obey the priorities.
Their translation can be performed in polynomial time. Buccafurri et al. (1998) present
a knowledge representation language that extends logic programs with priorities, classical
negation, and disjunction. They claim that brave reasoning for their language is in general
Σp

2-complete and without disjunction and classical negation it is polynomial time.

Brewka and Eiter (1998) present the notion of preferred answer sets for extended logic
programs. Their definition diverges from earlier work in that even with a total ordering
on the rules there may be more than one preferred answer set, and preferred answer sets
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do not always exists for a given program even if answer sets do. Brewka and Eiter show
that testing the membership of a literal in all preferred answer sets of a program is co-
NP-hard when the rules are totally ordered. Their motivation for introducing preferred
answer sets is that earlier accounts of priorities in logic programs and in default logic do
not fulfill two principles identified by them. Principle I is violated by the prioritized default
logics that are based on the semiconstructive definition of extensions (Baader & Hollunder,
1995; Brewka, 1994; Marek & Truszczyński, 1993), but not by the lexicographic prioritized
default logic discussed in Section 5. Principle II can be paraphrased as follows. Let E be
a P-preferred extension of 〈D,W 〉 and α:β/γ a default such that α 6∈ E. Then E is a
P ′-preferred extension of 〈D ∪ {α:β/γ},W 〉 for all P ′ such that P ′ ∩ (D×D) = P. Brewka
and Eiter show that the prioritized default logic investigated in Section 5 violates this
principle. However, Principle II is not violated by a closely related prioritized default logic
that replaces application with non-defeat (Rintanen, 1998). A default α:β/γ is defeated in
E if E |= α ∧ ¬β. Therefore it is not in general the case that lexicographic definitions of
preferredness would violate Principle II. However, we believe that Brewka and Eiter would
nevertheless find this definition of preferred extensions counterintuitive.

Example 6.1 Let D = {a:b/b, :a/a, :¬a/¬a} and W = {¬b}. Let T be a strict total
order on D such that a:b/bT :a/a and :a/aT :¬a/¬a. The default theory 〈D,W 〉 has two
extensions, E1 = Cn({a,¬b}) and E2 = Cn({¬a,¬b}). The extension E1 defeats a:b/b and
:¬a/¬a, and E2 defeats :a/a. Because E1 defeats the highest priority default a:b/b and E2

does not, only E2 is a T -preferred extension of 〈D,W 〉. �

We believe that in this example, Brewka and Eiter would want E1 to be the only T -
preferred extension because the only conflict is between :a/a and :¬a/¬a, and the priority
of :a/a is higher. It seems that the question at hand is the meaning of priorities in cases
where defaults that are less directly derivable have a higher or equal priority. Lexicographic
comparison gives one meaning, a very natural one in our opinion, but Brewka and Eiter seem
to want to ignore the higher priority. Instead of addressing Brewka and Eiter’s concern by
devising new definitions of preferred extensions, it could be addressed by not using priorities
that produce unintended results. If a restriction to defaults with literal prerequisites and
conclusions is made, this could be done simply by requiring that l:m/nPl′:m′/n′ whenever
n = l′. Priorities used in translating inheritance networks to prioritized default logic fulfill
this requirement (Rintanen, 1998).

7. Conclusions

We have presented a thorough analysis of the complexity of three versions of prioritized
default logic, giving results that place these logics in the polynomial hierarchy, and analyzing
the question of intractability versus tractability for syntactically restricted classes of default
theories.

The main results place the propositional variants of three general formalizations of pri-
oritized default reasoning, the logics by Brewka (1994) and Baader and Hollunder (1995)
that are based on the semiconstructive definition of extensions, and a formalization that is
based on lexicographic comparison, on the lower levels of the polynomial hierarchy. As the
first two formalizations closely resemble each other, it is not surprising that polynomial time
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translations between the decision problems of these two formalizations exist. There are also
polynomial time translations to and from Reiter’s default logic. The third formalization,
that uses lexicographic comparison to select the preferred extensions, is not reducible to
Reiter’s default logic in polynomial time (under the standard complexity-theoretic assump-
tions.)

An analysis of the complexity of the decision problems in syntactically restricted cases,
following earlier work by Kautz and Selman (1991) and Stillman (1990), identifies the effect
of priorities on the boundary between tractability and intractability in the prioritized ver-
sions of the decision problems. With priorities that totally order the defaults and classical
propositional reasoning that is tractable, for example with Horn clauses or 2-literal clauses,
reasoning in Brewka’s and in Baader and Hollunder’s logics is polynomial time. For the
formalization of prioritized default reasoning that uses lexicographic comparison, the same
assumptions yield tractable reasoning only for the so-called Horn defaults and background
theories without disjunction, as well as normal defaults without prerequisites and disjunc-
tion. When arbitrary priorities are allowed, in all three logics reasoning is tractable only
when defaults are of the form :l/l for literals l and the background theories are sets of
literals.
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